// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2016-2017 Google, Inc
*
* Fairchild FUSB302 Type-C Chip Driver
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/extcon.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/proc_fs.h>
#include <linux/regulator/consumer.h>
#include <linux/sched/clock.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/usb.h>
#include <linux/usb/typec.h>
#include <linux/usb/tcpm.h>
#include <linux/usb/pd.h>
#include <linux/workqueue.h>
#include "fusb302_reg.h"
/*
* When the device is SNK, BC_LVL interrupt is used to monitor cc pins
* for the current capability offered by the SRC. As FUSB302 chip fires
* the BC_LVL interrupt on PD signalings, cc lvl should be handled after
* a delay to avoid measuring on PD activities. The delay is slightly
* longer than PD_T_PD_DEBPUNCE (10-20ms).
*/
#define T_BC_LVL_DEBOUNCE_DELAY_MS 30
enum toggling_mode {
TOGGLING_MODE_OFF,
TOGGLING_MODE_DRP,
TOGGLING_MODE_SNK,
TOGGLING_MODE_SRC,
};
enum src_current_status {
SRC_CURRENT_DEFAULT,
SRC_CURRENT_MEDIUM,
SRC_CURRENT_HIGH,
};
static const u8 ra_mda_value[] = {
[SRC_CURRENT_DEFAULT] = 4, /* 210mV */
[SRC_CURRENT_MEDIUM] = 9, /* 420mV */
[SRC_CURRENT_HIGH] = 18, /* 798mV */
};
static const u8 rd_mda_value[] = {
[SRC_CURRENT_DEFAULT] = 38, /* 1638mV */
[SRC_CURRENT_MEDIUM] = 38, /* 1638mV */
[SRC_CURRENT_HIGH] = 61, /* 2604mV */
};
#define LOG_BUFFER_ENTRIES 1024
#define LOG_BUFFER_ENTRY_SIZE 128
struct fusb302_chip {
struct device *dev;
struct i2c_client *i2c_client;
struct tcpm_port *tcpm_port;
struct tcpc_dev tcpc_dev;
struct regulator *vbus;
spinlock_t irq_lock;
struct work_struct irq_work;
bool irq_suspended;
bool irq_while_suspended;
struct gpio_desc *gpio_int_n;
int gpio_int_n_irq;
struct extcon_dev *extcon;
struct workqueue_struct *wq;
struct delayed_work bc_lvl_handler;
/* lock for sharing chip states */
struct mutex lock;
/* chip status */
enum toggling_mode toggling_mode;
enum src_current_status src_current_status;
bool intr_togdone;
bool intr_bc_lvl;
bool intr_comp_chng;
/* port status */
bool vconn_on;
bool vbus_on;
bool charge_on;
bool vbus_present;
enum typec_cc_polarity cc_polarity;
enum typec_cc_status cc1;
enum typec_cc_status cc2;
u32 snk_pdo[PDO_MAX_OBJECTS];
#ifdef CONFIG_DEBUG_FS
struct dentry *dentry;
/* lock for log buffer access */
struct mutex logbuffer_lock;
int logbuffer_head;
int logbuffer_tail;
u8 *logbuffer[LOG_BUFFER_ENTRIES];
#endif
};
/*
* Logging
*/
#ifdef CONFIG_DEBUG_FS
static bool fusb302_log_full(struct fusb302_chip *chip)
{
return chip->logbuffer_tail ==
(chip->logbuffer_head + 1) % LOG_BUFFER_ENTRIES;
}
__printf(2, 0)
static void _fusb302_log(struct fusb302_chip *chip, const char *fmt,
va_list args)
{
char tmpbuffer[LOG_BUFFER_ENTRY_SIZE];
u64 ts_nsec = local_clock();
unsigned long rem_nsec;
if (!chip->logbuffer[chip->logbuffer_head]) {
chip->logbuffer[chip->logbuffer_head] =
kzalloc(LOG_BUFFER_ENTRY_SIZE, GFP_KERNEL);
if (!chip->logbuffer[chip->logbuffer_head])
return;
}
vsnprintf(tmpbuffer, sizeof(tmpbuffer), fmt, args);
mutex_lock(&chip->logbuffer_lock);
if (fusb302_log_full(chip)) {
chip->logbuffer_head = max(chip->logbuffer_head - 1, 0);
strscpy(tmpbuffer, "overflow", sizeof(tmpbuffer));
}
if (chip->logbuffer_head < 0 ||
chip->logbuffer_head >= LOG_BUFFER_ENTRIES) {
dev_warn(chip->dev,
"Bad log buffer index %d\n", chip->logbuffer_head);
goto abort;
}
if (!chip->logbuffer[chip->logbuffer_head]) {
dev_warn(chip->dev,
"Log buffer index %d is NULL\n", chip->logbuffer_head);
goto abort;
}
rem_nsec = do_div(ts_nsec, 1000000000);
scnprintf(chip->logbuffer[chip->logbuffer_head],
LOG_BUFFER_ENTRY_SIZE, "[%5lu.%06lu] %s",
(unsigned long)ts_nsec, rem_nsec / 1000,
tmpbuffer);
chip->logbuffer_head = (chip->logbuffer_head + 1) % LOG_BUFFER_ENTRIES;
abort:
mutex_unlock(&chip->logbuffer_lock);
}
__printf(2, 3)
static void fusb302_log(struct fusb302_chip *chip, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
_fusb302_log(chip, fmt, args);
va_end(args);
}
static int fusb302_debug_show(struct seq_file *s, void *v)
{
struct fusb302_chip *chip = (struct fusb302_chip *)s->private;
int tail;
mutex_lock(&chip->logbuffer_lock);
tail = chip->logbuffer_tail;
while (tail != chip->logbuffer_head) {
seq_printf(s, "%s\n", chip->logbuffer[tail]);
tail = (tail + 1) % LOG_BUFFER_ENTRIES;
}
if (!seq_has_overflowed(s))
chip->logbuffer_tail = tail;
mutex_unlock(&chip->logbuffer_lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(fusb302_debug);
static void fusb302_debugfs_init(struct fusb302_chip *chip)
{
char name[NAME_MAX];
mutex_init(&chip->logbuffer_lock);
snprintf(name, NAME_MAX, "fusb302-%s", dev_name(chip->dev));
chip->dentry = debugfs_create_dir(name, usb_debug_root);
debugfs_create_file("log", S_IFREG | 0444, chip->dentry, chip,
&fusb302_debug_fops);
}
static void fusb302_debugfs_exit(struct fusb302_chip *chip)
{
debugfs_remove(chip->dentry);
}
#else
static void fusb302_log(const struct fusb302_chip *chip,
const char *fmt, ...) { }
static void fusb302_debugfs_init(const struct fusb302_chip *chip) { }
static void fusb302_debugfs_exit(const struct fusb302_chip *chip) { }
#endif
static int fusb302_i2c_write(struct fusb302_chip *chip,
u8 address, u8 data)
{
int ret = 0;
ret = i2c_smbus_write_byte_data(chip->i2c_client, address, data);
if (ret < 0)
fusb302_log(chip, "cannot write 0x%02x to 0x%02x, ret=%d",
data, address, ret);
return ret;
}
static int fusb302_i2c_block_write(struct fusb302_chip *chip, u8 address,
u8 length, const u8 *data)
{
int ret = 0;
if (length <= 0)
return ret;
ret = i2c_smbus_write_i2c_block_data(chip->i2c_client, address,
length, data);
if (ret < 0)
fusb302_log(chip, "cannot block write 0x%02x, len=%d, ret=%d",
address, length, ret);
return ret;
}
static int fusb302_i2c_read(struct fusb302_chip *chip,
u8 address, u8 *data)
{
int ret = 0;
ret = i2c_smbus_read_byte_data(chip->i2c_client, address);
*data = (u8)ret;
if (ret < 0)
fusb302_log(chip, "cannot read %02x, ret=%d", address, ret);
return ret;
}
static int fusb302_i2c_block_read(struct fusb302_chip *chip, u8 address,
u8 length, u8 *data)
{
int ret = 0;
if (length <= 0)
return ret;
ret = i2c_smbus_read_i2c_block_data(chip->i2c_client, address,
length, data);
if (ret < 0) {
fusb302_log(chip, "cannot block read 0x%02x, len=%d, ret=%d",
address, length, ret);
goto done;
}
if (ret != length) {
fusb302_log(chip, "only read %d/%d bytes from 0x%02x",
ret, length, address);
ret = -EIO;
}
done:
return ret;
}
static int fusb302_i2c_mask_write(struct fusb302_chip *chip, u8 address,
u8 mask, u8 value)
{
int ret = 0;
u8 data;
ret = fusb302_i2c_read(chip, address, &data);
if (ret < 0)
return ret;
data &= ~mask;
data |= value;
ret = fusb302_i2c_write(chip, address, data);
if (ret < 0)
return ret;
return ret;
}
static int fusb302_i2c_set_bits(struct fusb302_chip *chip, u8 address,
u8 set_bits)
{
return fusb302_i2c_mask_write(chip, address, 0x00, set_bits);
}
static int fusb302_i2c_clear_bits(struct fusb302_chip *chip, u8 address,
u8 clear_bits)
{
return fusb302_i2c_mask_write(chip, address, clear_bits, 0x00);
}
static int fusb302_sw_reset(struct fusb302_chip *chip)
{
int ret = 0;
ret = fusb302_i2c_write(chip, FUSB_REG_RESET,
FUSB_REG_RESET_SW_RESET);
if (ret < 0)
fusb302_log(chip, "cannot sw reset the chip, ret=%d", ret);
else
fusb302_log(chip, "sw reset");
return ret;
}
static int fusb302_enable_tx_auto_retries(struct fusb302_chip *chip, u8 retry_count)
{
int ret = 0;
ret = fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL3, retry_count |
FUSB_REG_CONTROL3_AUTO_RETRY);
return ret;
}
/*
* initialize interrupt on the chip
* - unmasked interrupt: VBUS_OK
*/
static int fusb302_init_interrupt(struct fusb302_chip *chip)
{
int ret = 0;
ret = fusb302_i2c_write(chip, FUSB_REG_MASK,
0xFF & ~FUSB_REG_MASK_VBUSOK);
if (ret < 0)
return ret;
ret = fusb302_i2c_write(chip, FUSB_REG_MASKA, 0xFF);
if (ret < 0)
return ret;
ret = fusb302_i2c_write(chip, FUSB_REG_MASKB, 0xFF);
if (ret < 0)
return ret;
ret = fusb302_i2c_clear_bits(chip, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_INT_MASK);
if (ret < 0)
return ret;
return ret;
}
static int fusb302_set_power_mode(struct fusb302_chip *chip, u8 power_mode)
{
int ret = 0;
ret = fusb302_i2c_write(chip, FUSB_REG_POWER, power_mode);
return ret;
}
static int tcpm_init(struct tcpc_dev *dev)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int ret = 0;
u8 data;
ret = fusb302_sw_reset(chip);
if (ret < 0)
return ret;
ret = fusb302_enable_tx_auto_retries(chip, FUSB_REG_CONTROL3_N_RETRIES_3);
if (ret < 0)
return ret;
ret = fusb302_init_interrupt(chip);
if (ret < 0)
return ret;
ret = fusb302_set_power_mode(chip, FUSB_REG_POWER_PWR_ALL);
if (ret < 0)
return ret;
ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &data);
if (ret < 0)
return ret;
chip->vbus_present = !!(data & FUSB_REG_STATUS0_VBUSOK);
ret = fusb302_i2c_read(chip, FUSB_REG_DEVICE_ID, &data);
if (ret < 0)
return ret;
fusb302_log(chip, "fusb302 device ID: 0x%02x", data);
return ret;
}
static int tcpm_get_vbus(struct tcpc_dev *dev)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int ret = 0;
mutex_lock(&chip->lock);
ret = chip->vbus_present ? 1 : 0;
mutex_unlock(&chip->lock);
return ret;
}
static int tcpm_get_current_limit(struct tcpc_dev *dev)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int current_limit = 0;
unsigned long timeout;
if (!chip->extcon)
return 0;
/*
* USB2 Charger detection may still be in progress when we get here,
* this can take upto 600ms, wait 800ms max.
*/
timeout = jiffies + msecs_to_jiffies(800);
do {
if (extcon_get_state(chip->extcon, EXTCON_CHG_USB_SDP) == 1)
current_limit = 500;
if (extcon_get_state(chip->extcon, EXTCON_CHG_USB_CDP) == 1 ||
extcon_get_state(chip->extcon, EXTCON_CHG_USB_ACA) == 1)
current_limit = 1500;
if (extcon_get_state(chip->extcon, EXTCON_CHG_USB_DCP) == 1)
current_limit = 2000;
msleep(50);
} while (current_limit == 0 && time_before(jiffies, timeout));
return current_limit;
}
static int fusb302_set_src_current(struct fusb302_chip *chip,
enum src_current_status status)
{
int ret = 0;
chip->src_current_status = status;
switch (status) {
case SRC_CURRENT_DEFAULT:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_HOST_CUR_MASK,
FUSB_REG_CONTROL0_HOST_CUR_DEF);
break;
case SRC_CURRENT_MEDIUM:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_HOST_CUR_MASK,
FUSB_REG_CONTROL0_HOST_CUR_MED);
break;
case SRC_CURRENT_HIGH:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_HOST_CUR_MASK,
FUSB_REG_CONTROL0_HOST_CUR_HIGH);
break;
default:
break;
}
return ret;
}
static int fusb302_set_toggling(struct fusb302_chip *chip,
enum toggling_mode mode)
{
int ret = 0;
/* first disable toggling */
ret = fusb302_i2c_clear_bits(chip, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_TOGGLE);
if (ret < 0)
return ret;
/* mask interrupts for SRC or SNK */
ret = fusb302_i2c_set_bits(chip, FUSB_REG_MASK,
FUSB_REG_MASK_BC_LVL |
FUSB_REG_MASK_COMP_CHNG);
if (ret < 0)
return ret;
chip->intr_bc_lvl = false;
chip->intr_comp_chng = false;
/* configure toggling mode: none/snk/src/drp */
switch (mode) {
case TOGGLING_MODE_OFF:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_NONE);
if (ret < 0)
return ret;
break;
case TOGGLING_MODE_SNK:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_UFP);
if (ret < 0)
return ret;
break;
case TOGGLING_MODE_SRC:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_DFP);
if (ret < 0)
return ret;
break;
case TOGGLING_MODE_DRP:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_DRP);
if (ret < 0)
return ret;
break;
default:
break;
}
if (mode == TOGGLING_MODE_OFF) {
/* mask TOGDONE interrupt */
ret = fusb302_i2c_set_bits(chip, FUSB_REG_MASKA,
FUSB_REG_MASKA_TOGDONE);
if (ret < 0)
return ret;
chip->intr_togdone = false;
} else {
/* Datasheet says vconn MUST be off when toggling */
WARN(chip->vconn_on, "Vconn is on during toggle start");
/* unmask TOGDONE interrupt */
ret = fusb302_i2c_clear_bits(chip, FUSB_REG_MASKA,
FUSB_REG_MASKA_TOGDONE);
if (ret < 0)
return ret;
chip->intr_togdone = true;
/* start toggling */
ret = fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_TOGGLE);
if (ret < 0)
return ret;
/* during toggling, consider cc as Open */
chip->cc1 = TYPEC_CC_OPEN;
chip->cc2 = TYPEC_CC_OPEN;
}
chip->toggling_mode = mode;
return ret;
}
static const char * const typec_cc_status_name[] = {
[TYPEC_CC_OPEN] = "Open",
[TYPEC_CC_RA] = "Ra",
[TYPEC_CC_RD] = "Rd",
[TYPEC_CC_RP_DEF] = "Rp-def",
[TYPEC_CC_RP_1_5] = "Rp-1.5",
[TYPEC_CC_RP_3_0] = "Rp-3.0",
};
static const enum src_current_status cc_src_current[] = {
[TYPEC_CC_OPEN] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RA] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RD] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RP_DEF] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RP_1_5] = SRC_CURRENT_MEDIUM,
[TYPEC_CC_RP_3_0] = SRC_CURRENT_HIGH,
};
static int tcpm_set_cc(struct tcpc_dev *dev, enum typec_cc_status cc)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
u8 switches0_mask = FUSB_REG_SWITCHES0_CC1_PU_EN |
FUSB_REG_SWITCHES0_CC2_PU_EN |
FUSB_REG_SWITCHES0_CC1_PD_EN |
FUSB_REG_SWITCHES0_CC2_PD_EN;
u8 rd_mda, switches0_data = 0x00;
int ret = 0;
mutex_lock(&chip->lock);
switch (cc) {
case TYPEC_CC_OPEN:
break;
case TYPEC_CC_RD:
switches0_data |= FUSB_REG_SWITCHES0_CC1_PD_EN |
FUSB_REG_SWITCHES0_CC2_PD_EN;
break;
case TYPEC_CC_RP_DEF:
case TYPEC_CC_RP_1_5:
case TYPEC_CC_RP_3_0:
switches0_data |= (chip->cc_polarity == TYPEC_POLARITY_CC1) ?
FUSB_REG_SWITCHES0_CC1_PU_EN :
FUSB_REG_SWITCHES0_CC2_PU_EN;
break;
default:
fusb302_log(chip, "unsupported cc value %s",
typec_cc_status_name[cc]);
ret = -EINVAL;
goto done;
}
fusb302_log(chip, "cc := %s", typec_cc_status_name[cc]);
ret = fusb302_set_toggling(chip, TOGGLING_MODE_OFF);
if (ret < 0) {
fusb302_log(chip, "cannot set toggling mode, ret=%d", ret);
goto done;
}
ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES0,
switches0_mask, switches0_data);
if (ret < 0) {
fusb302_log(chip, "cannot set pull-up/-down, ret = %d", ret);
goto done;
}
/* reset the cc status */
chip->cc1 = TYPEC_CC_OPEN;
chip->cc2 = TYPEC_CC_OPEN;
/* adjust current for SRC */
ret = fusb302_set_src_current(chip, cc_src_current[cc]);
if (ret < 0) {
fusb302_log(chip, "cannot set src current %s, ret=%d",
typec_cc_status_name[cc], ret);
goto done;
}
/* enable/disable interrupts, BC_LVL for SNK and COMP_CHNG for SRC */
switch (cc) {
case TYPEC_CC_RP_DEF:
case TYPEC_CC_RP_1_5:
case TYPEC_CC_RP_3_0:
rd_mda = rd_mda_value[cc_src_current[cc]];
ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, rd_mda);
if (ret < 0) {
fusb302_log(chip,
"cannot set SRC measure value, ret=%d",
ret);
goto done;
}
ret = fusb302_i2c_mask_write(chip, FUSB_REG_MASK,
FUSB_REG_MASK_BC_LVL |
FUSB_REG_MASK_COMP_CHNG,
FUSB_REG_MASK_BC_LVL);
if (ret < 0) {
fusb302_log(chip, "cannot set SRC interrupt, ret=%d",
ret);
goto done;
}
chip->intr_comp_chng = true;
chip->intr_bc_lvl = false;
break;
case TYPEC_CC_RD:
ret = fusb302_i2c_mask_write(chip, FUSB_REG_MASK,
FUSB_REG_MASK_BC_LVL |
FUSB_REG_MASK_COMP_CHNG,
FUSB_REG_MASK_COMP_CHNG);
if (ret < 0) {
fusb302_log(chip, "cannot set SRC interrupt, ret=%d",
ret);
goto done;
}
chip->intr_bc_lvl = true;
chip->intr_comp_chng = false;
break;
default:
break;
}
done:
mutex_unlock(&chip->lock);
return ret;
}
static int tcpm_get_cc(struct tcpc_dev *dev, enum typec_cc_status *cc1,
enum typec_cc_status *cc2)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
mutex_lock(&chip->lock);
*cc1 = chip->cc1;
*cc2 = chip->cc2;
fusb302_log(chip, "cc1=%s, cc2=%s", typec_cc_status_name[*cc1],
typec_cc_status_name[*cc2]);
mutex_unlock(&chip->lock);
return 0;
}
static int tcpm_set_polarity(struct tcpc_dev *dev,
enum typec_cc_polarity polarity)
{
return 0;
}
static int tcpm_set_vconn(struct tcpc_dev *dev, bool on)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int ret = 0;
u8 switches0_data = 0x00;
u8 switches0_mask = FUSB_REG_SWITCHES0_VCONN_CC1 |
FUSB_REG_SWITCHES0_VCONN_CC2;
mutex_lock(&chip->lock);
if (chip->vconn_on == on) {
fusb302_log(chip, "vconn is already %s", on ? "On" : "Off");
goto done;
}
if (on) {
switches0_data = (chip->cc_polarity == TYPEC_POLARITY_CC1) ?
FUSB_REG_SWITCHES0_VCONN_CC2 :
FUSB_REG_SWITCHES0_VCONN_CC1;
}
ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES0,
switches0_mask, switches0_data);
if (ret < 0)
goto done;
chip->vconn_on = on;
fusb302_log(chip, "vconn := %s", on ? "On" : "Off");
done:
mutex_unlock(&chip->lock);
return ret;
}
static int tcpm_set_vbus(struct tcpc_dev *dev, bool on, bool charge)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int ret = 0;
mutex_lock(&chip->lock);
if (chip->vbus_on == on) {
fusb302_log(chip, "vbus is already %s", on ? "On" : "Off");
} else {
if (on)
ret = regulator_enable(chip->vbus);
else
ret = regulator_disable(chip->vbus);
if (ret < 0) {
fusb302_log(chip, "cannot %s vbus regulator, ret=%d",
on ? "enable" : "disable", ret);
goto done;
}
chip->vbus_on = on;
fusb302_log(chip, "vbus := %s", on ? "On" : "Off");
}
if (chip->charge_on == charge)
fusb302_log(chip, "charge is already %s",
charge ? "On" : "Off");
else
chip->charge_on = charge;
done:
mutex_unlock(&chip->lock);
return ret;
}
static int fusb302_pd_tx_flush(struct fusb302_chip *chip)
{
return fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_TX_FLUSH);
}
static int fusb302_pd_rx_flush(struct fusb302_chip *chip)
{
return fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL1,
FUSB_REG_CONTROL1_RX_FLUSH);
}
static int fusb302_pd_set_auto_goodcrc(struct fusb302_chip *chip, bool on)
{
if (on)
return fusb302_i2c_set_bits(chip, FUSB_REG_SWITCHES1,
FUSB_REG_SWITCHES1_AUTO_GCRC);
return fusb302_i2c_clear_bits(chip, FUSB_REG_SWITCHES1,
FUSB_REG_SWITCHES1_AUTO_GCRC);
}
static int fusb302_pd_set_interrupts(struct fusb302_chip *chip, bool on)
{
int ret = 0;
u8 mask_interrupts = FUSB_REG_MASK_COLLISION;
u8 maska_interrupts = FUSB_REG_MASKA_RETRYFAIL |
FUSB_REG_MASKA_HARDSENT |
FUSB_REG_MASKA_TX_SUCCESS |
FUSB_REG_MASKA_HARDRESET;
u8 maskb_interrupts = FUSB_REG_MASKB_GCRCSENT;
ret = on ?
fusb302_i2c_clear_bits(chip, FUSB_REG_MASK, mask_interrupts) :
fusb302_i2c_set_bits(chip, FUSB_REG_MASK, mask_interrupts);
if (ret < 0)
return ret;
ret = on ?
fusb302_i2c_clear_bits(chip, FUSB_REG_MASKA, maska_interrupts) :
fusb302_i2c_set_bits(chip, FUSB_REG_MASKA, maska_interrupts);
if (ret < 0)
return ret;
ret = on ?
fusb302_i2c_clear_bits(chip, FUSB_REG_MASKB, maskb_interrupts) :
fusb302_i2c_set_bits(chip, FUSB_REG_MASKB, maskb_interrupts);
return ret;
}
static int tcpm_set_pd_rx(struct tcpc_dev *dev, bool on)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int ret = 0;
mutex_lock(&chip->lock);
ret = fusb302_pd_rx_flush(chip);
if (ret < 0) {
fusb302_log(chip, "cannot flush pd rx buffer, ret=%d", ret);
goto done;
}
ret = fusb302_pd_tx_flush(chip);
if (ret < 0) {
fusb302_log(chip, "cannot flush pd tx buffer, ret=%d", ret);
goto done;
}
ret = fusb302_pd_set_auto_goodcrc(chip, on);
if (ret < 0) {
fusb302_log(chip, "cannot turn %s auto GCRC, ret=%d",
on ? "on" : "off", ret);
goto done;
}
ret = fusb302_pd_set_interrupts(chip, on);
if (ret < 0) {
fusb302_log(chip, "cannot turn %s pd interrupts, ret=%d",
on ? "on" : "off", ret);
goto done;
}
fusb302_log(chip, "pd := %s", on ? "on" : "off");
done:
mutex_unlock(&chip->lock);
return ret;
}
static const char * const typec_role_name[] = {
[TYPEC_SINK] = "Sink",
[TYPEC_SOURCE] = "Source",
};
static const char * const typec_data_role_name[] = {
[TYPEC_DEVICE] = "Device",
[TYPEC_HOST] = "Host",
};
static int tcpm_set_roles(struct tcpc_dev *dev, bool attached,
enum typec_role pwr, enum typec_data_role data)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int ret = 0;
u8 switches1_mask = FUSB_REG_SWITCHES1_POWERROLE |
FUSB_REG_SWITCHES1_DATAROLE;
u8 switches1_data = 0x00;
mutex_lock(&chip->lock);
if (pwr == TYPEC_SOURCE)
switches1_data |= FUSB_REG_SWITCHES1_POWERROLE;
if (data == TYPEC_HOST)
switches1_data |= FUSB_REG_SWITCHES1_DATAROLE;
ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES1,
switches1_mask, switches1_data);
if (ret < 0) {
fusb302_log(chip, "unable to set pd header %s, %s, ret=%d",
typec_role_name[pwr], typec_data_role_name[data],
ret);
goto done;
}
fusb302_log(chip, "pd header := %s, %s", typec_role_name[pwr],
typec_data_role_name[data]);
done:
mutex_unlock(&chip->lock);
return ret;
}
static int tcpm_start_toggling(struct tcpc_dev *dev,
enum typec_port_type port_type,
enum typec_cc_status cc)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
enum toggling_mode mode = TOGGLING_MODE_OFF;
int ret = 0;
switch (port_type) {
case TYPEC_PORT_SRC:
mode = TOGGLING_MODE_SRC;
break;
case TYPEC_PORT_SNK:
mode = TOGGLING_MODE_SNK;
break;
case TYPEC_PORT_DRP:
mode = TOGGLING_MODE_DRP;
break;
}
mutex_lock(&chip->lock);
ret = fusb302_set_src_current(chip, cc_src_current[cc]);
if (ret < 0) {
fusb302_log(chip, "unable to set src current %s, ret=%d",
typec_cc_status_name[cc], ret);
goto done;
}
ret = fusb302_set_toggling(chip, mode);
if (ret < 0) {
fusb302_log(chip,
"unable to start drp toggling, ret=%d", ret);
goto done;
}
fusb302_log(chip, "start drp toggling");
done:
mutex_unlock(&chip->lock);
return ret;
}
static int fusb302_pd_send_message(struct fusb302_chip *chip,
const struct pd_message *msg)
{
int ret = 0;
u8 buf[40];
u8 pos = 0;
int len;
/* SOP tokens */
buf[pos++] = FUSB302_TKN_SYNC1;
buf[pos++] = FUSB302_TKN_SYNC1;
buf[pos++] = FUSB302_TKN_SYNC1;
buf[pos++] = FUSB302_TKN_SYNC2;
len = pd_header_cnt_le(msg->header) * 4;
/* plug 2 for header */
len += 2;
if (len > 0x1F) {
fusb302_log(chip,
"PD message too long %d (incl. header)", len);
return -EINVAL;
}
/* packsym tells the FUSB302 chip that the next X bytes are payload */
buf[pos++] = FUSB302_TKN_PACKSYM | (len & 0x1F);
memcpy(&buf[pos], &msg->header, sizeof(msg->header));
pos += sizeof(msg->header);
len -= 2;
memcpy(&buf[pos], msg->payload, len);
pos += len;
/* CRC */
buf[pos++] = FUSB302_TKN_JAMCRC;
/* EOP */
buf[pos++] = FUSB302_TKN_EOP;
/* turn tx off after sending message */
buf[pos++] = FUSB302_TKN_TXOFF;
/* start transmission */
buf[pos++] = FUSB302_TKN_TXON;
ret = fusb302_i2c_block_write(chip, FUSB_REG_FIFOS, pos, buf);
if (ret < 0)
return ret;
fusb302_log(chip, "sending PD message header: %x", msg->header);
fusb302_log(chip, "sending PD message len: %d", len);
return ret;
}
static int fusb302_pd_send_hardreset(struct fusb302_chip *chip)
{
return fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL3,
FUSB_REG_CONTROL3_SEND_HARDRESET);
}
static const char * const transmit_type_name[] = {
[TCPC_TX_SOP] = "SOP",
[TCPC_TX_SOP_PRIME] = "SOP'",
[TCPC_TX_SOP_PRIME_PRIME] = "SOP''",
[TCPC_TX_SOP_DEBUG_PRIME] = "DEBUG'",
[TCPC_TX_SOP_DEBUG_PRIME_PRIME] = "DEBUG''",
[TCPC_TX_HARD_RESET] = "HARD_RESET",
[TCPC_TX_CABLE_RESET] = "CABLE_RESET",
[TCPC_TX_BIST_MODE_2] = "BIST_MODE_2",
};
static int tcpm_pd_transmit(struct tcpc_dev *dev, enum tcpm_transmit_type type,
const struct pd_message *msg, unsigned int negotiated_rev)
{
struct fusb302_chip *chip = container_of(dev, struct fusb302_chip,
tcpc_dev);
int ret = 0;
mutex_lock(&chip->lock);
switch (type) {
case TCPC_TX_SOP:
/* nRetryCount 3 in P2.0 spec, whereas 2 in PD3.0 spec */
ret = fusb302_enable_tx_auto_retries(chip, negotiated_rev > PD_REV20 ?
FUSB_REG_CONTROL3_N_RETRIES_2 :
FUSB_REG_CONTROL3_N_RETRIES_3);
if (ret < 0)
fusb302_log(chip, "Cannot update retry count ret=%d", ret);
ret = fusb302_pd_send_message(chip, msg);
if (ret < 0)
fusb302_log(chip,
"cannot send PD message, ret=%d", ret);
break;
case TCPC_TX_HARD_RESET:
ret = fusb302_pd_send_hardreset(chip);
if (ret < 0)
fusb302_log(chip,
"cannot send hardreset, ret=%d", ret);
break;
default:
fusb302_log(chip, "type %s not supported",
transmit_type_name[type]);
ret = -EINVAL;
}
mutex_unlock(&chip->lock);
return ret;
}
static enum typec_cc_status fusb302_bc_lvl_to_cc(u8 bc_lvl)
{
if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_1230_MAX)
return TYPEC_CC_RP_3_0;
if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_600_1230)
return TYPEC_CC_RP_1_5;
if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_200_600)
return TYPEC_CC_RP_DEF;
return TYPEC_CC_OPEN;
}
static void fusb302_bc_lvl_handler_work(struct work_struct *work)
{
struct fusb302_chip *chip = container_of(work, struct fusb302_chip,
bc_lvl_handler.work);
int ret = 0;
u8 status0;
u8 bc_lvl;
enum typec_cc_status cc_status;
mutex_lock(&chip->lock);
if (!chip->intr_bc_lvl) {
fusb302_log(chip, "BC_LVL interrupt is turned off, abort");
goto done;
}
ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0);
if (ret < 0)
goto done;
fusb302_log(chip, "BC_LVL handler, status0=0x%02x", status0);
if (status0 & FUSB_REG_STATUS0_ACTIVITY) {
fusb302_log(chip, "CC activities detected, delay handling");
mod_delayed_work(chip->wq, &chip->bc_lvl_handler,
msecs_to_jiffies(T_BC_LVL_DEBOUNCE_DELAY_MS));
goto done;
}
bc_lvl = status0 & FUSB_REG_STATUS0_BC_LVL_MASK;
cc_status = fusb302_bc_lvl_to_cc(bc_lvl);
if (chip->cc_polarity == TYPEC_POLARITY_CC1) {
if (chip->cc1 != cc_status) {
fusb302_log(chip, "cc1: %s -> %s",
typec_cc_status_name[chip->cc1],
typec_cc_status_name[cc_status]);
chip->cc1 = cc_status;
tcpm_cc_change(chip->tcpm_port);
}
} else {
if (chip->cc2 != cc_status) {
fusb302_log(chip, "cc2: %s -> %s",
typec_cc_status_name[chip->cc2],
typec_cc_status_name[cc_status]);
chip->cc2 = cc_status;
tcpm_cc_change(chip->tcpm_port);
}
}
done:
mutex_unlock(&chip->lock);
}
static void init_tcpc_dev(struct tcpc_dev *fusb302_tcpc_dev)
{
fusb302_tcpc_dev->init = tcpm_init;
fusb302_tcpc_dev->get_vbus = tcpm_get_vbus;
fusb302_tcpc_dev->get_current_limit = tcpm_get_current_limit;
fusb302_tcpc_dev->set_cc = tcpm_set_cc;
fusb302_tcpc_dev->get_cc = tcpm_get_cc;
fusb302_tcpc_dev->set_polarity = tcpm_set_polarity;
fusb302_tcpc_dev->set_vconn = tcpm_set_vconn;
fusb302_tcpc_dev->set_vbus = tcpm_set_vbus;
fusb302_tcpc_dev->set_pd_rx = tcpm_set_pd_rx;
fusb302_tcpc_dev->set_roles = tcpm_set_roles;
fusb302_tcpc_dev->start_toggling = tcpm_start_toggling;
fusb302_tcpc_dev->pd_transmit = tcpm_pd_transmit;
}
static const char * const cc_polarity_name[] = {
[TYPEC_POLARITY_CC1] = "Polarity_CC1",
[TYPEC_POLARITY_CC2] = "Polarity_CC2",
};
static int fusb302_set_cc_polarity_and_pull(struct fusb302_chip *chip,
enum typec_cc_polarity cc_polarity,
bool pull_up, bool pull_down)
{
int ret = 0;
u8 switches0_data = 0x00;
u8 switches1_mask = FUSB_REG_SWITCHES1_TXCC1_EN |
FUSB_REG_SWITCHES1_TXCC2_EN;
u8 switches1_data = 0x00;
if (pull_down)
switches0_data |= FUSB_REG_SWITCHES0_CC1_PD_EN |
FUSB_REG_SWITCHES0_CC2_PD_EN;
if (cc_polarity == TYPEC_POLARITY_CC1) {
switches0_data |= FUSB_REG_SWITCHES0_MEAS_CC1;
if (chip->vconn_on)
switches0_data |= FUSB_REG_SWITCHES0_VCONN_CC2;
if (pull_up)
switches0_data |= FUSB_REG_SWITCHES0_CC1_PU_EN;
switches1_data = FUSB_REG_SWITCHES1_TXCC1_EN;
} else {
switches0_data |= FUSB_REG_SWITCHES0_MEAS_CC2;
if (chip->vconn_on)
switches0_data |= FUSB_REG_SWITCHES0_VCONN_CC1;
if (pull_up)
switches0_data |= FUSB_REG_SWITCHES0_CC2_PU_EN;
switches1_data = FUSB_REG_SWITCHES1_TXCC2_EN;
}
ret = fusb302_i2c_write(chip, FUSB_REG_SWITCHES0, switches0_data);
if (ret < 0)
return ret;
ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES1,
switches1_mask, switches1_data);
if (ret < 0)
return ret;
chip->cc_polarity = cc_polarity;
return ret;
}
static int fusb302_handle_togdone_snk(struct fusb302_chip *chip,
u8 togdone_result)
{
int ret = 0;
u8 status0;
u8 bc_lvl;
enum typec_cc_polarity cc_polarity;
enum typec_cc_status cc_status_active, cc1, cc2;
/* set polarity and pull_up, pull_down */
cc_polarity = (togdone_result == FUSB_REG_STATUS1A_TOGSS_SNK1) ?
TYPEC_POLARITY_CC1 : TYPEC_POLARITY_CC2;
ret = fusb302_set_cc_polarity_and_pull(chip, cc_polarity, false, true);
if (ret < 0) {
fusb302_log(chip, "cannot set cc polarity %s, ret=%d",
cc_polarity_name[cc_polarity], ret);
return ret;
}
/* fusb302_set_cc_polarity() has set the correct measure block */
ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0);
if (ret < 0)
return ret;
bc_lvl = status0 & FUSB_REG_STATUS0_BC_LVL_MASK;
cc_status_active = fusb302_bc_lvl_to_cc(bc_lvl);
/* restart toggling if the cc status on the active line is OPEN */
if (cc_status_active == TYPEC_CC_OPEN) {
fusb302_log(chip, "restart toggling as CC_OPEN detected");
ret = fusb302_set_toggling(chip, chip->toggling_mode);
return ret;
}
/* update tcpm with the new cc value */
cc1 = (cc_polarity == TYPEC_POLARITY_CC1) ?
cc_status_active : TYPEC_CC_OPEN;
cc2 = (cc_polarity == TYPEC_POLARITY_CC2) ?
cc_status_active : TYPEC_CC_OPEN;
if ((chip->cc1 != cc1) || (chip->cc2 != cc2)) {
chip->cc1 = cc1;
chip->cc2 = cc2;
tcpm_cc_change(chip->tcpm_port);
}
/* turn off toggling */
ret = fusb302_set_toggling(chip, TOGGLING_MODE_OFF);
if (ret < 0) {
fusb302_log(chip,
"cannot set toggling mode off, ret=%d", ret);
return ret;
}
/* unmask bc_lvl interrupt */
ret = fusb302_i2c_clear_bits(chip, FUSB_REG_MASK, FUSB_REG_MASK_BC_LVL);
if (ret < 0) {
fusb302_log(chip,
"cannot unmask bc_lcl interrupt, ret=%d", ret);
return ret;
}
chip->intr_bc_lvl = true;
fusb302_log(chip, "detected cc1=%s, cc2=%s",
typec_cc_status_name[cc1],
typec_cc_status_name[cc2]);
return ret;
}
/* On error returns < 0, otherwise a typec_cc_status value */
static int fusb302_get_src_cc_status(struct fusb302_chip *chip,
enum typec_cc_polarity cc_polarity,
enum typec_cc_status *cc)
{
u8 ra_mda = ra_mda_value[chip->src_current_status];
u8 rd_mda = rd_mda_value[chip->src_current_status];
u8 switches0_data, status0;
int ret;
/* Step 1: Set switches so that we measure the right CC pin */
switches0_data = (cc_polarity == TYPEC_POLARITY_CC1) ?
FUSB_REG_SWITCHES0_CC1_PU_EN | FUSB_REG_SWITCHES0_MEAS_CC1 :
FUSB_REG_SWITCHES0_CC2_PU_EN | FUSB_REG_SWITCHES0_MEAS_CC2;
ret = fusb302_i2c_write(chip, FUSB_REG_SWITCHES0, switches0_data);
if (ret < 0)
return ret;
fusb302_i2c_read(chip, FUSB_REG_SWITCHES0, &status0);
fusb302_log(chip, "get_src_cc_status switches: 0x%0x", status0);
/* Step 2: Set compararator volt to differentiate between Open and Rd */
ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, rd_mda);
if (ret < 0)
return ret;
usleep_range(50, 100);
ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0);
if (ret < 0)
return ret;
fusb302_log(chip, "get_src_cc_status rd_mda status0: 0x%0x", status0);
if (status0 & FUSB_REG_STATUS0_COMP) {
*cc = TYPEC_CC_OPEN;
return 0;
}
/* Step 3: Set compararator input to differentiate between Rd and Ra. */
ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, ra_mda);
if (ret < 0)
return ret;
usleep_range(50, 100);
ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0);
if (ret < 0)
return ret;
fusb302_log(chip, "get_src_cc_status ra_mda status0: 0x%0x", status0);
if (status0 & FUSB_REG_STATUS0_COMP)
*cc = TYPEC_CC_RD;
else
*cc = TYPEC_CC_RA;
return 0;
}
static int fusb302_handle_togdone_src(struct fusb302_chip *chip,
u8 togdone_result)
{
/*
* - set polarity (measure cc, vconn, tx)
* - set pull_up, pull_down
* - set cc1, cc2, and update to tcpm_port
* - set I_COMP interrupt on
*/
int ret = 0;
u8 rd_mda = rd_mda_value[chip->src_current_status];
enum toggling_mode toggling_mode = chip->toggling_mode;
enum typec_cc_polarity cc_polarity;
enum typec_cc_status cc1, cc2;
/*
* The toggle-engine will stop in a src state if it sees either Ra or
* Rd. Determine the status for both CC pins, starting with the one
* where toggling stopped, as that is where the switches point now.
*/
if (togdone_result == FUSB_REG_STATUS1A_TOGSS_SRC1)
ret = fusb302_get_src_cc_status(chip, TYPEC_POLARITY_CC1, &cc1);
else
ret = fusb302_get_src_cc_status(chip, TYPEC_POLARITY_CC2, &cc2);
if (ret < 0)
return ret;
/* we must turn off toggling before we can measure the other pin */
ret = fusb302_set_toggling(chip, TOGGLING_MODE_OFF);
if (ret < 0) {
fusb302_log(chip, "cannot set toggling mode off, ret=%d", ret);
return ret;
}
/* get the status of the other pin */
if (togdone_result == FUSB_REG_STATUS1A_TOGSS_SRC1)
ret = fusb302_get_src_cc_status(chip, TYPEC_POLARITY_CC2, &cc2);
else
ret = fusb302_get_src_cc_status(chip, TYPEC_POLARITY_CC1, &cc1);
if (ret < 0)
return ret;
/* determine polarity based on the status of both pins */
if (cc1 == TYPEC_CC_RD &&
(cc2 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_RA)) {
cc_polarity = TYPEC_POLARITY_CC1;
} else if (cc2 == TYPEC_CC_RD &&
(cc1 == TYPEC_CC_OPEN || cc1 == TYPEC_CC_RA)) {
cc_polarity = TYPEC_POLARITY_CC2;
} else {
fusb302_log(chip, "unexpected CC status cc1=%s, cc2=%s, restarting toggling",
typec_cc_status_name[cc1],
typec_cc_status_name[cc2]);
return fusb302_set_toggling(chip, toggling_mode);
}
/* set polarity and pull_up, pull_down */
ret = fusb302_set_cc_polarity_and_pull(chip, cc_polarity, true, false);
if (ret < 0) {
fusb302_log(chip, "cannot set cc polarity %s, ret=%d",
cc_polarity_name[cc_polarity], ret);
return ret;
}
/* update tcpm with the new cc value */
if ((chip->cc1 != cc1) || (chip->cc2 != cc2)) {
chip->cc1 = cc1;
chip->cc2 = cc2;
tcpm_cc_change(chip->tcpm_port);
}
/* set MDAC to Rd threshold, and unmask I_COMP for unplug detection */
ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, rd_mda);
if (ret < 0)
return ret;
/* unmask comp_chng interrupt */
ret = fusb302_i2c_clear_bits(chip, FUSB_REG_MASK,
FUSB_REG_MASK_COMP_CHNG);
if (ret < 0) {
fusb302_log(chip,
"cannot unmask comp_chng interrupt, ret=%d", ret);
return ret;
}
chip->intr_comp_chng = true;
fusb302_log(chip, "detected cc1=%s, cc2=%s",
typec_cc_status_name[cc1],
typec_cc_status_name[cc2]);
return ret;
}
static int fusb302_handle_togdone(struct fusb302_chip *chip)
{
int ret = 0;
u8 status1a;
u8 togdone_result;
ret = fusb302_i2c_read(chip, FUSB_REG_STATUS1A, &status1a);
if (ret < 0)
return ret;
togdone_result = (status1a >> FUSB_REG_STATUS1A_TOGSS_POS) &
FUSB_REG_STATUS1A_TOGSS_MASK;
switch (togdone_result) {
case FUSB_REG_STATUS1A_TOGSS_SNK1:
case FUSB_REG_STATUS1A_TOGSS_SNK2:
return fusb302_handle_togdone_snk(chip, togdone_result);
case FUSB_REG_STATUS1A_TOGSS_SRC1:
case FUSB_REG_STATUS1A_TOGSS_SRC2:
return fusb302_handle_togdone_src(chip, togdone_result);
case FUSB_REG_STATUS1A_TOGSS_AA:
/* doesn't support */
fusb302_log(chip, "AudioAccessory not supported");
fusb302_set_toggling(chip, chip->toggling_mode);
break;
default:
fusb302_log(chip, "TOGDONE with an invalid state: %d",
togdone_result);
fusb302_set_toggling(chip, chip->toggling_mode);
break;
}
return ret;
}
static int fusb302_pd_reset(struct fusb302_chip *chip)
{
return fusb302_i2c_set_bits(chip, FUSB_REG_RESET,
FUSB_REG_RESET_PD_RESET);
}
static int fusb302_pd_read_message(struct fusb302_chip *chip,
struct pd_message *msg)
{
int ret = 0;
u8 token;
u8 crc[4];
int len;
/* first SOP token */
ret = fusb302_i2c_read(chip, FUSB_REG_FIFOS, &token);
if (ret < 0)
return ret;
ret = fusb302_i2c_block_read(chip, FUSB_REG_FIFOS, 2,
(u8 *)&msg->header);
if (ret < 0)
return ret;
len = pd_header_cnt_le(msg->header) * 4;
/* add 4 to length to include the CRC */
if (len > PD_MAX_PAYLOAD * 4) {
fusb302_log(chip, "PD message too long %d", len);
return -EINVAL;
}
if (len > 0) {
ret = fusb302_i2c_block_read(chip, FUSB_REG_FIFOS, len,
(u8 *)msg->payload);
if (ret < 0)
return ret;
}
/* another 4 bytes to read CRC out */
ret = fusb302_i2c_block_read(chip, FUSB_REG_FIFOS, 4, crc);
if (ret < 0)
return ret;
fusb302_log(chip, "PD message header: %x", msg->header);
fusb302_log(chip, "PD message len: %d", len);
/*
* Check if we've read off a GoodCRC message. If so then indicate to
* TCPM that the previous transmission has completed. Otherwise we pass
* the received message over to TCPM for processing.
*
* We make this check here instead of basing the reporting decision on
* the IRQ event type, as it's possible for the chip to report the
* TX_SUCCESS and GCRCSENT events out of order on occasion, so we need
* to check the message type to ensure correct reporting to TCPM.
*/
if ((!len) && (pd_header_type_le(msg->header) == PD_CTRL_GOOD_CRC))
tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_SUCCESS);
else
tcpm_pd_receive(chip->tcpm_port, msg);
return ret;
}
static irqreturn_t fusb302_irq_intn(int irq, void *dev_id)
{
struct fusb302_chip *chip = dev_id;
unsigned long flags;
/* Disable our level triggered IRQ until our irq_work has cleared it */
disable_irq_nosync(chip->gpio_int_n_irq);
spin_lock_irqsave(&chip->irq_lock, flags);
if (chip->irq_suspended)
chip->irq_while_suspended = true;
else
schedule_work(&chip->irq_work);
spin_unlock_irqrestore(&chip->irq_lock, flags);
return IRQ_HANDLED;
}
static void fusb302_irq_work(struct work_struct *work)
{
struct fusb302_chip *chip = container_of(work, struct fusb302_chip,
irq_work);
int ret = 0;
u8 interrupt;
u8 interrupta;
u8 interruptb;
u8 status0;
bool vbus_present;
bool comp_result;
bool intr_togdone;
bool intr_bc_lvl;
bool intr_comp_chng;
struct pd_message pd_msg;
mutex_lock(&chip->lock);
/* grab a snapshot of intr flags */
intr_togdone = chip->intr_togdone;
intr_bc_lvl = chip->intr_bc_lvl;
intr_comp_chng = chip->intr_comp_chng;
ret = fusb302_i2c_read(chip, FUSB_REG_INTERRUPT, &interrupt);
if (ret < 0)
goto done;
ret = fusb302_i2c_read(chip, FUSB_REG_INTERRUPTA, &interrupta);
if (ret < 0)
goto done;
ret = fusb302_i2c_read(chip, FUSB_REG_INTERRUPTB, &interruptb);
if (ret < 0)
goto done;
ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0);
if (ret < 0)
goto done;
fusb302_log(chip,
"IRQ: 0x%02x, a: 0x%02x, b: 0x%02x, status0: 0x%02x",
interrupt, interrupta, interruptb, status0);
if (interrupt & FUSB_REG_INTERRUPT_VBUSOK) {
vbus_present = !!(status0 & FUSB_REG_STATUS0_VBUSOK);
fusb302_log(chip, "IRQ: VBUS_OK, vbus=%s",
vbus_present ? "On" : "Off");
if (vbus_present != chip->vbus_present) {
chip->vbus_present = vbus_present;
tcpm_vbus_change(chip->tcpm_port);
}
}
if ((interrupta & FUSB_REG_INTERRUPTA_TOGDONE) && intr_togdone) {
fusb302_log(chip, "IRQ: TOGDONE");
ret = fusb302_handle_togdone(chip);
if (ret < 0) {
fusb302_log(chip,
"handle togdone error, ret=%d", ret);
goto done;
}
}
if ((interrupt & FUSB_REG_INTERRUPT_BC_LVL) && intr_bc_lvl) {
fusb302_log(chip, "IRQ: BC_LVL, handler pending");
/*
* as BC_LVL interrupt can be affected by PD activity,
* apply delay to for the handler to wait for the PD
* signaling to finish.
*/
mod_delayed_work(chip->wq, &chip->bc_lvl_handler,
msecs_to_jiffies(T_BC_LVL_DEBOUNCE_DELAY_MS));
}
if ((interrupt & FUSB_REG_INTERRUPT_COMP_CHNG) && intr_comp_chng) {
comp_result = !!(status0 & FUSB_REG_STATUS0_COMP);
fusb302_log(chip, "IRQ: COMP_CHNG, comp=%s",
comp_result ? "true" : "false");
if (comp_result) {
/* cc level > Rd_threshold, detach */
chip->cc1 = TYPEC_CC_OPEN;
chip->cc2 = TYPEC_CC_OPEN;
tcpm_cc_change(chip->tcpm_port);
}
}
if (interrupt & FUSB_REG_INTERRUPT_COLLISION) {
fusb302_log(chip, "IRQ: PD collision");
tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_FAILED);
}
if (interrupta & FUSB_REG_INTERRUPTA_RETRYFAIL) {
fusb302_log(chip, "IRQ: PD retry failed");
tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_FAILED);
}
if (interrupta & FUSB_REG_INTERRUPTA_HARDSENT) {
fusb302_log(chip, "IRQ: PD hardreset sent");
ret = fusb302_pd_reset(chip);
if (ret < 0) {
fusb302_log(chip, "cannot PD reset, ret=%d", ret);
goto done;
}
tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_SUCCESS);
}
if (interrupta & FUSB_REG_INTERRUPTA_TX_SUCCESS) {
fusb302_log(chip, "IRQ: PD tx success");
ret = fusb302_pd_read_message(chip, &pd_msg);
if (ret < 0) {
fusb302_log(chip,
"cannot read in PD message, ret=%d", ret);
goto done;
}
}
if (interrupta & FUSB_REG_INTERRUPTA_HARDRESET) {
fusb302_log(chip, "IRQ: PD received hardreset");
ret = fusb302_pd_reset(chip);
if (ret < 0) {
fusb302_log(chip, "cannot PD reset, ret=%d", ret);
goto done;
}
tcpm_pd_hard_reset(chip->tcpm_port);
}
if (interruptb & FUSB_REG_INTERRUPTB_GCRCSENT) {
fusb302_log(chip, "IRQ: PD sent good CRC");
ret = fusb302_pd_read_message(chip, &pd_msg);
if (ret < 0) {
fusb302_log(chip,
"cannot read in PD message, ret=%d", ret);
goto done;
}
}
done:
mutex_unlock(&chip->lock);
enable_irq(chip->gpio_int_n_irq);
}
static int init_gpio(struct fusb302_chip *chip)
{
struct device *dev = chip->dev;
int ret = 0;
chip->gpio_int_n = devm_gpiod_get(dev, "fcs,int_n", GPIOD_IN);
if (IS_ERR(chip->gpio_int_n)) {
dev_err(dev, "failed to request gpio_int_n\n");
return PTR_ERR(chip->gpio_int_n);
}
ret = gpiod_to_irq(chip->gpio_int_n);
if (ret < 0) {
dev_err(dev,
"cannot request IRQ for GPIO Int_N, ret=%d", ret);
return ret;
}
chip->gpio_int_n_irq = ret;
return 0;
}
#define PDO_FIXED_FLAGS \
(PDO_FIXED_DUAL_ROLE | PDO_FIXED_DATA_SWAP | PDO_FIXED_USB_COMM)
static const u32 src_pdo[] = {
PDO_FIXED(5000, 400, PDO_FIXED_FLAGS)
};
static const u32 snk_pdo[] = {
PDO_FIXED(5000, 400, PDO_FIXED_FLAGS)
};
static const struct property_entry port_props[] = {
PROPERTY_ENTRY_STRING("data-role", "dual"),
PROPERTY_ENTRY_STRING("power-role", "dual"),
PROPERTY_ENTRY_STRING("try-power-role", "sink"),
PROPERTY_ENTRY_U32_ARRAY("source-pdos", src_pdo),
PROPERTY_ENTRY_U32_ARRAY("sink-pdos", snk_pdo),
PROPERTY_ENTRY_U32("op-sink-microwatt", 2500000),
{ }
};
static struct fwnode_handle *fusb302_fwnode_get(struct device *dev)
{
struct fwnode_handle *fwnode;
fwnode = device_get_named_child_node(dev, "connector");
if (!fwnode)
fwnode = fwnode_create_software_node(port_props, NULL);
return fwnode;
}
static int fusb302_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct fusb302_chip *chip;
struct i2c_adapter *adapter = client->adapter;
struct device *dev = &client->dev;
const char *name;
int ret = 0;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_I2C_BLOCK)) {
dev_err(&client->dev,
"I2C/SMBus block functionality not supported!\n");
return -ENODEV;
}
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->i2c_client = client;
chip->dev = &client->dev;
mutex_init(&chip->lock);
/*
* Devicetree platforms should get extcon via phandle (not yet
* supported). On ACPI platforms, we get the name from a device prop.
* This device prop is for kernel internal use only and is expected
* to be set by the platform code which also registers the i2c client
* for the fusb302.
*/
if (device_property_read_string(dev, "linux,extcon-name", &name) == 0) {
chip->extcon = extcon_get_extcon_dev(name);
if (IS_ERR(chip->extcon))
return PTR_ERR(chip->extcon);
}
chip->vbus = devm_regulator_get(chip->dev, "vbus");
if (IS_ERR(chip->vbus))
return PTR_ERR(chip->vbus);
chip->wq = create_singlethread_workqueue(dev_name(chip->dev));
if (!chip->wq)
return -ENOMEM;
spin_lock_init(&chip->irq_lock);
INIT_WORK(&chip->irq_work, fusb302_irq_work);
INIT_DELAYED_WORK(&chip->bc_lvl_handler, fusb302_bc_lvl_handler_work);
init_tcpc_dev(&chip->tcpc_dev);
fusb302_debugfs_init(chip);
if (client->irq) {
chip->gpio_int_n_irq = client->irq;
} else {
ret = init_gpio(chip);
if (ret < 0)
goto destroy_workqueue;
}
chip->tcpc_dev.fwnode = fusb302_fwnode_get(dev);
if (IS_ERR(chip->tcpc_dev.fwnode)) {
ret = PTR_ERR(chip->tcpc_dev.fwnode);
goto destroy_workqueue;
}
chip->tcpm_port = tcpm_register_port(&client->dev, &chip->tcpc_dev);
if (IS_ERR(chip->tcpm_port)) {
fwnode_handle_put(chip->tcpc_dev.fwnode);
ret = dev_err_probe(dev, PTR_ERR(chip->tcpm_port),
"cannot register tcpm port\n");
goto destroy_workqueue;
}
ret = request_irq(chip->gpio_int_n_irq, fusb302_irq_intn,
IRQF_ONESHOT | IRQF_TRIGGER_LOW,
"fsc_interrupt_int_n", chip);
if (ret < 0) {
dev_err(dev, "cannot request IRQ for GPIO Int_N, ret=%d", ret);
goto tcpm_unregister_port;
}
enable_irq_wake(chip->gpio_int_n_irq);
i2c_set_clientdata(client, chip);
return ret;
tcpm_unregister_port:
tcpm_unregister_port(chip->tcpm_port);
fwnode_handle_put(chip->tcpc_dev.fwnode);
destroy_workqueue:
fusb302_debugfs_exit(chip);
destroy_workqueue(chip->wq);
return ret;
}
static void fusb302_remove(struct i2c_client *client)
{
struct fusb302_chip *chip = i2c_get_clientdata(client);
disable_irq_wake(chip->gpio_int_n_irq);
free_irq(chip->gpio_int_n_irq, chip);
cancel_work_sync(&chip->irq_work);
cancel_delayed_work_sync(&chip->bc_lvl_handler);
tcpm_unregister_port(chip->tcpm_port);
fwnode_handle_put(chip->tcpc_dev.fwnode);
destroy_workqueue(chip->wq);
fusb302_debugfs_exit(chip);
}
static int fusb302_pm_suspend(struct device *dev)
{
struct fusb302_chip *chip = dev->driver_data;
unsigned long flags;
spin_lock_irqsave(&chip->irq_lock, flags);
chip->irq_suspended = true;
spin_unlock_irqrestore(&chip->irq_lock, flags);
/* Make sure any pending irq_work is finished before the bus suspends */
flush_work(&chip->irq_work);
return 0;
}
static int fusb302_pm_resume(struct device *dev)
{
struct fusb302_chip *chip = dev->driver_data;
unsigned long flags;
spin_lock_irqsave(&chip->irq_lock, flags);
if (chip->irq_while_suspended) {
schedule_work(&chip->irq_work);
chip->irq_while_suspended = false;
}
chip->irq_suspended = false;
spin_unlock_irqrestore(&chip->irq_lock, flags);
return 0;
}
static const struct of_device_id fusb302_dt_match[] = {
{.compatible = "fcs,fusb302"},
{},
};
MODULE_DEVICE_TABLE(of, fusb302_dt_match);
static const struct i2c_device_id fusb302_i2c_device_id[] = {
{"typec_fusb302", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, fusb302_i2c_device_id);
static const struct dev_pm_ops fusb302_pm_ops = {
.suspend = fusb302_pm_suspend,
.resume = fusb302_pm_resume,
};
static struct i2c_driver fusb302_driver = {
.driver = {
.name = "typec_fusb302",
.pm = &fusb302_pm_ops,
.of_match_table = of_match_ptr(fusb302_dt_match),
},
.probe = fusb302_probe,
.remove = fusb302_remove,
.id_table = fusb302_i2c_device_id,
};
module_i2c_driver(fusb302_driver);
MODULE_AUTHOR("Yueyao Zhu <yueyao.zhu@gmail.com>");
MODULE_DESCRIPTION("Fairchild FUSB302 Type-C Chip Driver");
MODULE_LICENSE("GPL");