Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
// Copyright (c) 2017-2022 Linaro Limited.

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/i2c.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>

#define CCI_HW_VERSION				0x0
#define CCI_RESET_CMD				0x004
#define CCI_RESET_CMD_MASK			0x0f73f3f7
#define CCI_RESET_CMD_M0_MASK			0x000003f1
#define CCI_RESET_CMD_M1_MASK			0x0003f001
#define CCI_QUEUE_START				0x008
#define CCI_HALT_REQ				0x034
#define CCI_HALT_REQ_I2C_M0_Q0Q1		BIT(0)
#define CCI_HALT_REQ_I2C_M1_Q0Q1		BIT(1)

#define CCI_I2C_Mm_SCL_CTL(m)			(0x100 + 0x100 * (m))
#define CCI_I2C_Mm_SDA_CTL_0(m)			(0x104 + 0x100 * (m))
#define CCI_I2C_Mm_SDA_CTL_1(m)			(0x108 + 0x100 * (m))
#define CCI_I2C_Mm_SDA_CTL_2(m)			(0x10c + 0x100 * (m))
#define CCI_I2C_Mm_MISC_CTL(m)			(0x110 + 0x100 * (m))

#define CCI_I2C_Mm_READ_DATA(m)			(0x118 + 0x100 * (m))
#define CCI_I2C_Mm_READ_BUF_LEVEL(m)		(0x11c + 0x100 * (m))
#define CCI_I2C_Mm_Qn_EXEC_WORD_CNT(m, n)	(0x300 + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_CUR_WORD_CNT(m, n)	(0x304 + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_CUR_CMD(m, n)		(0x308 + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_REPORT_STATUS(m, n)	(0x30c + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_LOAD_DATA(m, n)		(0x310 + 0x200 * (m) + 0x100 * (n))

#define CCI_IRQ_GLOBAL_CLEAR_CMD		0xc00
#define CCI_IRQ_MASK_0				0xc04
#define CCI_IRQ_MASK_0_I2C_M0_RD_DONE		BIT(0)
#define CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT		BIT(4)
#define CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT		BIT(8)
#define CCI_IRQ_MASK_0_I2C_M1_RD_DONE		BIT(12)
#define CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT		BIT(16)
#define CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT		BIT(20)
#define CCI_IRQ_MASK_0_RST_DONE_ACK		BIT(24)
#define CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK	BIT(25)
#define CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK	BIT(26)
#define CCI_IRQ_MASK_0_I2C_M0_ERROR		0x18000ee6
#define CCI_IRQ_MASK_0_I2C_M1_ERROR		0x60ee6000
#define CCI_IRQ_CLEAR_0				0xc08
#define CCI_IRQ_STATUS_0			0xc0c
#define CCI_IRQ_STATUS_0_I2C_M0_RD_DONE		BIT(0)
#define CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT	BIT(4)
#define CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT	BIT(8)
#define CCI_IRQ_STATUS_0_I2C_M1_RD_DONE		BIT(12)
#define CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT	BIT(16)
#define CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT	BIT(20)
#define CCI_IRQ_STATUS_0_RST_DONE_ACK		BIT(24)
#define CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK	BIT(25)
#define CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK	BIT(26)
#define CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR	BIT(27)
#define CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR	BIT(28)
#define CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR	BIT(29)
#define CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR	BIT(30)
#define CCI_IRQ_STATUS_0_I2C_M0_ERROR		0x18000ee6
#define CCI_IRQ_STATUS_0_I2C_M1_ERROR		0x60ee6000

#define CCI_TIMEOUT	(msecs_to_jiffies(100))
#define NUM_MASTERS	2
#define NUM_QUEUES	2

/* Max number of resources + 1 for a NULL terminator */
#define CCI_RES_MAX	6

#define CCI_I2C_SET_PARAM	1
#define CCI_I2C_REPORT		8
#define CCI_I2C_WRITE		9
#define CCI_I2C_READ		10

#define CCI_I2C_REPORT_IRQ_EN	BIT(8)

enum {
	I2C_MODE_STANDARD,
	I2C_MODE_FAST,
	I2C_MODE_FAST_PLUS,
};

enum cci_i2c_queue_t {
	QUEUE_0,
	QUEUE_1
};

struct hw_params {
	u16 thigh; /* HIGH period of the SCL clock in clock ticks */
	u16 tlow; /* LOW period of the SCL clock */
	u16 tsu_sto; /* set-up time for STOP condition */
	u16 tsu_sta; /* set-up time for a repeated START condition */
	u16 thd_dat; /* data hold time */
	u16 thd_sta; /* hold time (repeated) START condition */
	u16 tbuf; /* bus free time between a STOP and START condition */
	u8 scl_stretch_en;
	u16 trdhld;
	u16 tsp; /* pulse width of spikes suppressed by the input filter */
};

struct cci;

struct cci_master {
	struct i2c_adapter adap;
	u16 master;
	u8 mode;
	int status;
	struct completion irq_complete;
	struct cci *cci;
};

struct cci_data {
	unsigned int num_masters;
	struct i2c_adapter_quirks quirks;
	u16 queue_size[NUM_QUEUES];
	unsigned long cci_clk_rate;
	struct hw_params params[3];
};

struct cci {
	struct device *dev;
	void __iomem *base;
	unsigned int irq;
	const struct cci_data *data;
	struct clk_bulk_data *clocks;
	int nclocks;
	struct cci_master master[NUM_MASTERS];
};

static irqreturn_t cci_isr(int irq, void *dev)
{
	struct cci *cci = dev;
	u32 val, reset = 0;
	int ret = IRQ_NONE;

	val = readl(cci->base + CCI_IRQ_STATUS_0);
	writel(val, cci->base + CCI_IRQ_CLEAR_0);
	writel(0x1, cci->base + CCI_IRQ_GLOBAL_CLEAR_CMD);

	if (val & CCI_IRQ_STATUS_0_RST_DONE_ACK) {
		complete(&cci->master[0].irq_complete);
		if (cci->master[1].master)
			complete(&cci->master[1].irq_complete);
		ret = IRQ_HANDLED;
	}

	if (val & CCI_IRQ_STATUS_0_I2C_M0_RD_DONE ||
			val & CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT ||
			val & CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT) {
		cci->master[0].status = 0;
		complete(&cci->master[0].irq_complete);
		ret = IRQ_HANDLED;
	}

	if (val & CCI_IRQ_STATUS_0_I2C_M1_RD_DONE ||
			val & CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT ||
			val & CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT) {
		cci->master[1].status = 0;
		complete(&cci->master[1].irq_complete);
		ret = IRQ_HANDLED;
	}

	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK)) {
		reset = CCI_RESET_CMD_M0_MASK;
		ret = IRQ_HANDLED;
	}

	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK)) {
		reset = CCI_RESET_CMD_M1_MASK;
		ret = IRQ_HANDLED;
	}

	if (unlikely(reset))
		writel(reset, cci->base + CCI_RESET_CMD);

	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_ERROR)) {
		if (val & CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR ||
			val & CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR)
			cci->master[0].status = -ENXIO;
		else
			cci->master[0].status = -EIO;

		writel(CCI_HALT_REQ_I2C_M0_Q0Q1, cci->base + CCI_HALT_REQ);
		ret = IRQ_HANDLED;
	}

	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_ERROR)) {
		if (val & CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR ||
			val & CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR)
			cci->master[1].status = -ENXIO;
		else
			cci->master[1].status = -EIO;

		writel(CCI_HALT_REQ_I2C_M1_Q0Q1, cci->base + CCI_HALT_REQ);
		ret = IRQ_HANDLED;
	}

	return ret;
}

static int cci_halt(struct cci *cci, u8 master_num)
{
	struct cci_master *master;
	u32 val;

	if (master_num >= cci->data->num_masters) {
		dev_err(cci->dev, "Unsupported master idx (%u)\n", master_num);
		return -EINVAL;
	}

	val = BIT(master_num);
	master = &cci->master[master_num];

	reinit_completion(&master->irq_complete);
	writel(val, cci->base + CCI_HALT_REQ);

	if (!wait_for_completion_timeout(&master->irq_complete, CCI_TIMEOUT)) {
		dev_err(cci->dev, "CCI halt timeout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int cci_reset(struct cci *cci)
{
	/*
	 * we reset the whole controller, here and for implicity use
	 * master[0].xxx for waiting on it.
	 */
	reinit_completion(&cci->master[0].irq_complete);
	writel(CCI_RESET_CMD_MASK, cci->base + CCI_RESET_CMD);

	if (!wait_for_completion_timeout(&cci->master[0].irq_complete,
					 CCI_TIMEOUT)) {
		dev_err(cci->dev, "CCI reset timeout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int cci_init(struct cci *cci)
{
	u32 val = CCI_IRQ_MASK_0_I2C_M0_RD_DONE |
			CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT |
			CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT |
			CCI_IRQ_MASK_0_I2C_M1_RD_DONE |
			CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT |
			CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT |
			CCI_IRQ_MASK_0_RST_DONE_ACK |
			CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK |
			CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK |
			CCI_IRQ_MASK_0_I2C_M0_ERROR |
			CCI_IRQ_MASK_0_I2C_M1_ERROR;
	int i;

	writel(val, cci->base + CCI_IRQ_MASK_0);

	for (i = 0; i < cci->data->num_masters; i++) {
		int mode = cci->master[i].mode;
		const struct hw_params *hw;

		if (!cci->master[i].cci)
			continue;

		hw = &cci->data->params[mode];

		val = hw->thigh << 16 | hw->tlow;
		writel(val, cci->base + CCI_I2C_Mm_SCL_CTL(i));

		val = hw->tsu_sto << 16 | hw->tsu_sta;
		writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_0(i));

		val = hw->thd_dat << 16 | hw->thd_sta;
		writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_1(i));

		val = hw->tbuf;
		writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_2(i));

		val = hw->scl_stretch_en << 8 | hw->trdhld << 4 | hw->tsp;
		writel(val, cci->base + CCI_I2C_Mm_MISC_CTL(i));
	}

	return 0;
}

static int cci_run_queue(struct cci *cci, u8 master, u8 queue)
{
	u32 val;

	val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue));
	writel(val, cci->base + CCI_I2C_Mm_Qn_EXEC_WORD_CNT(master, queue));

	reinit_completion(&cci->master[master].irq_complete);
	val = BIT(master * 2 + queue);
	writel(val, cci->base + CCI_QUEUE_START);

	if (!wait_for_completion_timeout(&cci->master[master].irq_complete,
					 CCI_TIMEOUT)) {
		dev_err(cci->dev, "master %d queue %d timeout\n",
			master, queue);
		cci_reset(cci);
		cci_init(cci);
		return -ETIMEDOUT;
	}

	return cci->master[master].status;
}

static int cci_validate_queue(struct cci *cci, u8 master, u8 queue)
{
	u32 val;

	val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue));
	if (val == cci->data->queue_size[queue])
		return -EINVAL;

	if (!val)
		return 0;

	val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN;
	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));

	return cci_run_queue(cci, master, queue);
}

static int cci_i2c_read(struct cci *cci, u16 master,
			u16 addr, u8 *buf, u16 len)
{
	u32 val, words_read, words_exp;
	u8 queue = QUEUE_1;
	int i, index = 0, ret;
	bool first = true;

	/*
	 * Call validate queue to make sure queue is empty before starting.
	 * This is to avoid overflow / underflow of queue.
	 */
	ret = cci_validate_queue(cci, master, queue);
	if (ret < 0)
		return ret;

	val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4;
	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));

	val = CCI_I2C_READ | len << 4;
	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));

	ret = cci_run_queue(cci, master, queue);
	if (ret < 0)
		return ret;

	words_read = readl(cci->base + CCI_I2C_Mm_READ_BUF_LEVEL(master));
	words_exp = len / 4 + 1;
	if (words_read != words_exp) {
		dev_err(cci->dev, "words read = %d, words expected = %d\n",
			words_read, words_exp);
		return -EIO;
	}

	do {
		val = readl(cci->base + CCI_I2C_Mm_READ_DATA(master));

		for (i = 0; i < 4 && index < len; i++) {
			if (first) {
				/* The LS byte of this register represents the
				 * first byte read from the slave during a read
				 * access.
				 */
				first = false;
				continue;
			}
			buf[index++] = (val >> (i * 8)) & 0xff;
		}
	} while (--words_read);

	return 0;
}

static int cci_i2c_write(struct cci *cci, u16 master,
			 u16 addr, u8 *buf, u16 len)
{
	u8 queue = QUEUE_0;
	u8 load[12] = { 0 };
	int i = 0, j, ret;
	u32 val;

	/*
	 * Call validate queue to make sure queue is empty before starting.
	 * This is to avoid overflow / underflow of queue.
	 */
	ret = cci_validate_queue(cci, master, queue);
	if (ret < 0)
		return ret;

	val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4;
	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));

	load[i++] = CCI_I2C_WRITE | len << 4;

	for (j = 0; j < len; j++)
		load[i++] = buf[j];

	for (j = 0; j < i; j += 4) {
		val = load[j];
		val |= load[j + 1] << 8;
		val |= load[j + 2] << 16;
		val |= load[j + 3] << 24;
		writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
	}

	val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN;
	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));

	return cci_run_queue(cci, master, queue);
}

static int cci_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
	struct cci_master *cci_master = i2c_get_adapdata(adap);
	struct cci *cci = cci_master->cci;
	int i, ret;

	ret = pm_runtime_get_sync(cci->dev);
	if (ret < 0)
		goto err;

	for (i = 0; i < num; i++) {
		if (msgs[i].flags & I2C_M_RD)
			ret = cci_i2c_read(cci, cci_master->master,
					   msgs[i].addr, msgs[i].buf,
					   msgs[i].len);
		else
			ret = cci_i2c_write(cci, cci_master->master,
					    msgs[i].addr, msgs[i].buf,
					    msgs[i].len);

		if (ret < 0)
			break;
	}

	if (!ret)
		ret = num;

err:
	pm_runtime_mark_last_busy(cci->dev);
	pm_runtime_put_autosuspend(cci->dev);

	return ret;
}

static u32 cci_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm cci_algo = {
	.master_xfer	= cci_xfer,
	.functionality	= cci_func,
};

static int cci_enable_clocks(struct cci *cci)
{
	return clk_bulk_prepare_enable(cci->nclocks, cci->clocks);
}

static void cci_disable_clocks(struct cci *cci)
{
	clk_bulk_disable_unprepare(cci->nclocks, cci->clocks);
}

static int __maybe_unused cci_suspend_runtime(struct device *dev)
{
	struct cci *cci = dev_get_drvdata(dev);

	cci_disable_clocks(cci);
	return 0;
}

static int __maybe_unused cci_resume_runtime(struct device *dev)
{
	struct cci *cci = dev_get_drvdata(dev);
	int ret;

	ret = cci_enable_clocks(cci);
	if (ret)
		return ret;

	cci_init(cci);
	return 0;
}

static int __maybe_unused cci_suspend(struct device *dev)
{
	if (!pm_runtime_suspended(dev))
		return cci_suspend_runtime(dev);

	return 0;
}

static int __maybe_unused cci_resume(struct device *dev)
{
	cci_resume_runtime(dev);
	pm_runtime_mark_last_busy(dev);
	pm_request_autosuspend(dev);

	return 0;
}

static const struct dev_pm_ops qcom_cci_pm = {
	SET_SYSTEM_SLEEP_PM_OPS(cci_suspend, cci_resume)
	SET_RUNTIME_PM_OPS(cci_suspend_runtime, cci_resume_runtime, NULL)
};

static int cci_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	unsigned long cci_clk_rate = 0;
	struct device_node *child;
	struct resource *r;
	struct cci *cci;
	int ret, i;
	u32 val;

	cci = devm_kzalloc(dev, sizeof(*cci), GFP_KERNEL);
	if (!cci)
		return -ENOMEM;

	cci->dev = dev;
	platform_set_drvdata(pdev, cci);
	cci->data = device_get_match_data(dev);
	if (!cci->data)
		return -ENOENT;

	for_each_available_child_of_node(dev->of_node, child) {
		struct cci_master *master;
		u32 idx;

		ret = of_property_read_u32(child, "reg", &idx);
		if (ret) {
			dev_err(dev, "%pOF invalid 'reg' property", child);
			continue;
		}

		if (idx >= cci->data->num_masters) {
			dev_err(dev, "%pOF invalid 'reg' value: %u (max is %u)",
				child, idx, cci->data->num_masters - 1);
			continue;
		}

		master = &cci->master[idx];
		master->adap.quirks = &cci->data->quirks;
		master->adap.algo = &cci_algo;
		master->adap.dev.parent = dev;
		master->adap.dev.of_node = of_node_get(child);
		master->master = idx;
		master->cci = cci;

		i2c_set_adapdata(&master->adap, master);
		snprintf(master->adap.name, sizeof(master->adap.name), "Qualcomm-CCI");

		master->mode = I2C_MODE_STANDARD;
		ret = of_property_read_u32(child, "clock-frequency", &val);
		if (!ret) {
			if (val == I2C_MAX_FAST_MODE_FREQ)
				master->mode = I2C_MODE_FAST;
			else if (val == I2C_MAX_FAST_MODE_PLUS_FREQ)
				master->mode = I2C_MODE_FAST_PLUS;
		}

		init_completion(&master->irq_complete);
	}

	/* Memory */

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cci->base = devm_ioremap_resource(dev, r);
	if (IS_ERR(cci->base))
		return PTR_ERR(cci->base);

	/* Clocks */

	ret = devm_clk_bulk_get_all(dev, &cci->clocks);
	if (ret < 1) {
		dev_err(dev, "failed to get clocks %d\n", ret);
		return ret;
	}
	cci->nclocks = ret;

	/* Retrieve CCI clock rate */
	for (i = 0; i < cci->nclocks; i++) {
		if (!strcmp(cci->clocks[i].id, "cci")) {
			cci_clk_rate = clk_get_rate(cci->clocks[i].clk);
			break;
		}
	}

	if (cci_clk_rate != cci->data->cci_clk_rate) {
		/* cci clock set by the bootloader or via assigned clock rate
		 * in DT.
		 */
		dev_warn(dev, "Found %lu cci clk rate while %lu was expected\n",
			 cci_clk_rate, cci->data->cci_clk_rate);
	}

	ret = cci_enable_clocks(cci);
	if (ret < 0)
		return ret;

	/* Interrupt */

	ret = platform_get_irq(pdev, 0);
	if (ret < 0)
		goto disable_clocks;
	cci->irq = ret;

	ret = devm_request_irq(dev, cci->irq, cci_isr, 0, dev_name(dev), cci);
	if (ret < 0) {
		dev_err(dev, "request_irq failed, ret: %d\n", ret);
		goto disable_clocks;
	}

	val = readl(cci->base + CCI_HW_VERSION);
	dev_dbg(dev, "CCI HW version = 0x%08x", val);

	ret = cci_reset(cci);
	if (ret < 0)
		goto error;

	ret = cci_init(cci);
	if (ret < 0)
		goto error;

	pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
	pm_runtime_use_autosuspend(dev);
	pm_runtime_set_active(dev);
	pm_runtime_enable(dev);

	for (i = 0; i < cci->data->num_masters; i++) {
		if (!cci->master[i].cci)
			continue;

		ret = i2c_add_adapter(&cci->master[i].adap);
		if (ret < 0) {
			of_node_put(cci->master[i].adap.dev.of_node);
			goto error_i2c;
		}
	}

	return 0;

error_i2c:
	pm_runtime_disable(dev);
	pm_runtime_dont_use_autosuspend(dev);

	for (--i ; i >= 0; i--) {
		if (cci->master[i].cci) {
			i2c_del_adapter(&cci->master[i].adap);
			of_node_put(cci->master[i].adap.dev.of_node);
		}
	}
error:
	disable_irq(cci->irq);
disable_clocks:
	cci_disable_clocks(cci);

	return ret;
}

static int cci_remove(struct platform_device *pdev)
{
	struct cci *cci = platform_get_drvdata(pdev);
	int i;

	for (i = 0; i < cci->data->num_masters; i++) {
		if (cci->master[i].cci) {
			i2c_del_adapter(&cci->master[i].adap);
			of_node_put(cci->master[i].adap.dev.of_node);
		}
		cci_halt(cci, i);
	}

	disable_irq(cci->irq);
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);

	return 0;
}

static const struct cci_data cci_v1_data = {
	.num_masters = 1,
	.queue_size = { 64, 16 },
	.quirks = {
		.max_write_len = 10,
		.max_read_len = 12,
	},
	.cci_clk_rate =  19200000,
	.params[I2C_MODE_STANDARD] = {
		.thigh = 78,
		.tlow = 114,
		.tsu_sto = 28,
		.tsu_sta = 28,
		.thd_dat = 10,
		.thd_sta = 77,
		.tbuf = 118,
		.scl_stretch_en = 0,
		.trdhld = 6,
		.tsp = 1
	},
	.params[I2C_MODE_FAST] = {
		.thigh = 20,
		.tlow = 28,
		.tsu_sto = 21,
		.tsu_sta = 21,
		.thd_dat = 13,
		.thd_sta = 18,
		.tbuf = 32,
		.scl_stretch_en = 0,
		.trdhld = 6,
		.tsp = 3
	},
};

static const struct cci_data cci_v1_5_data = {
	.num_masters = 2,
	.queue_size = { 64, 16 },
	.quirks = {
		.max_write_len = 10,
		.max_read_len = 12,
	},
	.cci_clk_rate =  19200000,
	.params[I2C_MODE_STANDARD] = {
		.thigh = 78,
		.tlow = 114,
		.tsu_sto = 28,
		.tsu_sta = 28,
		.thd_dat = 10,
		.thd_sta = 77,
		.tbuf = 118,
		.scl_stretch_en = 0,
		.trdhld = 6,
		.tsp = 1
	},
	.params[I2C_MODE_FAST] = {
		.thigh = 20,
		.tlow = 28,
		.tsu_sto = 21,
		.tsu_sta = 21,
		.thd_dat = 13,
		.thd_sta = 18,
		.tbuf = 32,
		.scl_stretch_en = 0,
		.trdhld = 6,
		.tsp = 3
	},
};

static const struct cci_data cci_v2_data = {
	.num_masters = 2,
	.queue_size = { 64, 16 },
	.quirks = {
		.max_write_len = 11,
		.max_read_len = 12,
	},
	.cci_clk_rate =  37500000,
	.params[I2C_MODE_STANDARD] = {
		.thigh = 201,
		.tlow = 174,
		.tsu_sto = 204,
		.tsu_sta = 231,
		.thd_dat = 22,
		.thd_sta = 162,
		.tbuf = 227,
		.scl_stretch_en = 0,
		.trdhld = 6,
		.tsp = 3
	},
	.params[I2C_MODE_FAST] = {
		.thigh = 38,
		.tlow = 56,
		.tsu_sto = 40,
		.tsu_sta = 40,
		.thd_dat = 22,
		.thd_sta = 35,
		.tbuf = 62,
		.scl_stretch_en = 0,
		.trdhld = 6,
		.tsp = 3
	},
	.params[I2C_MODE_FAST_PLUS] = {
		.thigh = 16,
		.tlow = 22,
		.tsu_sto = 17,
		.tsu_sta = 18,
		.thd_dat = 16,
		.thd_sta = 15,
		.tbuf = 24,
		.scl_stretch_en = 0,
		.trdhld = 3,
		.tsp = 3
	},
};

static const struct of_device_id cci_dt_match[] = {
	{ .compatible = "qcom,msm8226-cci", .data = &cci_v1_data},
	{ .compatible = "qcom,msm8916-cci", .data = &cci_v1_data},
	{ .compatible = "qcom,msm8974-cci", .data = &cci_v1_5_data},
	{ .compatible = "qcom,msm8996-cci", .data = &cci_v2_data},
	{ .compatible = "qcom,sdm845-cci", .data = &cci_v2_data},
	{ .compatible = "qcom,sm8250-cci", .data = &cci_v2_data},
	{ .compatible = "qcom,sm8450-cci", .data = &cci_v2_data},
	{}
};
MODULE_DEVICE_TABLE(of, cci_dt_match);

static struct platform_driver qcom_cci_driver = {
	.probe  = cci_probe,
	.remove = cci_remove,
	.driver = {
		.name = "i2c-qcom-cci",
		.of_match_table = cci_dt_match,
		.pm = &qcom_cci_pm,
	},
};

module_platform_driver(qcom_cci_driver);

MODULE_DESCRIPTION("Qualcomm Camera Control Interface driver");
MODULE_AUTHOR("Todor Tomov <todor.tomov@linaro.org>");
MODULE_AUTHOR("Loic Poulain <loic.poulain@linaro.org>");
MODULE_LICENSE("GPL v2");