Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 | // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #include <linux/types.h> #include <asm/byteorder.h> #include <linux/io.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/string.h> #include "qed.h" #include "qed_hsi.h" #include "qed_hw.h" #include "qed_init_ops.h" #include "qed_int.h" #include "qed_mcp.h" #include "qed_reg_addr.h" #include "qed_sp.h" #include "qed_sriov.h" #include "qed_vf.h" struct qed_pi_info { qed_int_comp_cb_t comp_cb; void *cookie; }; struct qed_sb_sp_info { struct qed_sb_info sb_info; /* per protocol index data */ struct qed_pi_info pi_info_arr[PIS_PER_SB]; }; enum qed_attention_type { QED_ATTN_TYPE_ATTN, QED_ATTN_TYPE_PARITY, }; #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \ ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn) struct aeu_invert_reg_bit { char bit_name[30]; #define ATTENTION_PARITY (1 << 0) #define ATTENTION_LENGTH_MASK (0x00000ff0) #define ATTENTION_LENGTH_SHIFT (4) #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \ ATTENTION_LENGTH_SHIFT) #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT) #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY) #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \ ATTENTION_PARITY) /* Multiple bits start with this offset */ #define ATTENTION_OFFSET_MASK (0x000ff000) #define ATTENTION_OFFSET_SHIFT (12) #define ATTENTION_BB_MASK (0x00700000) #define ATTENTION_BB_SHIFT (20) #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT) #define ATTENTION_BB_DIFFERENT BIT(23) #define ATTENTION_CLEAR_ENABLE BIT(28) unsigned int flags; /* Callback to call if attention will be triggered */ int (*cb)(struct qed_hwfn *p_hwfn); enum block_id block_index; }; struct aeu_invert_reg { struct aeu_invert_reg_bit bits[32]; }; #define MAX_ATTN_GRPS (8) #define NUM_ATTN_REGS (9) /* Specific HW attention callbacks */ static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn) { u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE); /* This might occur on certain instances; Log it once then mask it */ DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff); return 0; } #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1) #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1) #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0) #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf) #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1) #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1) #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5) #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff) #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6) #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf) #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14) #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff) #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18) static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn) { u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_VALID); if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) { u32 addr, data, length; addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_ADDRESS); data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_DATA); length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_INCORRECT_ACCESS_LENGTH); DP_INFO(p_hwfn->cdev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n", addr, length, (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_VALID), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_CLIENT), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR), (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_BYTE_EN), data); } return 0; } #define QED_GRC_ATTENTION_VALID_BIT (1 << 0) #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff) #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0) #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23) #define QED_GRC_ATTENTION_MASTER_MASK (0xf) #define QED_GRC_ATTENTION_MASTER_SHIFT (24) #define QED_GRC_ATTENTION_PF_MASK (0xf) #define QED_GRC_ATTENTION_PF_SHIFT (0) #define QED_GRC_ATTENTION_VF_MASK (0xff) #define QED_GRC_ATTENTION_VF_SHIFT (4) #define QED_GRC_ATTENTION_PRIV_MASK (0x3) #define QED_GRC_ATTENTION_PRIV_SHIFT (14) #define QED_GRC_ATTENTION_PRIV_VF (0) static const char *attn_master_to_str(u8 master) { switch (master) { case 1: return "PXP"; case 2: return "MCP"; case 3: return "MSDM"; case 4: return "PSDM"; case 5: return "YSDM"; case 6: return "USDM"; case 7: return "TSDM"; case 8: return "XSDM"; case 9: return "DBU"; case 10: return "DMAE"; default: return "Unknown"; } } static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn) { u32 tmp, tmp2; /* We've already cleared the timeout interrupt register, so we learn * of interrupts via the validity register */ tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_VALID); if (!(tmp & QED_GRC_ATTENTION_VALID_BIT)) goto out; /* Read the GRC timeout information */ tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0); tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1); DP_INFO(p_hwfn->cdev, "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n", tmp2, tmp, (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from", GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2, attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)), GET_FIELD(tmp2, QED_GRC_ATTENTION_PF), (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) == QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)", GET_FIELD(tmp2, QED_GRC_ATTENTION_VF)); out: /* Regardles of anything else, clean the validity bit */ qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0); return 0; } #define PGLUE_ATTENTION_VALID (1 << 29) #define PGLUE_ATTENTION_RD_VALID (1 << 26) #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf) #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20) #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1) #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19) #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff) #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24) #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1) #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21) #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1) #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22) #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1) #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23) #define PGLUE_ATTENTION_ICPL_VALID (1 << 23) #define PGLUE_ATTENTION_ZLR_VALID (1 << 25) #define PGLUE_ATTENTION_ILT_VALID (1 << 23) int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool hw_init) { char msg[256]; u32 tmp; tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2); if (tmp & PGLUE_ATTENTION_VALID) { u32 addr_lo, addr_hi, details; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_ADD_63_32); details = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS); snprintf(msg, sizeof(msg), "Illegal write by chip to [%08x:%08x] blocked.\n" "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]", addr_hi, addr_lo, details, (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID), tmp, !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR), !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME), !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN)); if (hw_init) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); else DP_NOTICE(p_hwfn, "%s\n", msg); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2); if (tmp & PGLUE_ATTENTION_RD_VALID) { u32 addr_lo, addr_hi, details; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_ADD_63_32); details = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS); DP_NOTICE(p_hwfn, "Illegal read by chip from [%08x:%08x] blocked.\n" "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n", addr_hi, addr_lo, details, (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0, tmp, GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0, GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0, GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL); if (tmp & PGLUE_ATTENTION_ICPL_VALID) { snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp); if (hw_init) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); else DP_NOTICE(p_hwfn, "%s\n", msg); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS); if (tmp & PGLUE_ATTENTION_ZLR_VALID) { u32 addr_hi, addr_lo; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32); DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n", tmp, addr_hi, addr_lo); } tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2); if (tmp & PGLUE_ATTENTION_ILT_VALID) { u32 addr_hi, addr_lo, details; addr_lo = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_ADD_31_0); addr_hi = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_ADD_63_32); details = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS); DP_NOTICE(p_hwfn, "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n", details, tmp, addr_hi, addr_lo); } /* Clear the indications */ qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2)); return 0; } static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn) { return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false); } static int qed_fw_assertion(struct qed_hwfn *p_hwfn) { qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT, "FW assertion!\n"); /* Clear assert indications */ qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0); return -EINVAL; } static int qed_general_attention_35(struct qed_hwfn *p_hwfn) { DP_INFO(p_hwfn, "General attention 35!\n"); return 0; } #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff) #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff) #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0) #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f) #define QED_DORQ_ATTENTION_SIZE_SHIFT (16) #define QED_DB_REC_COUNT 1000 #define QED_DB_REC_INTERVAL 100 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 count = QED_DB_REC_COUNT; u32 usage = 1; /* Flush any pending (e)dpms as they may never arrive */ qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1); /* wait for usage to zero or count to run out. This is necessary since * EDPM doorbell transactions can take multiple 64b cycles, and as such * can "split" over the pci. Possibly, the doorbell drop can happen with * half an EDPM in the queue and other half dropped. Another EDPM * doorbell to the same address (from doorbell recovery mechanism or * from the doorbelling entity) could have first half dropped and second * half interpreted as continuation of the first. To prevent such * malformed doorbells from reaching the device, flush the queue before * releasing the overflow sticky indication. */ while (count-- && usage) { usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT); udelay(QED_DB_REC_INTERVAL); } /* should have been depleted by now */ if (usage) { DP_NOTICE(p_hwfn->cdev, "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n", QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage); return -EBUSY; } return 0; } int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 attn_ovfl, cur_ovfl; int rc; attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); if (!cur_ovfl && !attn_ovfl) return 0; DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n", attn_ovfl, cur_ovfl); if (cur_ovfl && !p_hwfn->db_bar_no_edpm) { rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); if (rc) return rc; } /* Release overflow sticky indication (stop silently dropping everything) */ qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); /* Repeat all last doorbells (doorbell drop recovery) */ qed_db_recovery_execute(p_hwfn); return 0; } static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn) { struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; u32 overflow; int rc; overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); if (!overflow) goto out; /* Run PF doorbell recovery in next periodic handler */ set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); if (!p_hwfn->db_bar_no_edpm) { rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); if (rc) goto out; } qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); out: /* Schedule the handler even if overflow was not detected */ qed_periodic_db_rec_start(p_hwfn); } static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn) { u32 int_sts, first_drop_reason, details, address, all_drops_reason; struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS); if (int_sts == 0xdeadbeaf) { DP_NOTICE(p_hwfn->cdev, "DORQ is being reset, skipping int_sts handler\n"); return 0; } /* int_sts may be zero since all PFs were interrupted for doorbell * overflow but another one already handled it. Can abort here. If * This PF also requires overflow recovery we will be interrupted again. * The masked almost full indication may also be set. Ignoring. */ if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) return 0; DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts); /* check if db_drop or overflow happened */ if (int_sts & (DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) { /* Obtain data about db drop/overflow */ first_drop_reason = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_REASON) & QED_DORQ_ATTENTION_REASON_MASK; details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS); address = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_ADDRESS); all_drops_reason = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REASON); /* Log info */ DP_NOTICE(p_hwfn->cdev, "Doorbell drop occurred\n" "Address\t\t0x%08x\t(second BAR address)\n" "FID\t\t0x%04x\t\t(Opaque FID)\n" "Size\t\t0x%04x\t\t(in bytes)\n" "1st drop reason\t0x%08x\t(details on first drop since last handling)\n" "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n", address, GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE), GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4, first_drop_reason, all_drops_reason); /* Clear the doorbell drop details and prepare for next drop */ qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0); /* Mark interrupt as handled (note: even if drop was due to a different * reason than overflow we mark as handled) */ qed_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR, DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR); /* If there are no indications other than drop indications, success */ if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR | DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0) return 0; } /* Some other indication was present - non recoverable */ DP_INFO(p_hwfn, "DORQ fatal attention\n"); return -EINVAL; } static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn) { if (p_hwfn->cdev->recov_in_prog) return 0; p_hwfn->db_recovery_info.dorq_attn = true; qed_dorq_attn_overflow(p_hwfn); return qed_dorq_attn_int_sts(p_hwfn); } static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn) { if (p_hwfn->db_recovery_info.dorq_attn) goto out; /* Call DORQ callback if the attention was missed */ qed_dorq_attn_cb(p_hwfn); out: p_hwfn->db_recovery_info.dorq_attn = false; } /* Instead of major changes to the data-structure, we have a some 'special' * identifiers for sources that changed meaning between adapters. */ enum aeu_invert_reg_special_type { AEU_INVERT_REG_SPECIAL_CNIG_0, AEU_INVERT_REG_SPECIAL_CNIG_1, AEU_INVERT_REG_SPECIAL_CNIG_2, AEU_INVERT_REG_SPECIAL_CNIG_3, AEU_INVERT_REG_SPECIAL_MAX, }; static struct aeu_invert_reg_bit aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = { {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, }; /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */ static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = { { { /* After Invert 1 */ {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, { { /* After Invert 2 */ {"PGLUE config_space", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"PGLUE misc_flr", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"PGLUE B RBC", ATTENTION_PAR_INT, qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B}, {"PGLUE misc_mctp", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS}, } }, { { /* After Invert 3 */ {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, { { /* After Invert 4 */ {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, qed_fw_assertion, MAX_BLOCK_ID}, {"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, qed_general_attention_35, MAX_BLOCK_ID}, {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0), NULL, BLOCK_NWS}, {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), NULL, BLOCK_NWS}, {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), NULL, BLOCK_NWM}, {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), NULL, BLOCK_NWM}, {"MCP CPU", ATTENTION_SINGLE, qed_mcp_attn_cb, MAX_BLOCK_ID}, {"MCP Watchdog timer", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"AVS stop status ready", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, {"MSTAT per-path", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG}, {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB}, {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB}, {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB}, {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS}, } }, { { /* After Invert 5 */ {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC}, {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1}, {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2}, {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB}, {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF}, {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM}, {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM}, {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM}, {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM}, {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM}, {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM}, {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM}, {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM}, {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM}, {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM}, {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM}, } }, { { /* After Invert 6 */ {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM}, {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM}, {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM}, {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM}, {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM}, {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM}, {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM}, {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM}, {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM}, {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD}, {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD}, {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD}, {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD}, {"DORQ", ATTENTION_PAR_INT, qed_dorq_attn_cb, BLOCK_DORQ}, {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG}, {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC}, } }, { { /* After Invert 7 */ {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC}, {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU}, {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE}, {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU}, {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU}, {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU}, {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM}, {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC}, {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF}, {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF}, {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS}, {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC}, {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS}, {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE}, {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ}, } }, { { /* After Invert 8 */ {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ2}, {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR}, {"PSWWR (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR2}, {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD}, {"PSWRD (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD2}, {"PSWHST", ATTENTION_PAR_INT, qed_pswhst_attn_cb, BLOCK_PSWHST}, {"PSWHST (pci_clk)", ATTENTION_PAR_INT, NULL, BLOCK_PSWHST2}, {"GRC", ATTENTION_PAR_INT, qed_grc_attn_cb, BLOCK_GRC}, {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU}, {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI}, {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS}, {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, {"PERST_B assertion", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"PERST_B deassertion", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, { { /* After Invert 9 */ {"MCP Latched memory", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"MCP Latched scratchpad cache", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, {"MCP Latched ump_tx", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"MCP Latched scratchpad", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, } }, }; static struct aeu_invert_reg_bit * qed_int_aeu_translate(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_bit) { if (!QED_IS_BB(p_hwfn->cdev)) return p_bit; if (!(p_bit->flags & ATTENTION_BB_DIFFERENT)) return p_bit; return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >> ATTENTION_BB_SHIFT]; } static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_bit) { return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags & ATTENTION_PARITY); } #define ATTN_STATE_BITS (0xfff) #define ATTN_BITS_MASKABLE (0x3ff) struct qed_sb_attn_info { /* Virtual & Physical address of the SB */ struct atten_status_block *sb_attn; dma_addr_t sb_phys; /* Last seen running index */ u16 index; /* A mask of the AEU bits resulting in a parity error */ u32 parity_mask[NUM_ATTN_REGS]; /* A pointer to the attention description structure */ struct aeu_invert_reg *p_aeu_desc; /* Previously asserted attentions, which are still unasserted */ u16 known_attn; /* Cleanup address for the link's general hw attention */ u32 mfw_attn_addr; }; static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn, struct qed_sb_attn_info *p_sb_desc) { u16 rc = 0, index; index = le16_to_cpu(p_sb_desc->sb_attn->sb_index); if (p_sb_desc->index != index) { p_sb_desc->index = index; rc = QED_SB_ATT_IDX; } return rc; } /** * qed_int_assertion() - Handle asserted attention bits. * * @p_hwfn: HW device data. * @asserted_bits: Newly asserted bits. * * Return: Zero value. */ static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits) { struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; u32 igu_mask; /* Mask the source of the attention in the IGU */ igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n", igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE)); igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "inner known ATTN state: 0x%04x --> 0x%04x\n", sb_attn_sw->known_attn, sb_attn_sw->known_attn | asserted_bits); sb_attn_sw->known_attn |= asserted_bits; /* Handle MCP events */ if (asserted_bits & 0x100) { qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt); /* Clean the MCP attention */ qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, sb_attn_sw->mfw_attn_addr, 0); } DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + GTT_BAR0_MAP_REG_IGU_CMD + ((IGU_CMD_ATTN_BIT_SET_UPPER - IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n", asserted_bits); return 0; } static void qed_int_attn_print(struct qed_hwfn *p_hwfn, enum block_id id, enum dbg_attn_type type, bool b_clear) { struct dbg_attn_block_result attn_results; enum dbg_status status; memset(&attn_results, 0, sizeof(attn_results)); status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type, b_clear, &attn_results); if (status != DBG_STATUS_OK) DP_NOTICE(p_hwfn, "Failed to parse attention information [status: %s]\n", qed_dbg_get_status_str(status)); else qed_dbg_parse_attn(p_hwfn, &attn_results); } /** * qed_int_deassertion_aeu_bit() - Handles the effects of a single * cause of the attention. * * @p_hwfn: HW device data. * @p_aeu: Descriptor of an AEU bit which caused the attention. * @aeu_en_reg: Register offset of the AEU enable reg. which configured * this bit to this group. * @p_bit_name: AEU bit description for logging purposes. * @bitmask: Index of this bit in the aeu_en_reg. * * Return: Zero on success, negative errno otherwise. */ static int qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_aeu, u32 aeu_en_reg, const char *p_bit_name, u32 bitmask) { bool b_fatal = false; int rc = -EINVAL; u32 val; DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n", p_bit_name, bitmask); /* Call callback before clearing the interrupt status */ if (p_aeu->cb) { DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n", p_bit_name); rc = p_aeu->cb(p_hwfn); } if (rc) b_fatal = true; /* Print HW block interrupt registers */ if (p_aeu->block_index != MAX_BLOCK_ID) qed_int_attn_print(p_hwfn, p_aeu->block_index, ATTN_TYPE_INTERRUPT, !b_fatal); /* Reach assertion if attention is fatal */ if (b_fatal) qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN, "`%s': Fatal attention\n", p_bit_name); else /* If the attention is benign, no need to prevent it */ goto out; /* Prevent this Attention from being asserted in the future */ val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask)); DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n", p_bit_name); /* Re-enable FW aassertion (Gen 32) interrupts */ val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0); val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32; qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, val); out: return rc; } /** * qed_int_deassertion_parity() - Handle a single parity AEU source. * * @p_hwfn: HW device data. * @p_aeu: Descriptor of an AEU bit which caused the parity. * @aeu_en_reg: Address of the AEU enable register. * @bit_index: Index (0-31) of an AEU bit. */ static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn, struct aeu_invert_reg_bit *p_aeu, u32 aeu_en_reg, u8 bit_index) { u32 block_id = p_aeu->block_index, mask, val; DP_NOTICE(p_hwfn->cdev, "%s parity attention is set [address 0x%08x, bit %d]\n", p_aeu->bit_name, aeu_en_reg, bit_index); if (block_id != MAX_BLOCK_ID) { qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false); /* In BB, there's a single parity bit for several blocks */ if (block_id == BLOCK_BTB) { qed_int_attn_print(p_hwfn, BLOCK_OPTE, ATTN_TYPE_PARITY, false); qed_int_attn_print(p_hwfn, BLOCK_MCP, ATTN_TYPE_PARITY, false); } } /* Prevent this parity error from being re-asserted */ mask = ~BIT(bit_index); val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask); DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n", p_aeu->bit_name); } /** * qed_int_deassertion() - Handle deassertion of previously asserted * attentions. * * @p_hwfn: HW device data. * @deasserted_bits: newly deasserted bits. * * Return: Zero value. */ static int qed_int_deassertion(struct qed_hwfn *p_hwfn, u16 deasserted_bits) { struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en; u8 i, j, k, bit_idx; int rc = 0; /* Read the attention registers in the AEU */ for (i = 0; i < NUM_ATTN_REGS; i++) { aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_AFTER_INVERT_1_IGU + i * 0x4); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]); } /* Find parity attentions first */ for (i = 0; i < NUM_ATTN_REGS; i++) { struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i]; u32 parities; aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32); en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); /* Skip register in which no parity bit is currently set */ parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en; if (!parities) continue; for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j]; if (qed_int_is_parity_flag(p_hwfn, p_bit) && !!(parities & BIT(bit_idx))) qed_int_deassertion_parity(p_hwfn, p_bit, aeu_en, bit_idx); bit_idx += ATTENTION_LENGTH(p_bit->flags); } } /* Find non-parity cause for attention and act */ for (k = 0; k < MAX_ATTN_GRPS; k++) { struct aeu_invert_reg_bit *p_aeu; /* Handle only groups whose attention is currently deasserted */ if (!(deasserted_bits & (1 << k))) continue; for (i = 0; i < NUM_ATTN_REGS; i++) { u32 bits; aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32) + k * sizeof(u32) * NUM_ATTN_REGS; en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); bits = aeu_inv_arr[i] & en; /* Skip if no bit from this group is currently set */ if (!bits) continue; /* Find all set bits from current register which belong * to current group, making them responsible for the * previous assertion. */ for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { long unsigned int bitmask; u8 bit, bit_len; p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j]; p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu); bit = bit_idx; bit_len = ATTENTION_LENGTH(p_aeu->flags); if (qed_int_is_parity_flag(p_hwfn, p_aeu)) { /* Skip Parity */ bit++; bit_len--; } bitmask = bits & (((1 << bit_len) - 1) << bit); bitmask >>= bit; if (bitmask) { u32 flags = p_aeu->flags; char bit_name[30]; u8 num; num = (u8)find_first_bit(&bitmask, bit_len); /* Some bits represent more than a * single interrupt. Correctly print * their name. */ if (ATTENTION_LENGTH(flags) > 2 || ((flags & ATTENTION_PAR_INT) && ATTENTION_LENGTH(flags) > 1)) snprintf(bit_name, 30, p_aeu->bit_name, num); else strscpy(bit_name, p_aeu->bit_name, 30); /* We now need to pass bitmask in its * correct position. */ bitmask <<= bit; /* Handle source of the attention */ qed_int_deassertion_aeu_bit(p_hwfn, p_aeu, aeu_en, bit_name, bitmask); } bit_idx += ATTENTION_LENGTH(p_aeu->flags); } } } /* Handle missed DORQ attention */ qed_dorq_attn_handler(p_hwfn); /* Clear IGU indication for the deasserted bits */ DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + GTT_BAR0_MAP_REG_IGU_CMD + ((IGU_CMD_ATTN_BIT_CLR_UPPER - IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits)); /* Unmask deasserted attentions in IGU */ aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE); qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask); /* Clear deassertion from inner state */ sb_attn_sw->known_attn &= ~deasserted_bits; return rc; } static int qed_int_attentions(struct qed_hwfn *p_hwfn) { struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn; struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn; u32 attn_bits = 0, attn_acks = 0; u16 asserted_bits, deasserted_bits; __le16 index; int rc = 0; /* Read current attention bits/acks - safeguard against attentions * by guaranting work on a synchronized timeframe */ do { index = p_sb_attn->sb_index; /* finish reading index before the loop condition */ dma_rmb(); attn_bits = le32_to_cpu(p_sb_attn->atten_bits); attn_acks = le32_to_cpu(p_sb_attn->atten_ack); } while (index != p_sb_attn->sb_index); p_sb_attn->sb_index = index; /* Attention / Deassertion are meaningful (and in correct state) * only when they differ and consistent with known state - deassertion * when previous attention & current ack, and assertion when current * attention with no previous attention */ asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) & ~p_sb_attn_sw->known_attn; deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) & p_sb_attn_sw->known_attn; if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) { DP_INFO(p_hwfn, "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n", index, attn_bits, attn_acks, asserted_bits, deasserted_bits, p_sb_attn_sw->known_attn); } else if (asserted_bits == 0x100) { DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "MFW indication via attention\n"); } else { DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "MFW indication [deassertion]\n"); } if (asserted_bits) { rc = qed_int_assertion(p_hwfn, asserted_bits); if (rc) return rc; } if (deasserted_bits) rc = qed_int_deassertion(p_hwfn, deasserted_bits); return rc; } static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn, void __iomem *igu_addr, u32 ack_cons) { u32 igu_ack; igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) | (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) | (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) | (IGU_SEG_ACCESS_ATTN << IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT)); DIRECT_REG_WR(igu_addr, igu_ack); /* Both segments (interrupts & acks) are written to same place address; * Need to guarantee all commands will be received (in-order) by HW. */ barrier(); } void qed_int_sp_dpc(struct tasklet_struct *t) { struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc); struct qed_pi_info *pi_info = NULL; struct qed_sb_attn_info *sb_attn; struct qed_sb_info *sb_info; int arr_size; u16 rc = 0; if (!p_hwfn->p_sp_sb) { DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n"); return; } sb_info = &p_hwfn->p_sp_sb->sb_info; arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr); if (!sb_info) { DP_ERR(p_hwfn->cdev, "Status block is NULL - cannot ack interrupts\n"); return; } if (!p_hwfn->p_sb_attn) { DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn"); return; } sb_attn = p_hwfn->p_sb_attn; DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n", p_hwfn, p_hwfn->my_id); /* Disable ack for def status block. Required both for msix + * inta in non-mask mode, in inta does no harm. */ qed_sb_ack(sb_info, IGU_INT_DISABLE, 0); /* Gather Interrupts/Attentions information */ if (!sb_info->sb_virt) { DP_ERR(p_hwfn->cdev, "Interrupt Status block is NULL - cannot check for new interrupts!\n"); } else { u32 tmp_index = sb_info->sb_ack; rc = qed_sb_update_sb_idx(sb_info); DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, "Interrupt indices: 0x%08x --> 0x%08x\n", tmp_index, sb_info->sb_ack); } if (!sb_attn || !sb_attn->sb_attn) { DP_ERR(p_hwfn->cdev, "Attentions Status block is NULL - cannot check for new attentions!\n"); } else { u16 tmp_index = sb_attn->index; rc |= qed_attn_update_idx(p_hwfn, sb_attn); DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, "Attention indices: 0x%08x --> 0x%08x\n", tmp_index, sb_attn->index); } /* Check if we expect interrupts at this time. if not just ack them */ if (!(rc & QED_SB_EVENT_MASK)) { qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); return; } /* Check the validity of the DPC ptt. If not ack interrupts and fail */ if (!p_hwfn->p_dpc_ptt) { DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n"); qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); return; } if (rc & QED_SB_ATT_IDX) qed_int_attentions(p_hwfn); if (rc & QED_SB_IDX) { int pi; /* Look for a free index */ for (pi = 0; pi < arr_size; pi++) { pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi]; if (pi_info->comp_cb) pi_info->comp_cb(p_hwfn, pi_info->cookie); } } if (sb_attn && (rc & QED_SB_ATT_IDX)) /* This should be done before the interrupts are enabled, * since otherwise a new attention will be generated. */ qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index); qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); } static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn) { struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn; if (!p_sb) return; if (p_sb->sb_attn) dma_free_coherent(&p_hwfn->cdev->pdev->dev, SB_ATTN_ALIGNED_SIZE(p_hwfn), p_sb->sb_attn, p_sb->sb_phys); kfree(p_sb); p_hwfn->p_sb_attn = NULL; } static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn)); sb_info->index = 0; sb_info->known_attn = 0; /* Configure Attention Status Block in IGU */ qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L, lower_32_bits(p_hwfn->p_sb_attn->sb_phys)); qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H, upper_32_bits(p_hwfn->p_sb_attn->sb_phys)); } static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, void *sb_virt_addr, dma_addr_t sb_phy_addr) { struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; int i, j, k; sb_info->sb_attn = sb_virt_addr; sb_info->sb_phys = sb_phy_addr; /* Set the pointer to the AEU descriptors */ sb_info->p_aeu_desc = aeu_descs; /* Calculate Parity Masks */ memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS); for (i = 0; i < NUM_ATTN_REGS; i++) { /* j is array index, k is bit index */ for (j = 0, k = 0; k < 32 && j < 32; j++) { struct aeu_invert_reg_bit *p_aeu; p_aeu = &aeu_descs[i].bits[j]; if (qed_int_is_parity_flag(p_hwfn, p_aeu)) sb_info->parity_mask[i] |= 1 << k; k += ATTENTION_LENGTH(p_aeu->flags); } DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Attn Mask [Reg %d]: 0x%08x\n", i, sb_info->parity_mask[i]); } /* Set the address of cleanup for the mcp attention */ sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) + MISC_REG_AEU_GENERAL_ATTN_0; qed_int_sb_attn_setup(p_hwfn, p_ptt); } static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_dev *cdev = p_hwfn->cdev; struct qed_sb_attn_info *p_sb; dma_addr_t p_phys = 0; void *p_virt; /* SB struct */ p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); if (!p_sb) return -ENOMEM; /* SB ring */ p_virt = dma_alloc_coherent(&cdev->pdev->dev, SB_ATTN_ALIGNED_SIZE(p_hwfn), &p_phys, GFP_KERNEL); if (!p_virt) { kfree(p_sb); return -ENOMEM; } /* Attention setup */ p_hwfn->p_sb_attn = p_sb; qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys); return 0; } /* coalescing timeout = timeset << (timer_res + 1) */ #define QED_CAU_DEF_RX_USECS 24 #define QED_CAU_DEF_TX_USECS 48 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn, struct cau_sb_entry *p_sb_entry, u8 pf_id, u16 vf_number, u8 vf_valid) { struct qed_dev *cdev = p_hwfn->cdev; u32 cau_state, params = 0, data = 0; u8 timer_res; memset(p_sb_entry, 0, sizeof(*p_sb_entry)); SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id); SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number); SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid); SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F); SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F); cau_state = CAU_HC_DISABLE_STATE; if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { cau_state = CAU_HC_ENABLE_STATE; if (!cdev->rx_coalesce_usecs) cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS; if (!cdev->tx_coalesce_usecs) cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS; } /* Coalesce = (timeset << timer-res), timeset is 7bit wide */ if (cdev->rx_coalesce_usecs <= 0x7F) timer_res = 0; else if (cdev->rx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); if (cdev->tx_coalesce_usecs <= 0x7F) timer_res = 0; else if (cdev->tx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); p_sb_entry->params = cpu_to_le32(params); SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state); SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state); p_sb_entry->data = cpu_to_le32(data); } static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id, u32 pi_index, enum qed_coalescing_fsm coalescing_fsm, u8 timeset) { u32 sb_offset, pi_offset; u32 prod = 0; if (IS_VF(p_hwfn->cdev)) return; SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset); if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE) SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0); else SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1); sb_offset = igu_sb_id * PIS_PER_SB; pi_offset = sb_offset + pi_index; if (p_hwfn->hw_init_done) qed_wr(p_hwfn, p_ptt, CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod); else STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset, prod); } void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, dma_addr_t sb_phys, u16 igu_sb_id, u16 vf_number, u8 vf_valid) { struct cau_sb_entry sb_entry; qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id, vf_number, vf_valid); if (p_hwfn->hw_init_done) { /* Wide-bus, initialize via DMAE */ u64 phys_addr = (u64)sb_phys; qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr, CAU_REG_SB_ADDR_MEMORY + igu_sb_id * sizeof(u64), 2, NULL); qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, CAU_REG_SB_VAR_MEMORY + igu_sb_id * sizeof(u64), 2, NULL); } else { /* Initialize Status Block Address */ STORE_RT_REG_AGG(p_hwfn, CAU_REG_SB_ADDR_MEMORY_RT_OFFSET + igu_sb_id * 2, sb_phys); STORE_RT_REG_AGG(p_hwfn, CAU_REG_SB_VAR_MEMORY_RT_OFFSET + igu_sb_id * 2, sb_entry); } /* Configure pi coalescing if set */ if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { u8 num_tc = p_hwfn->hw_info.num_hw_tc; u8 timeset, timer_res; u8 i; /* timeset = (coalesce >> timer-res), timeset is 7bit wide */ if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F) timer_res = 0; else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res); qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI, QED_COAL_RX_STATE_MACHINE, timeset); if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F) timer_res = 0; else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF) timer_res = 1; else timer_res = 2; timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res); for (i = 0; i < num_tc; i++) { qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, TX_PI(i), QED_COAL_TX_STATE_MACHINE, timeset); } } } void qed_int_sb_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_sb_info *sb_info) { /* zero status block and ack counter */ sb_info->sb_ack = 0; memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); if (IS_PF(p_hwfn->cdev)) qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys, sb_info->igu_sb_id, 0, 0); } struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf) { struct qed_igu_block *p_block; u16 igu_id; for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_id++) { p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; if (!(p_block->status & QED_IGU_STATUS_VALID) || !(p_block->status & QED_IGU_STATUS_FREE)) continue; if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf) return p_block; } return NULL; } static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id) { struct qed_igu_block *p_block; u16 igu_id; for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_id++) { p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; if (!(p_block->status & QED_IGU_STATUS_VALID) || !p_block->is_pf || p_block->vector_number != vector_id) continue; return igu_id; } return QED_SB_INVALID_IDX; } u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id) { u16 igu_sb_id; /* Assuming continuous set of IGU SBs dedicated for given PF */ if (sb_id == QED_SP_SB_ID) igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id; else if (IS_PF(p_hwfn->cdev)) igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1); else igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id); if (sb_id == QED_SP_SB_ID) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id); else DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id); return igu_sb_id; } int qed_int_sb_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_sb_info *sb_info, void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id) { sb_info->sb_virt = sb_virt_addr; sb_info->sb_phys = sb_phy_addr; sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id); if (sb_id != QED_SP_SB_ID) { if (IS_PF(p_hwfn->cdev)) { struct qed_igu_info *p_info; struct qed_igu_block *p_block; p_info = p_hwfn->hw_info.p_igu_info; p_block = &p_info->entry[sb_info->igu_sb_id]; p_block->sb_info = sb_info; p_block->status &= ~QED_IGU_STATUS_FREE; p_info->usage.free_cnt--; } else { qed_vf_set_sb_info(p_hwfn, sb_id, sb_info); } } sb_info->cdev = p_hwfn->cdev; /* The igu address will hold the absolute address that needs to be * written to for a specific status block */ if (IS_PF(p_hwfn->cdev)) { sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3); } else { sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + PXP_VF_BAR0_START_IGU + ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3); } sb_info->flags |= QED_SB_INFO_INIT; qed_int_sb_setup(p_hwfn, p_ptt, sb_info); return 0; } int qed_int_sb_release(struct qed_hwfn *p_hwfn, struct qed_sb_info *sb_info, u16 sb_id) { struct qed_igu_block *p_block; struct qed_igu_info *p_info; if (!sb_info) return 0; /* zero status block and ack counter */ sb_info->sb_ack = 0; memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); if (IS_VF(p_hwfn->cdev)) { qed_vf_set_sb_info(p_hwfn, sb_id, NULL); return 0; } p_info = p_hwfn->hw_info.p_igu_info; p_block = &p_info->entry[sb_info->igu_sb_id]; /* Vector 0 is reserved to Default SB */ if (!p_block->vector_number) { DP_ERR(p_hwfn, "Do Not free sp sb using this function"); return -EINVAL; } /* Lose reference to client's SB info, and fix counters */ p_block->sb_info = NULL; p_block->status |= QED_IGU_STATUS_FREE; p_info->usage.free_cnt++; return 0; } static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn) { struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb; if (!p_sb) return; if (p_sb->sb_info.sb_virt) dma_free_coherent(&p_hwfn->cdev->pdev->dev, SB_ALIGNED_SIZE(p_hwfn), p_sb->sb_info.sb_virt, p_sb->sb_info.sb_phys); kfree(p_sb); p_hwfn->p_sp_sb = NULL; } static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_sb_sp_info *p_sb; dma_addr_t p_phys = 0; void *p_virt; /* SB struct */ p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); if (!p_sb) return -ENOMEM; /* SB ring */ p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, SB_ALIGNED_SIZE(p_hwfn), &p_phys, GFP_KERNEL); if (!p_virt) { kfree(p_sb); return -ENOMEM; } /* Status Block setup */ p_hwfn->p_sp_sb = p_sb; qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt, p_phys, QED_SP_SB_ID); memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr)); return 0; } int qed_int_register_cb(struct qed_hwfn *p_hwfn, qed_int_comp_cb_t comp_cb, void *cookie, u8 *sb_idx, __le16 **p_fw_cons) { struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; int rc = -ENOMEM; u8 pi; /* Look for a free index */ for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) { if (p_sp_sb->pi_info_arr[pi].comp_cb) continue; p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb; p_sp_sb->pi_info_arr[pi].cookie = cookie; *sb_idx = pi; *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi]; rc = 0; break; } return rc; } int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi) { struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL) return -ENOMEM; p_sp_sb->pi_info_arr[pi].comp_cb = NULL; p_sp_sb->pi_info_arr[pi].cookie = NULL; return 0; } u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn) { return p_hwfn->p_sp_sb->sb_info.igu_sb_id; } void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum qed_int_mode int_mode) { u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN; p_hwfn->cdev->int_mode = int_mode; switch (p_hwfn->cdev->int_mode) { case QED_INT_MODE_INTA: igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN; igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; break; case QED_INT_MODE_MSI: igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; break; case QED_INT_MODE_MSIX: igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; break; case QED_INT_MODE_POLL: break; } qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf); } static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { /* Configure AEU signal change to produce attentions */ qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0); qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff); qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff); qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff); /* Unmask AEU signals toward IGU */ qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff); } int qed_int_igu_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum qed_int_mode int_mode) { int rc = 0; qed_int_igu_enable_attn(p_hwfn, p_ptt); if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) { rc = qed_slowpath_irq_req(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n"); return -EINVAL; } p_hwfn->b_int_requested = true; } /* Enable interrupt Generation */ qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode); p_hwfn->b_int_enabled = 1; return rc; } void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { p_hwfn->b_int_enabled = 0; if (IS_VF(p_hwfn->cdev)) return; qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0); } #define IGU_CLEANUP_SLEEP_LENGTH (1000) static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id, bool cleanup_set, u16 opaque_fid) { u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0; u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id; u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH; /* Set the data field */ SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0); SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0); SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET); /* Set the control register */ SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr); SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid); SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR); qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data); barrier(); qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl); /* calculate where to read the status bit from */ sb_bit = 1 << (igu_sb_id % 32); sb_bit_addr = igu_sb_id / 32 * sizeof(u32); sb_bit_addr += IGU_REG_CLEANUP_STATUS_0; /* Now wait for the command to complete */ do { val = qed_rd(p_hwfn, p_ptt, sb_bit_addr); if ((val & sb_bit) == (cleanup_set ? sb_bit : 0)) break; usleep_range(5000, 10000); } while (--sleep_cnt); if (!sleep_cnt) DP_NOTICE(p_hwfn, "Timeout waiting for clear status 0x%08x [for sb %d]\n", val, igu_sb_id); } void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id, u16 opaque, bool b_set) { struct qed_igu_block *p_block; int pi, i; p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n", igu_sb_id, p_block->function_id, p_block->is_pf, p_block->vector_number); /* Set */ if (b_set) qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque); /* Clear */ qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque); /* Wait for the IGU SB to cleanup */ for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) { u32 val; val = qed_rd(p_hwfn, p_ptt, IGU_REG_WRITE_DONE_PENDING + ((igu_sb_id / 32) * 4)); if (val & BIT((igu_sb_id % 32))) usleep_range(10, 20); else break; } if (i == IGU_CLEANUP_SLEEP_LENGTH) DP_NOTICE(p_hwfn, "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n", igu_sb_id); /* Clear the CAU for the SB */ for (pi = 0; pi < 12; pi++) qed_wr(p_hwfn, p_ptt, CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0); } void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_set, bool b_slowpath) { struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; struct qed_igu_block *p_block; u16 igu_sb_id = 0; u32 val = 0; val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION); val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN; val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN; qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val); for (igu_sb_id = 0; igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { p_block = &p_info->entry[igu_sb_id]; if (!(p_block->status & QED_IGU_STATUS_VALID) || !p_block->is_pf || (p_block->status & QED_IGU_STATUS_DSB)) continue; qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id, p_hwfn->hw_info.opaque_fid, b_set); } if (b_slowpath) qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, p_info->igu_dsb_id, p_hwfn->hw_info.opaque_fid, b_set); } int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; struct qed_igu_block *p_block; int pf_sbs, vf_sbs; u16 igu_sb_id; u32 val, rval; if (!RESC_NUM(p_hwfn, QED_SB)) { p_info->b_allow_pf_vf_change = false; } else { /* Use the numbers the MFW have provided - * don't forget MFW accounts for the default SB as well. */ p_info->b_allow_pf_vf_change = true; if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) { DP_INFO(p_hwfn, "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n", RESC_NUM(p_hwfn, QED_SB) - 1, p_info->usage.cnt); p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1; } if (IS_PF_SRIOV(p_hwfn)) { u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs; if (vfs != p_info->usage.iov_cnt) DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n", p_info->usage.iov_cnt, vfs); /* At this point we know how many SBs we have totally * in IGU + number of PF SBs. So we can validate that * we'd have sufficient for VF. */ if (vfs > p_info->usage.free_cnt + p_info->usage.free_cnt_iov - p_info->usage.cnt) { DP_NOTICE(p_hwfn, "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n", p_info->usage.free_cnt + p_info->usage.free_cnt_iov, p_info->usage.cnt, vfs); return -EINVAL; } /* Currently cap the number of VFs SBs by the * number of VFs. */ p_info->usage.iov_cnt = vfs; } } /* Mark all SBs as free, now in the right PF/VFs division */ p_info->usage.free_cnt = p_info->usage.cnt; p_info->usage.free_cnt_iov = p_info->usage.iov_cnt; p_info->usage.orig = p_info->usage.cnt; p_info->usage.iov_orig = p_info->usage.iov_cnt; /* We now proceed to re-configure the IGU cam to reflect the initial * configuration. We can start with the Default SB. */ pf_sbs = p_info->usage.cnt; vf_sbs = p_info->usage.iov_cnt; for (igu_sb_id = p_info->igu_dsb_id; igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { p_block = &p_info->entry[igu_sb_id]; val = 0; if (!(p_block->status & QED_IGU_STATUS_VALID)) continue; if (p_block->status & QED_IGU_STATUS_DSB) { p_block->function_id = p_hwfn->rel_pf_id; p_block->is_pf = 1; p_block->vector_number = 0; p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_PF | QED_IGU_STATUS_DSB; } else if (pf_sbs) { pf_sbs--; p_block->function_id = p_hwfn->rel_pf_id; p_block->is_pf = 1; p_block->vector_number = p_info->usage.cnt - pf_sbs; p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_PF | QED_IGU_STATUS_FREE; } else if (vf_sbs) { p_block->function_id = p_hwfn->cdev->p_iov_info->first_vf_in_pf + p_info->usage.iov_cnt - vf_sbs; p_block->is_pf = 0; p_block->vector_number = 0; p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_FREE; vf_sbs--; } else { p_block->function_id = 0; p_block->is_pf = 0; p_block->vector_number = 0; } SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, p_block->function_id); SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf); SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, p_block->vector_number); /* VF entries would be enabled when VF is initializaed */ SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf); rval = qed_rd(p_hwfn, p_ptt, IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); if (rval != val) { qed_wr(p_hwfn, p_ptt, IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id, val); DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n", igu_sb_id, p_block->function_id, p_block->is_pf, p_block->vector_number, rval, val); } } return 0; } static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 igu_sb_id) { u32 val = qed_rd(p_hwfn, p_ptt, IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); struct qed_igu_block *p_block; p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; /* Fill the block information */ p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER); p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID); p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER); p_block->igu_sb_id = igu_sb_id; } int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_igu_info *p_igu_info; struct qed_igu_block *p_block; u32 min_vf = 0, max_vf = 0; u16 igu_sb_id; p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL); if (!p_hwfn->hw_info.p_igu_info) return -ENOMEM; p_igu_info = p_hwfn->hw_info.p_igu_info; /* Distinguish between existent and non-existent default SB */ p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX; /* Find the range of VF ids whose SB belong to this PF */ if (p_hwfn->cdev->p_iov_info) { struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; min_vf = p_iov->first_vf_in_pf; max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs; } for (igu_sb_id = 0; igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { /* Read current entry; Notice it might not belong to this PF */ qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id); p_block = &p_igu_info->entry[igu_sb_id]; if ((p_block->is_pf) && (p_block->function_id == p_hwfn->rel_pf_id)) { p_block->status = QED_IGU_STATUS_PF | QED_IGU_STATUS_VALID | QED_IGU_STATUS_FREE; if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) p_igu_info->usage.cnt++; } else if (!(p_block->is_pf) && (p_block->function_id >= min_vf) && (p_block->function_id < max_vf)) { /* Available for VFs of this PF */ p_block->status = QED_IGU_STATUS_VALID | QED_IGU_STATUS_FREE; if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) p_igu_info->usage.iov_cnt++; } /* Mark the First entry belonging to the PF or its VFs * as the default SB [we'll reset IGU prior to first usage]. */ if ((p_block->status & QED_IGU_STATUS_VALID) && (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) { p_igu_info->igu_dsb_id = igu_sb_id; p_block->status |= QED_IGU_STATUS_DSB; } /* limit number of prints by having each PF print only its * entries with the exception of PF0 which would print * everything. */ if ((p_block->status & QED_IGU_STATUS_VALID) || (p_hwfn->abs_pf_id == 0)) { DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n", igu_sb_id, p_block->function_id, p_block->is_pf, p_block->vector_number); } } if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) { DP_NOTICE(p_hwfn, "IGU CAM returned invalid values igu_dsb_id=0x%x\n", p_igu_info->igu_dsb_id); return -EINVAL; } /* All non default SB are considered free at this point */ p_igu_info->usage.free_cnt = p_igu_info->usage.cnt; p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt; DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n", p_igu_info->igu_dsb_id, p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt); return 0; } /** * qed_int_igu_init_rt() - Initialize IGU runtime registers. * * @p_hwfn: HW device data. */ void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn) { u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN; STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf); } u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn) { u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - IGU_CMD_INT_ACK_BASE; u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - IGU_CMD_INT_ACK_BASE; u32 intr_status_hi = 0, intr_status_lo = 0; u64 intr_status = 0; intr_status_lo = REG_RD(p_hwfn, GTT_BAR0_MAP_REG_IGU_CMD + lsb_igu_cmd_addr * 8); intr_status_hi = REG_RD(p_hwfn, GTT_BAR0_MAP_REG_IGU_CMD + msb_igu_cmd_addr * 8); intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo; return intr_status; } static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn) { tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc); p_hwfn->b_sp_dpc_enabled = true; } int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { int rc = 0; rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt); if (rc) return rc; rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt); return rc; } void qed_int_free(struct qed_hwfn *p_hwfn) { qed_int_sp_sb_free(p_hwfn); qed_int_sb_attn_free(p_hwfn); } void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info); qed_int_sb_attn_setup(p_hwfn, p_ptt); qed_int_sp_dpc_setup(p_hwfn); } void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn, struct qed_sb_cnt_info *p_sb_cnt_info) { struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info; if (!info || !p_sb_cnt_info) return; memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info)); } void qed_int_disable_post_isr_release(struct qed_dev *cdev) { int i; for_each_hwfn(cdev, i) cdev->hwfns[i].b_int_requested = false; } void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable) { cdev->attn_clr_en = clr_enable; } int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 timer_res, u16 sb_id, bool tx) { struct cau_sb_entry sb_entry; u32 params; int rc; if (!p_hwfn->hw_init_done) { DP_ERR(p_hwfn, "hardware not initialized yet\n"); return -EINVAL; } rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), (u64)(uintptr_t)&sb_entry, 2, NULL); if (rc) { DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc); return rc; } params = le32_to_cpu(sb_entry.params); if (tx) SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); else SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); sb_entry.params = cpu_to_le32(params); rc = qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2, NULL); if (rc) { DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc); return rc; } return rc; } int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info) { u16 sbid = p_sb->igu_sb_id; u32 i; if (IS_VF(p_hwfn->cdev)) return -EINVAL; if (sbid >= NUM_OF_SBS(p_hwfn->cdev)) return -EINVAL; p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4); p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4); for (i = 0; i < PIS_PER_SB; i++) p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt, CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4); return 0; } |