Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | // SPDX-License-Identifier: GPL-2.0 /* * fs-verity hash algorithms * * Copyright 2019 Google LLC */ #include "fsverity_private.h" #include <crypto/hash.h> #include <linux/scatterlist.h> /* The hash algorithms supported by fs-verity */ struct fsverity_hash_alg fsverity_hash_algs[] = { [FS_VERITY_HASH_ALG_SHA256] = { .name = "sha256", .digest_size = SHA256_DIGEST_SIZE, .block_size = SHA256_BLOCK_SIZE, }, [FS_VERITY_HASH_ALG_SHA512] = { .name = "sha512", .digest_size = SHA512_DIGEST_SIZE, .block_size = SHA512_BLOCK_SIZE, }, }; static DEFINE_MUTEX(fsverity_hash_alg_init_mutex); /** * fsverity_get_hash_alg() - validate and prepare a hash algorithm * @inode: optional inode for logging purposes * @num: the hash algorithm number * * Get the struct fsverity_hash_alg for the given hash algorithm number, and * ensure it has a hash transform ready to go. The hash transforms are * allocated on-demand so that we don't waste resources unnecessarily, and * because the crypto modules may be initialized later than fs/verity/. * * Return: pointer to the hash alg on success, else an ERR_PTR() */ struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode, unsigned int num) { struct fsverity_hash_alg *alg; struct crypto_ahash *tfm; int err; if (num >= ARRAY_SIZE(fsverity_hash_algs) || !fsverity_hash_algs[num].name) { fsverity_warn(inode, "Unknown hash algorithm number: %u", num); return ERR_PTR(-EINVAL); } alg = &fsverity_hash_algs[num]; /* pairs with smp_store_release() below */ if (likely(smp_load_acquire(&alg->tfm) != NULL)) return alg; mutex_lock(&fsverity_hash_alg_init_mutex); if (alg->tfm != NULL) goto out_unlock; /* * Using the shash API would make things a bit simpler, but the ahash * API is preferable as it allows the use of crypto accelerators. */ tfm = crypto_alloc_ahash(alg->name, 0, 0); if (IS_ERR(tfm)) { if (PTR_ERR(tfm) == -ENOENT) { fsverity_warn(inode, "Missing crypto API support for hash algorithm \"%s\"", alg->name); alg = ERR_PTR(-ENOPKG); goto out_unlock; } fsverity_err(inode, "Error allocating hash algorithm \"%s\": %ld", alg->name, PTR_ERR(tfm)); alg = ERR_CAST(tfm); goto out_unlock; } err = -EINVAL; if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm))) goto err_free_tfm; if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm))) goto err_free_tfm; err = mempool_init_kmalloc_pool(&alg->req_pool, 1, sizeof(struct ahash_request) + crypto_ahash_reqsize(tfm)); if (err) goto err_free_tfm; pr_info("%s using implementation \"%s\"\n", alg->name, crypto_ahash_driver_name(tfm)); /* pairs with smp_load_acquire() above */ smp_store_release(&alg->tfm, tfm); goto out_unlock; err_free_tfm: crypto_free_ahash(tfm); alg = ERR_PTR(err); out_unlock: mutex_unlock(&fsverity_hash_alg_init_mutex); return alg; } /** * fsverity_alloc_hash_request() - allocate a hash request object * @alg: the hash algorithm for which to allocate the request * @gfp_flags: memory allocation flags * * This is mempool-backed, so this never fails if __GFP_DIRECT_RECLAIM is set in * @gfp_flags. However, in that case this might need to wait for all * previously-allocated requests to be freed. So to avoid deadlocks, callers * must never need multiple requests at a time to make forward progress. * * Return: the request object on success; NULL on failure (but see above) */ struct ahash_request *fsverity_alloc_hash_request(struct fsverity_hash_alg *alg, gfp_t gfp_flags) { struct ahash_request *req = mempool_alloc(&alg->req_pool, gfp_flags); if (req) ahash_request_set_tfm(req, alg->tfm); return req; } /** * fsverity_free_hash_request() - free a hash request object * @alg: the hash algorithm * @req: the hash request object to free */ void fsverity_free_hash_request(struct fsverity_hash_alg *alg, struct ahash_request *req) { if (req) { ahash_request_zero(req); mempool_free(req, &alg->req_pool); } } /** * fsverity_prepare_hash_state() - precompute the initial hash state * @alg: hash algorithm * @salt: a salt which is to be prepended to all data to be hashed * @salt_size: salt size in bytes, possibly 0 * * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed * initial hash state on success or an ERR_PTR() on failure. */ const u8 *fsverity_prepare_hash_state(struct fsverity_hash_alg *alg, const u8 *salt, size_t salt_size) { u8 *hashstate = NULL; struct ahash_request *req = NULL; u8 *padded_salt = NULL; size_t padded_salt_size; struct scatterlist sg; DECLARE_CRYPTO_WAIT(wait); int err; if (salt_size == 0) return NULL; hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL); if (!hashstate) return ERR_PTR(-ENOMEM); /* This allocation never fails, since it's mempool-backed. */ req = fsverity_alloc_hash_request(alg, GFP_KERNEL); /* * Zero-pad the salt to the next multiple of the input size of the hash * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128 * bytes for SHA-512. This ensures that the hash algorithm won't have * any bytes buffered internally after processing the salt, thus making * salted hashing just as fast as unsalted hashing. */ padded_salt_size = round_up(salt_size, alg->block_size); padded_salt = kzalloc(padded_salt_size, GFP_KERNEL); if (!padded_salt) { err = -ENOMEM; goto err_free; } memcpy(padded_salt, salt, salt_size); sg_init_one(&sg, padded_salt, padded_salt_size); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ahash_request_set_crypt(req, &sg, NULL, padded_salt_size); err = crypto_wait_req(crypto_ahash_init(req), &wait); if (err) goto err_free; err = crypto_wait_req(crypto_ahash_update(req), &wait); if (err) goto err_free; err = crypto_ahash_export(req, hashstate); if (err) goto err_free; out: fsverity_free_hash_request(alg, req); kfree(padded_salt); return hashstate; err_free: kfree(hashstate); hashstate = ERR_PTR(err); goto out; } /** * fsverity_hash_page() - hash a single data or hash page * @params: the Merkle tree's parameters * @inode: inode for which the hashing is being done * @req: preallocated hash request * @page: the page to hash * @out: output digest, size 'params->digest_size' bytes * * Hash a single data or hash block, assuming block_size == PAGE_SIZE. * The hash is salted if a salt is specified in the Merkle tree parameters. * * Return: 0 on success, -errno on failure */ int fsverity_hash_page(const struct merkle_tree_params *params, const struct inode *inode, struct ahash_request *req, struct page *page, u8 *out) { struct scatterlist sg; DECLARE_CRYPTO_WAIT(wait); int err; if (WARN_ON(params->block_size != PAGE_SIZE)) return -EINVAL; sg_init_table(&sg, 1); sg_set_page(&sg, page, PAGE_SIZE, 0); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ahash_request_set_crypt(req, &sg, out, PAGE_SIZE); if (params->hashstate) { err = crypto_ahash_import(req, params->hashstate); if (err) { fsverity_err(inode, "Error %d importing hash state", err); return err; } err = crypto_ahash_finup(req); } else { err = crypto_ahash_digest(req); } err = crypto_wait_req(err, &wait); if (err) fsverity_err(inode, "Error %d computing page hash", err); return err; } /** * fsverity_hash_buffer() - hash some data * @alg: the hash algorithm to use * @data: the data to hash * @size: size of data to hash, in bytes * @out: output digest, size 'alg->digest_size' bytes * * Hash some data which is located in physically contiguous memory (i.e. memory * allocated by kmalloc(), not by vmalloc()). No salt is used. * * Return: 0 on success, -errno on failure */ int fsverity_hash_buffer(struct fsverity_hash_alg *alg, const void *data, size_t size, u8 *out) { struct ahash_request *req; struct scatterlist sg; DECLARE_CRYPTO_WAIT(wait); int err; /* This allocation never fails, since it's mempool-backed. */ req = fsverity_alloc_hash_request(alg, GFP_KERNEL); sg_init_one(&sg, data, size); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ahash_request_set_crypt(req, &sg, out, size); err = crypto_wait_req(crypto_ahash_digest(req), &wait); fsverity_free_hash_request(alg, req); return err; } void __init fsverity_check_hash_algs(void) { size_t i; /* * Sanity check the hash algorithms (could be a build-time check, but * they're in an array) */ for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) { const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i]; if (!alg->name) continue; BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE); /* * For efficiency, the implementation currently assumes the * digest and block sizes are powers of 2. This limitation can * be lifted if the code is updated to handle other values. */ BUG_ON(!is_power_of_2(alg->digest_size)); BUG_ON(!is_power_of_2(alg->block_size)); } } |