Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
//               Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//

#include <asm/unaligned.h>

#include "mcp251xfd.h"
#include "mcp251xfd-ram.h"

static inline u8
mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
				union mcp251xfd_write_reg_buf *write_reg_buf,
				const u16 reg, const u32 mask, const u32 val)
{
	u8 first_byte, last_byte, len;
	u8 *data;
	__le32 val_le32;

	first_byte = mcp251xfd_first_byte_set(mask);
	last_byte = mcp251xfd_last_byte_set(mask);
	len = last_byte - first_byte + 1;

	data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
	val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
	memcpy(data, &val_le32, len);

	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
		u16 crc;

		mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
						     len);
		/* CRC */
		len += sizeof(write_reg_buf->crc.cmd);
		crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
		put_unaligned_be16(crc, (void *)write_reg_buf + len);

		/* Total length */
		len += sizeof(write_reg_buf->crc.crc);
	} else {
		len += sizeof(write_reg_buf->nocrc.cmd);
	}

	return len;
}

static void
mcp251xfd_ring_init_tef(struct mcp251xfd_priv *priv, u16 *base)
{
	struct mcp251xfd_tef_ring *tef_ring;
	struct spi_transfer *xfer;
	u32 val;
	u16 addr;
	u8 len;
	int i;

	/* TEF */
	tef_ring = priv->tef;
	tef_ring->head = 0;
	tef_ring->tail = 0;

	/* TEF- and TX-FIFO have same number of objects */
	*base = mcp251xfd_get_tef_obj_addr(priv->tx->obj_num);

	/* FIFO IRQ enable */
	addr = MCP251XFD_REG_TEFCON;
	val = MCP251XFD_REG_TEFCON_TEFOVIE | MCP251XFD_REG_TEFCON_TEFNEIE;

	len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->irq_enable_buf,
					      addr, val, val);
	tef_ring->irq_enable_xfer.tx_buf = &tef_ring->irq_enable_buf;
	tef_ring->irq_enable_xfer.len = len;
	spi_message_init_with_transfers(&tef_ring->irq_enable_msg,
					&tef_ring->irq_enable_xfer, 1);

	/* FIFO increment TEF tail pointer */
	addr = MCP251XFD_REG_TEFCON;
	val = MCP251XFD_REG_TEFCON_UINC;
	len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf,
					      addr, val, val);

	for (i = 0; i < ARRAY_SIZE(tef_ring->uinc_xfer); i++) {
		xfer = &tef_ring->uinc_xfer[i];
		xfer->tx_buf = &tef_ring->uinc_buf;
		xfer->len = len;
		xfer->cs_change = 1;
		xfer->cs_change_delay.value = 0;
		xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
	}

	/* "cs_change == 1" on the last transfer results in an active
	 * chip select after the complete SPI message. This causes the
	 * controller to interpret the next register access as
	 * data. Set "cs_change" of the last transfer to "0" to
	 * properly deactivate the chip select at the end of the
	 * message.
	 */
	xfer->cs_change = 0;

	if (priv->tx_coalesce_usecs_irq || priv->tx_obj_num_coalesce_irq) {
		val = MCP251XFD_REG_TEFCON_UINC |
			MCP251XFD_REG_TEFCON_TEFOVIE |
			MCP251XFD_REG_TEFCON_TEFHIE;

		len = mcp251xfd_cmd_prepare_write_reg(priv,
						      &tef_ring->uinc_irq_disable_buf,
						      addr, val, val);
		xfer->tx_buf = &tef_ring->uinc_irq_disable_buf;
		xfer->len = len;
	}
}

static void
mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
			      const struct mcp251xfd_tx_ring *ring,
			      struct mcp251xfd_tx_obj *tx_obj,
			      const u8 rts_buf_len,
			      const u8 n)
{
	struct spi_transfer *xfer;
	u16 addr;

	/* FIFO load */
	addr = mcp251xfd_get_tx_obj_addr(ring, n);
	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
		mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
						     addr);
	else
		mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
					      addr);

	xfer = &tx_obj->xfer[0];
	xfer->tx_buf = &tx_obj->buf;
	xfer->len = 0;	/* actual len is assigned on the fly */
	xfer->cs_change = 1;
	xfer->cs_change_delay.value = 0;
	xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;

	/* FIFO request to send */
	xfer = &tx_obj->xfer[1];
	xfer->tx_buf = &ring->rts_buf;
	xfer->len = rts_buf_len;

	/* SPI message */
	spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
					ARRAY_SIZE(tx_obj->xfer));
}

static void
mcp251xfd_ring_init_tx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr)
{
	struct mcp251xfd_tx_ring *tx_ring;
	struct mcp251xfd_tx_obj *tx_obj;
	u32 val;
	u16 addr;
	u8 len;
	int i;

	tx_ring = priv->tx;
	tx_ring->head = 0;
	tx_ring->tail = 0;
	tx_ring->base = *base;
	tx_ring->nr = 0;
	tx_ring->fifo_nr = *fifo_nr;

	*base = mcp251xfd_get_tx_obj_addr(tx_ring, tx_ring->obj_num);
	*fifo_nr += 1;

	/* FIFO request to send */
	addr = MCP251XFD_REG_FIFOCON(tx_ring->fifo_nr);
	val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
	len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
					      addr, val, val);

	mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
		mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
}

static void
mcp251xfd_ring_init_rx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr)
{
	struct mcp251xfd_rx_ring *rx_ring;
	struct spi_transfer *xfer;
	u32 val;
	u16 addr;
	u8 len;
	int i, j;

	mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
		rx_ring->head = 0;
		rx_ring->tail = 0;
		rx_ring->base = *base;
		rx_ring->nr = i;
		rx_ring->fifo_nr = *fifo_nr;

		*base = mcp251xfd_get_rx_obj_addr(rx_ring, rx_ring->obj_num);
		*fifo_nr += 1;

		/* FIFO IRQ enable */
		addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr);
		val = MCP251XFD_REG_FIFOCON_RXOVIE |
			MCP251XFD_REG_FIFOCON_TFNRFNIE;
		len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->irq_enable_buf,
						      addr, val, val);
		rx_ring->irq_enable_xfer.tx_buf = &rx_ring->irq_enable_buf;
		rx_ring->irq_enable_xfer.len = len;
		spi_message_init_with_transfers(&rx_ring->irq_enable_msg,
						&rx_ring->irq_enable_xfer, 1);

		/* FIFO increment RX tail pointer */
		val = MCP251XFD_REG_FIFOCON_UINC;
		len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf,
						      addr, val, val);

		for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) {
			xfer = &rx_ring->uinc_xfer[j];
			xfer->tx_buf = &rx_ring->uinc_buf;
			xfer->len = len;
			xfer->cs_change = 1;
			xfer->cs_change_delay.value = 0;
			xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
		}

		/* "cs_change == 1" on the last transfer results in an
		 * active chip select after the complete SPI
		 * message. This causes the controller to interpret
		 * the next register access as data. Set "cs_change"
		 * of the last transfer to "0" to properly deactivate
		 * the chip select at the end of the message.
		 */
		xfer->cs_change = 0;

		/* Use 1st RX-FIFO for IRQ coalescing. If enabled
		 * (rx_coalesce_usecs_irq or rx_max_coalesce_frames_irq
		 * is activated), use the last transfer to disable:
		 *
		 * - TFNRFNIE (Receive FIFO Not Empty Interrupt)
		 *
		 * and enable:
		 *
		 * - TFHRFHIE (Receive FIFO Half Full Interrupt)
		 *   - or -
		 * - TFERFFIE (Receive FIFO Full Interrupt)
		 *
		 * depending on rx_max_coalesce_frames_irq.
		 *
		 * The RXOVIE (Overflow Interrupt) is always enabled.
		 */
		if (rx_ring->nr == 0 && (priv->rx_coalesce_usecs_irq ||
					 priv->rx_obj_num_coalesce_irq)) {
			val = MCP251XFD_REG_FIFOCON_UINC |
				MCP251XFD_REG_FIFOCON_RXOVIE;

			if (priv->rx_obj_num_coalesce_irq == rx_ring->obj_num)
				val |= MCP251XFD_REG_FIFOCON_TFERFFIE;
			else if (priv->rx_obj_num_coalesce_irq)
				val |= MCP251XFD_REG_FIFOCON_TFHRFHIE;

			len = mcp251xfd_cmd_prepare_write_reg(priv,
							      &rx_ring->uinc_irq_disable_buf,
							      addr, val, val);
			xfer->tx_buf = &rx_ring->uinc_irq_disable_buf;
			xfer->len = len;
		}
	}
}

int mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
{
	const struct mcp251xfd_rx_ring *rx_ring;
	u16 base = 0, ram_used;
	u8 fifo_nr = 1;
	int i;

	netdev_reset_queue(priv->ndev);

	mcp251xfd_ring_init_tef(priv, &base);
	mcp251xfd_ring_init_rx(priv, &base, &fifo_nr);
	mcp251xfd_ring_init_tx(priv, &base, &fifo_nr);

	/* mcp251xfd_handle_rxif() will iterate over all RX rings.
	 * Rings with their corresponding bit set in
	 * priv->regs_status.rxif are read out.
	 *
	 * If the chip is configured for only 1 RX-FIFO, and if there
	 * is an RX interrupt pending (RXIF in INT register is set),
	 * it must be the 1st RX-FIFO.
	 *
	 * We mark the RXIF of the 1st FIFO as pending here, so that
	 * we can skip the read of the RXIF register in
	 * mcp251xfd_read_regs_status() for the 1 RX-FIFO only case.
	 *
	 * If we use more than 1 RX-FIFO, this value gets overwritten
	 * in mcp251xfd_read_regs_status(), so set it unconditionally
	 * here.
	 */
	priv->regs_status.rxif = BIT(priv->rx[0]->fifo_nr);

	if (priv->tx_obj_num_coalesce_irq) {
		netdev_dbg(priv->ndev,
			   "FIFO setup: TEF:         0x%03x: %2d*%zu bytes = %4zu bytes (coalesce)\n",
			   mcp251xfd_get_tef_obj_addr(0),
			   priv->tx_obj_num_coalesce_irq,
			   sizeof(struct mcp251xfd_hw_tef_obj),
			   priv->tx_obj_num_coalesce_irq *
			   sizeof(struct mcp251xfd_hw_tef_obj));

		netdev_dbg(priv->ndev,
			   "                         0x%03x: %2d*%zu bytes = %4zu bytes\n",
			   mcp251xfd_get_tef_obj_addr(priv->tx_obj_num_coalesce_irq),
			   priv->tx->obj_num - priv->tx_obj_num_coalesce_irq,
			   sizeof(struct mcp251xfd_hw_tef_obj),
			   (priv->tx->obj_num - priv->tx_obj_num_coalesce_irq) *
			   sizeof(struct mcp251xfd_hw_tef_obj));
	} else {
		netdev_dbg(priv->ndev,
			   "FIFO setup: TEF:         0x%03x: %2d*%zu bytes = %4zu bytes\n",
			   mcp251xfd_get_tef_obj_addr(0),
			   priv->tx->obj_num, sizeof(struct mcp251xfd_hw_tef_obj),
			   priv->tx->obj_num * sizeof(struct mcp251xfd_hw_tef_obj));
	}

	mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
		if (rx_ring->nr == 0 && priv->rx_obj_num_coalesce_irq) {
			netdev_dbg(priv->ndev,
				   "FIFO setup: RX-%u: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes (coalesce)\n",
				   rx_ring->nr, rx_ring->fifo_nr,
				   mcp251xfd_get_rx_obj_addr(rx_ring, 0),
				   priv->rx_obj_num_coalesce_irq, rx_ring->obj_size,
				   priv->rx_obj_num_coalesce_irq * rx_ring->obj_size);

			if (priv->rx_obj_num_coalesce_irq == MCP251XFD_FIFO_DEPTH)
				continue;

			netdev_dbg(priv->ndev,
				   "                         0x%03x: %2u*%u bytes = %4u bytes\n",
				   mcp251xfd_get_rx_obj_addr(rx_ring,
							     priv->rx_obj_num_coalesce_irq),
				   rx_ring->obj_num - priv->rx_obj_num_coalesce_irq,
				   rx_ring->obj_size,
				   (rx_ring->obj_num - priv->rx_obj_num_coalesce_irq) *
				   rx_ring->obj_size);
		} else {
			netdev_dbg(priv->ndev,
				   "FIFO setup: RX-%u: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n",
				   rx_ring->nr, rx_ring->fifo_nr,
				   mcp251xfd_get_rx_obj_addr(rx_ring, 0),
				   rx_ring->obj_num, rx_ring->obj_size,
				   rx_ring->obj_num * rx_ring->obj_size);
		}
	}

	netdev_dbg(priv->ndev,
		   "FIFO setup: TX:   FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n",
		   priv->tx->fifo_nr,
		   mcp251xfd_get_tx_obj_addr(priv->tx, 0),
		   priv->tx->obj_num, priv->tx->obj_size,
		   priv->tx->obj_num * priv->tx->obj_size);

	netdev_dbg(priv->ndev,
		   "FIFO setup: free:                             %4d bytes\n",
		   MCP251XFD_RAM_SIZE - (base - MCP251XFD_RAM_START));

	ram_used = base - MCP251XFD_RAM_START;
	if (ram_used > MCP251XFD_RAM_SIZE) {
		netdev_err(priv->ndev,
			   "Error during ring configuration, using more RAM (%u bytes) than available (%u bytes).\n",
			   ram_used, MCP251XFD_RAM_SIZE);
		return -ENOMEM;
	}

	return 0;
}

void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
{
	int i;

	for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
		kfree(priv->rx[i]);
		priv->rx[i] = NULL;
	}
}

static enum hrtimer_restart mcp251xfd_rx_irq_timer(struct hrtimer *t)
{
	struct mcp251xfd_priv *priv = container_of(t, struct mcp251xfd_priv,
						   rx_irq_timer);
	struct mcp251xfd_rx_ring *ring = priv->rx[0];

	if (test_bit(MCP251XFD_FLAGS_DOWN, priv->flags))
		return HRTIMER_NORESTART;

	spi_async(priv->spi, &ring->irq_enable_msg);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart mcp251xfd_tx_irq_timer(struct hrtimer *t)
{
	struct mcp251xfd_priv *priv = container_of(t, struct mcp251xfd_priv,
						   tx_irq_timer);
	struct mcp251xfd_tef_ring *ring = priv->tef;

	if (test_bit(MCP251XFD_FLAGS_DOWN, priv->flags))
		return HRTIMER_NORESTART;

	spi_async(priv->spi, &ring->irq_enable_msg);

	return HRTIMER_NORESTART;
}

const struct can_ram_config mcp251xfd_ram_config = {
	.rx = {
		.size[CAN_RAM_MODE_CAN] = sizeof(struct mcp251xfd_hw_rx_obj_can),
		.size[CAN_RAM_MODE_CANFD] = sizeof(struct mcp251xfd_hw_rx_obj_canfd),
		.min = MCP251XFD_RX_OBJ_NUM_MIN,
		.max = MCP251XFD_RX_OBJ_NUM_MAX,
		.def[CAN_RAM_MODE_CAN] = CAN_RAM_NUM_MAX,
		.def[CAN_RAM_MODE_CANFD] = CAN_RAM_NUM_MAX,
		.fifo_num = MCP251XFD_FIFO_RX_NUM,
		.fifo_depth_min = MCP251XFD_RX_FIFO_DEPTH_MIN,
		.fifo_depth_coalesce_min = MCP251XFD_RX_FIFO_DEPTH_COALESCE_MIN,
	},
	.tx = {
		.size[CAN_RAM_MODE_CAN] = sizeof(struct mcp251xfd_hw_tef_obj) +
			sizeof(struct mcp251xfd_hw_tx_obj_can),
		.size[CAN_RAM_MODE_CANFD] = sizeof(struct mcp251xfd_hw_tef_obj) +
			sizeof(struct mcp251xfd_hw_tx_obj_canfd),
		.min = MCP251XFD_TX_OBJ_NUM_MIN,
		.max = MCP251XFD_TX_OBJ_NUM_MAX,
		.def[CAN_RAM_MODE_CAN] = MCP251XFD_TX_OBJ_NUM_CAN_DEFAULT,
		.def[CAN_RAM_MODE_CANFD] = MCP251XFD_TX_OBJ_NUM_CANFD_DEFAULT,
		.fifo_num = MCP251XFD_FIFO_TX_NUM,
		.fifo_depth_min = MCP251XFD_TX_FIFO_DEPTH_MIN,
		.fifo_depth_coalesce_min = MCP251XFD_TX_FIFO_DEPTH_COALESCE_MIN,
	},
	.size = MCP251XFD_RAM_SIZE,
	.fifo_depth = MCP251XFD_FIFO_DEPTH,
};

int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
{
	const bool fd_mode = mcp251xfd_is_fd_mode(priv);
	struct mcp251xfd_tx_ring *tx_ring = priv->tx;
	struct mcp251xfd_rx_ring *rx_ring;
	u8 tx_obj_size, rx_obj_size;
	u8 rem, i;

	/* switching from CAN-2.0 to CAN-FD mode or vice versa */
	if (fd_mode != test_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags)) {
		struct can_ram_layout layout;

		can_ram_get_layout(&layout, &mcp251xfd_ram_config, NULL, NULL, fd_mode);
		priv->rx_obj_num = layout.default_rx;
		tx_ring->obj_num = layout.default_tx;
	}

	if (fd_mode) {
		tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
		rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
		set_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags);
	} else {
		tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
		rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
		clear_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags);
	}

	tx_ring->obj_size = tx_obj_size;

	rem = priv->rx_obj_num;
	for (i = 0; i < ARRAY_SIZE(priv->rx) && rem; i++) {
		u8 rx_obj_num;

		if (i == 0 && priv->rx_obj_num_coalesce_irq)
			rx_obj_num = min_t(u8, priv->rx_obj_num_coalesce_irq * 2,
					   MCP251XFD_FIFO_DEPTH);
		else
			rx_obj_num = min_t(u8, rounddown_pow_of_two(rem),
					   MCP251XFD_FIFO_DEPTH);
		rem -= rx_obj_num;

		rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
				  GFP_KERNEL);
		if (!rx_ring) {
			mcp251xfd_ring_free(priv);
			return -ENOMEM;
		}

		rx_ring->obj_num = rx_obj_num;
		rx_ring->obj_size = rx_obj_size;
		priv->rx[i] = rx_ring;
	}
	priv->rx_ring_num = i;

	hrtimer_init(&priv->rx_irq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	priv->rx_irq_timer.function = mcp251xfd_rx_irq_timer;

	hrtimer_init(&priv->tx_irq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	priv->tx_irq_timer.function = mcp251xfd_tx_irq_timer;

	return 0;
}