Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Microtune MT2266 "Direct conversion low power broadband tuner" * * Copyright (c) 2007 Olivier DANET <odanet@caramail.com> */ #include <linux/module.h> #include <linux/delay.h> #include <linux/dvb/frontend.h> #include <linux/i2c.h> #include <linux/slab.h> #include <media/dvb_frontend.h> #include "mt2266.h" #define I2C_ADDRESS 0x60 #define REG_PART_REV 0 #define REG_TUNE 1 #define REG_BAND 6 #define REG_BANDWIDTH 8 #define REG_LOCK 0x12 #define PART_REV 0x85 struct mt2266_priv { struct mt2266_config *cfg; struct i2c_adapter *i2c; u32 frequency; u32 bandwidth; u8 band; }; #define MT2266_VHF 1 #define MT2266_UHF 0 /* Here, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2266: " args); printk("\n"); }} while (0) // Reads a single register static int mt2266_readreg(struct mt2266_priv *priv, u8 reg, u8 *val) { struct i2c_msg msg[2] = { { .addr = priv->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 }, { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 }, }; if (i2c_transfer(priv->i2c, msg, 2) != 2) { printk(KERN_WARNING "MT2266 I2C read failed\n"); return -EREMOTEIO; } return 0; } // Writes a single register static int mt2266_writereg(struct mt2266_priv *priv, u8 reg, u8 val) { u8 buf[2] = { reg, val }; struct i2c_msg msg = { .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2 }; if (i2c_transfer(priv->i2c, &msg, 1) != 1) { printk(KERN_WARNING "MT2266 I2C write failed\n"); return -EREMOTEIO; } return 0; } // Writes a set of consecutive registers static int mt2266_writeregs(struct mt2266_priv *priv,u8 *buf, u8 len) { struct i2c_msg msg = { .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len }; if (i2c_transfer(priv->i2c, &msg, 1) != 1) { printk(KERN_WARNING "MT2266 I2C write failed (len=%i)\n",(int)len); return -EREMOTEIO; } return 0; } // Initialisation sequences static u8 mt2266_init1[] = { REG_TUNE, 0x00, 0x00, 0x28, 0x00, 0x52, 0x99, 0x3f }; static u8 mt2266_init2[] = { 0x17, 0x6d, 0x71, 0x61, 0xc0, 0xbf, 0xff, 0xdc, 0x00, 0x0a, 0xd4, 0x03, 0x64, 0x64, 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x7f, 0x5e, 0x3f, 0xff, 0xff, 0xff, 0x00, 0x77, 0x0f, 0x2d }; static u8 mt2266_init_8mhz[] = { REG_BANDWIDTH, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 }; static u8 mt2266_init_7mhz[] = { REG_BANDWIDTH, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32 }; static u8 mt2266_init_6mhz[] = { REG_BANDWIDTH, 0xa7, 0xa7, 0xa7, 0xa7, 0xa7, 0xa7, 0xa7, 0xa7 }; static u8 mt2266_uhf[] = { 0x1d, 0xdc, 0x00, 0x0a, 0xd4, 0x03, 0x64, 0x64, 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14 }; static u8 mt2266_vhf[] = { 0x1d, 0xfe, 0x00, 0x00, 0xb4, 0x03, 0xa5, 0xa5, 0xa5, 0xa5, 0x82, 0xaa, 0xf1, 0x17, 0x80, 0x1f }; #define FREF 30000 // Quartz oscillator 30 MHz static int mt2266_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct mt2266_priv *priv; int ret=0; u32 freq; u32 tune; u8 lnaband; u8 b[10]; int i; u8 band; priv = fe->tuner_priv; freq = priv->frequency / 1000; /* Hz -> kHz */ if (freq < 470000 && freq > 230000) return -EINVAL; /* Gap between VHF and UHF bands */ priv->frequency = c->frequency; tune = 2 * freq * (8192/16) / (FREF/16); band = (freq < 300000) ? MT2266_VHF : MT2266_UHF; if (band == MT2266_VHF) tune *= 2; switch (c->bandwidth_hz) { case 6000000: mt2266_writeregs(priv, mt2266_init_6mhz, sizeof(mt2266_init_6mhz)); break; case 8000000: mt2266_writeregs(priv, mt2266_init_8mhz, sizeof(mt2266_init_8mhz)); break; case 7000000: default: mt2266_writeregs(priv, mt2266_init_7mhz, sizeof(mt2266_init_7mhz)); break; } priv->bandwidth = c->bandwidth_hz; if (band == MT2266_VHF && priv->band == MT2266_UHF) { dprintk("Switch from UHF to VHF"); mt2266_writereg(priv, 0x05, 0x04); mt2266_writereg(priv, 0x19, 0x61); mt2266_writeregs(priv, mt2266_vhf, sizeof(mt2266_vhf)); } else if (band == MT2266_UHF && priv->band == MT2266_VHF) { dprintk("Switch from VHF to UHF"); mt2266_writereg(priv, 0x05, 0x52); mt2266_writereg(priv, 0x19, 0x61); mt2266_writeregs(priv, mt2266_uhf, sizeof(mt2266_uhf)); } msleep(10); if (freq <= 495000) lnaband = 0xEE; else if (freq <= 525000) lnaband = 0xDD; else if (freq <= 550000) lnaband = 0xCC; else if (freq <= 580000) lnaband = 0xBB; else if (freq <= 605000) lnaband = 0xAA; else if (freq <= 630000) lnaband = 0x99; else if (freq <= 655000) lnaband = 0x88; else if (freq <= 685000) lnaband = 0x77; else if (freq <= 710000) lnaband = 0x66; else if (freq <= 735000) lnaband = 0x55; else if (freq <= 765000) lnaband = 0x44; else if (freq <= 802000) lnaband = 0x33; else if (freq <= 840000) lnaband = 0x22; else lnaband = 0x11; b[0] = REG_TUNE; b[1] = (tune >> 8) & 0x1F; b[2] = tune & 0xFF; b[3] = tune >> 13; mt2266_writeregs(priv,b,4); dprintk("set_parms: tune=%d band=%d %s", (int) tune, (int) lnaband, (band == MT2266_UHF) ? "UHF" : "VHF"); dprintk("set_parms: [1..3]: %2x %2x %2x", (int) b[1], (int) b[2], (int)b[3]); if (band == MT2266_UHF) { b[0] = 0x05; b[1] = (priv->band == MT2266_VHF) ? 0x52 : 0x62; b[2] = lnaband; mt2266_writeregs(priv, b, 3); } /* Wait for pll lock or timeout */ i = 0; do { mt2266_readreg(priv,REG_LOCK,b); if (b[0] & 0x40) break; msleep(10); i++; } while (i<10); dprintk("Lock when i=%i",(int)i); if (band == MT2266_UHF && priv->band == MT2266_VHF) mt2266_writereg(priv, 0x05, 0x62); priv->band = band; return ret; } static void mt2266_calibrate(struct mt2266_priv *priv) { mt2266_writereg(priv, 0x11, 0x03); mt2266_writereg(priv, 0x11, 0x01); mt2266_writeregs(priv, mt2266_init1, sizeof(mt2266_init1)); mt2266_writeregs(priv, mt2266_init2, sizeof(mt2266_init2)); mt2266_writereg(priv, 0x33, 0x5e); mt2266_writereg(priv, 0x10, 0x10); mt2266_writereg(priv, 0x10, 0x00); mt2266_writeregs(priv, mt2266_init_8mhz, sizeof(mt2266_init_8mhz)); msleep(25); mt2266_writereg(priv, 0x17, 0x6d); mt2266_writereg(priv, 0x1c, 0x00); msleep(75); mt2266_writereg(priv, 0x17, 0x6d); mt2266_writereg(priv, 0x1c, 0xff); } static int mt2266_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct mt2266_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } static int mt2266_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { struct mt2266_priv *priv = fe->tuner_priv; *bandwidth = priv->bandwidth; return 0; } static int mt2266_init(struct dvb_frontend *fe) { int ret; struct mt2266_priv *priv = fe->tuner_priv; ret = mt2266_writereg(priv, 0x17, 0x6d); if (ret < 0) return ret; ret = mt2266_writereg(priv, 0x1c, 0xff); if (ret < 0) return ret; return 0; } static int mt2266_sleep(struct dvb_frontend *fe) { struct mt2266_priv *priv = fe->tuner_priv; mt2266_writereg(priv, 0x17, 0x6d); mt2266_writereg(priv, 0x1c, 0x00); return 0; } static void mt2266_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; } static const struct dvb_tuner_ops mt2266_tuner_ops = { .info = { .name = "Microtune MT2266", .frequency_min_hz = 174 * MHz, .frequency_max_hz = 862 * MHz, .frequency_step_hz = 50 * kHz, }, .release = mt2266_release, .init = mt2266_init, .sleep = mt2266_sleep, .set_params = mt2266_set_params, .get_frequency = mt2266_get_frequency, .get_bandwidth = mt2266_get_bandwidth }; struct dvb_frontend * mt2266_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2266_config *cfg) { struct mt2266_priv *priv = NULL; u8 id = 0; priv = kzalloc(sizeof(struct mt2266_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->cfg = cfg; priv->i2c = i2c; priv->band = MT2266_UHF; if (mt2266_readreg(priv, 0, &id)) { kfree(priv); return NULL; } if (id != PART_REV) { kfree(priv); return NULL; } printk(KERN_INFO "MT2266: successfully identified\n"); memcpy(&fe->ops.tuner_ops, &mt2266_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = priv; mt2266_calibrate(priv); return fe; } EXPORT_SYMBOL(mt2266_attach); MODULE_AUTHOR("Olivier DANET"); MODULE_DESCRIPTION("Microtune MT2266 silicon tuner driver"); MODULE_LICENSE("GPL"); |