Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
// SPDX-License-Identifier: GPL-2.0
/*
 * Miscellaneous Mac68K-specific stuff
 */

#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/rtc.h>
#include <linux/mm.h>

#include <linux/adb.h>
#include <linux/cuda.h>
#include <linux/pmu.h>

#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/macintosh.h>
#include <asm/mac_via.h>
#include <asm/mac_oss.h>

#include <asm/machdep.h>

/*
 * Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
 * times wrap in 2040. If we need to handle later times, the read_time functions
 * need to be changed to interpret wrapped times as post-2040.
 */

#define RTC_OFFSET 2082844800

static void (*rom_reset)(void);

#if IS_ENABLED(CONFIG_NVRAM)
#ifdef CONFIG_ADB_CUDA
static unsigned char cuda_pram_read_byte(int offset)
{
	struct adb_request req;

	if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
			 (offset >> 8) & 0xFF, offset & 0xFF) < 0)
		return 0;
	while (!req.complete)
		cuda_poll();
	return req.reply[3];
}

static void cuda_pram_write_byte(unsigned char data, int offset)
{
	struct adb_request req;

	if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
			 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
		return;
	while (!req.complete)
		cuda_poll();
}
#endif /* CONFIG_ADB_CUDA */

#ifdef CONFIG_ADB_PMU
static unsigned char pmu_pram_read_byte(int offset)
{
	struct adb_request req;

	if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM,
	                offset & 0xFF, 1) < 0)
		return 0;
	pmu_wait_complete(&req);

	return req.reply[0];
}

static void pmu_pram_write_byte(unsigned char data, int offset)
{
	struct adb_request req;

	if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM,
	                offset & 0xFF, 1, data) < 0)
		return;
	pmu_wait_complete(&req);
}
#endif /* CONFIG_ADB_PMU */
#endif /* CONFIG_NVRAM */

/*
 * VIA PRAM/RTC access routines
 *
 * Must be called with interrupts disabled and
 * the RTC should be enabled.
 */

static __u8 via_rtc_recv(void)
{
	int i, reg;
	__u8 data;

	reg = via1[vBufB] & ~VIA1B_vRTCClk;

	/* Set the RTC data line to be an input. */

	via1[vDirB] &= ~VIA1B_vRTCData;

	/* The bits of the byte come out in MSB order */

	data = 0;
	for (i = 0 ; i < 8 ; i++) {
		via1[vBufB] = reg;
		via1[vBufB] = reg | VIA1B_vRTCClk;
		data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
	}

	/* Return RTC data line to output state */

	via1[vDirB] |= VIA1B_vRTCData;

	return data;
}

static void via_rtc_send(__u8 data)
{
	int i, reg, bit;

	reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);

	/* The bits of the byte go in in MSB order */

	for (i = 0 ; i < 8 ; i++) {
		bit = data & 0x80? 1 : 0;
		data <<= 1;
		via1[vBufB] = reg | bit;
		via1[vBufB] = reg | bit | VIA1B_vRTCClk;
	}
}

/*
 * These values can be found in Inside Macintosh vol. III ch. 2
 * which has a description of the RTC chip in the original Mac.
 */

#define RTC_FLG_READ            BIT(7)
#define RTC_FLG_WRITE_PROTECT   BIT(7)
#define RTC_CMD_READ(r)         (RTC_FLG_READ | (r << 2))
#define RTC_CMD_WRITE(r)        (r << 2)
#define RTC_REG_SECONDS_0       0
#define RTC_REG_SECONDS_1       1
#define RTC_REG_SECONDS_2       2
#define RTC_REG_SECONDS_3       3
#define RTC_REG_WRITE_PROTECT   13

/*
 * Inside Mac has no information about two-byte RTC commands but
 * the MAME/MESS source code has the essentials.
 */

#define RTC_REG_XPRAM           14
#define RTC_CMD_XPRAM_READ      (RTC_CMD_READ(RTC_REG_XPRAM) << 8)
#define RTC_CMD_XPRAM_WRITE     (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8)
#define RTC_CMD_XPRAM_ARG(a)    (((a & 0xE0) << 3) | ((a & 0x1F) << 2))

/*
 * Execute a VIA PRAM/RTC command. For read commands
 * data should point to a one-byte buffer for the
 * resulting data. For write commands it should point
 * to the data byte to for the command.
 *
 * This function disables all interrupts while running.
 */

static void via_rtc_command(int command, __u8 *data)
{
	unsigned long flags;
	int is_read;

	local_irq_save(flags);

	/* The least significant bits must be 0b01 according to Inside Mac */

	command = (command & ~3) | 1;

	/* Enable the RTC and make sure the strobe line is high */

	via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;

	if (command & 0xFF00) {		/* extended (two-byte) command */
		via_rtc_send((command & 0xFF00) >> 8);
		via_rtc_send(command & 0xFF);
		is_read = command & (RTC_FLG_READ << 8);
	} else {			/* one-byte command */
		via_rtc_send(command);
		is_read = command & RTC_FLG_READ;
	}
	if (is_read) {
		*data = via_rtc_recv();
	} else {
		via_rtc_send(*data);
	}

	/* All done, disable the RTC */

	via1[vBufB] |= VIA1B_vRTCEnb;

	local_irq_restore(flags);
}

#if IS_ENABLED(CONFIG_NVRAM)
static unsigned char via_pram_read_byte(int offset)
{
	unsigned char temp;

	via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp);

	return temp;
}

static void via_pram_write_byte(unsigned char data, int offset)
{
	unsigned char temp;

	temp = 0x55;
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);

	temp = data;
	via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp);

	temp = 0x55 | RTC_FLG_WRITE_PROTECT;
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
}
#endif /* CONFIG_NVRAM */

/*
 * Return the current time in seconds since January 1, 1904.
 *
 * This only works on machines with the VIA-based PRAM/RTC, which
 * is basically any machine with Mac II-style ADB.
 */

static time64_t via_read_time(void)
{
	union {
		__u8 cdata[4];
		__u32 idata;
	} result, last_result;
	int count = 1;

	via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]);
	via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]);
	via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]);
	via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]);

	/*
	 * The NetBSD guys say to loop until you get the same reading
	 * twice in a row.
	 */

	while (1) {
		via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0),
		                &result.cdata[3]);
		via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1),
		                &result.cdata[2]);
		via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2),
		                &result.cdata[1]);
		via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3),
		                &result.cdata[0]);

		if (result.idata == last_result.idata)
			return (time64_t)result.idata - RTC_OFFSET;

		if (++count > 10)
			break;

		last_result.idata = result.idata;
	}

	pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n",
	       __func__, last_result.idata, result.idata);

	return 0;
}

/*
 * Set the current time to a number of seconds since January 1, 1904.
 *
 * This only works on machines with the VIA-based PRAM/RTC, which
 * is basically any machine with Mac II-style ADB.
 */

static void via_set_rtc_time(struct rtc_time *tm)
{
	union {
		__u8 cdata[4];
		__u32 idata;
	} data;
	__u8 temp;
	time64_t time;

	time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
	                tm->tm_hour, tm->tm_min, tm->tm_sec);

	/* Clear the write protect bit */

	temp = 0x55;
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);

	data.idata = lower_32_bits(time + RTC_OFFSET);
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]);
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]);
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]);
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]);

	/* Set the write protect bit */

	temp = 0x55 | RTC_FLG_WRITE_PROTECT;
	via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
}

static void via_shutdown(void)
{
	if (rbv_present) {
		via2[rBufB] &= ~0x04;
	} else {
		/* Direction of vDirB is output */
		via2[vDirB] |= 0x04;
		/* Send a value of 0 on that line */
		via2[vBufB] &= ~0x04;
		mdelay(1000);
	}
}

static void oss_shutdown(void)
{
	oss->rom_ctrl = OSS_POWEROFF;
}

#ifdef CONFIG_ADB_CUDA
static void cuda_restart(void)
{
	struct adb_request req;

	if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
		return;
	while (!req.complete)
		cuda_poll();
}

static void cuda_shutdown(void)
{
	struct adb_request req;

	if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
		return;

	/* Avoid infinite polling loop when PSU is not under Cuda control */
	switch (macintosh_config->ident) {
	case MAC_MODEL_C660:
	case MAC_MODEL_Q605:
	case MAC_MODEL_Q605_ACC:
	case MAC_MODEL_P475:
	case MAC_MODEL_P475F:
		return;
	}

	while (!req.complete)
		cuda_poll();
}
#endif /* CONFIG_ADB_CUDA */

/*
 *-------------------------------------------------------------------
 * Below this point are the generic routines; they'll dispatch to the
 * correct routine for the hardware on which we're running.
 *-------------------------------------------------------------------
 */

#if IS_ENABLED(CONFIG_NVRAM)
unsigned char mac_pram_read_byte(int addr)
{
	switch (macintosh_config->adb_type) {
	case MAC_ADB_IOP:
	case MAC_ADB_II:
	case MAC_ADB_PB1:
		return via_pram_read_byte(addr);
#ifdef CONFIG_ADB_CUDA
	case MAC_ADB_EGRET:
	case MAC_ADB_CUDA:
		return cuda_pram_read_byte(addr);
#endif
#ifdef CONFIG_ADB_PMU
	case MAC_ADB_PB2:
		return pmu_pram_read_byte(addr);
#endif
	default:
		return 0xFF;
	}
}

void mac_pram_write_byte(unsigned char val, int addr)
{
	switch (macintosh_config->adb_type) {
	case MAC_ADB_IOP:
	case MAC_ADB_II:
	case MAC_ADB_PB1:
		via_pram_write_byte(val, addr);
		break;
#ifdef CONFIG_ADB_CUDA
	case MAC_ADB_EGRET:
	case MAC_ADB_CUDA:
		cuda_pram_write_byte(val, addr);
		break;
#endif
#ifdef CONFIG_ADB_PMU
	case MAC_ADB_PB2:
		pmu_pram_write_byte(val, addr);
		break;
#endif
	default:
		break;
	}
}

ssize_t mac_pram_get_size(void)
{
	return 256;
}
#endif /* CONFIG_NVRAM */

void mac_poweroff(void)
{
	if (oss_present) {
		oss_shutdown();
	} else if (macintosh_config->adb_type == MAC_ADB_II) {
		via_shutdown();
#ifdef CONFIG_ADB_CUDA
	} else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
	           macintosh_config->adb_type == MAC_ADB_CUDA) {
		cuda_shutdown();
#endif
#ifdef CONFIG_ADB_PMU
	} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
		pmu_shutdown();
#endif
	}

	pr_crit("It is now safe to turn off your Macintosh.\n");
	local_irq_disable();
	while(1);
}

void mac_reset(void)
{
	if (macintosh_config->adb_type == MAC_ADB_II &&
	    macintosh_config->ident != MAC_MODEL_SE30) {
		/* need ROMBASE in booter */
		/* indeed, plus need to MAP THE ROM !! */

		if (mac_bi_data.rombase == 0)
			mac_bi_data.rombase = 0x40800000;

		/* works on some */
		rom_reset = (void *) (mac_bi_data.rombase + 0xa);

		local_irq_disable();
		rom_reset();
#ifdef CONFIG_ADB_CUDA
	} else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
	           macintosh_config->adb_type == MAC_ADB_CUDA) {
		cuda_restart();
#endif
#ifdef CONFIG_ADB_PMU
	} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
		pmu_restart();
#endif
	} else if (CPU_IS_030) {

		/* 030-specific reset routine.  The idea is general, but the
		 * specific registers to reset are '030-specific.  Until I
		 * have a non-030 machine, I can't test anything else.
		 *  -- C. Scott Ananian <cananian@alumni.princeton.edu>
		 */

		unsigned long rombase = 0x40000000;

		/* make a 1-to-1 mapping, using the transparent tran. reg. */
		unsigned long virt = (unsigned long) mac_reset;
		unsigned long phys = virt_to_phys(mac_reset);
		unsigned long addr = (phys&0xFF000000)|0x8777;
		unsigned long offset = phys-virt;

		local_irq_disable(); /* lets not screw this up, ok? */
		__asm__ __volatile__(".chip 68030\n\t"
				     "pmove %0,%/tt0\n\t"
				     ".chip 68k"
				     : : "m" (addr));
		/* Now jump to physical address so we can disable MMU */
		__asm__ __volatile__(
		    ".chip 68030\n\t"
		    "lea %/pc@(1f),%/a0\n\t"
		    "addl %0,%/a0\n\t"/* fixup target address and stack ptr */
		    "addl %0,%/sp\n\t"
		    "pflusha\n\t"
		    "jmp %/a0@\n\t" /* jump into physical memory */
		    "0:.long 0\n\t" /* a constant zero. */
		    /* OK.  Now reset everything and jump to reset vector. */
		    "1:\n\t"
		    "lea %/pc@(0b),%/a0\n\t"
		    "pmove %/a0@, %/tc\n\t" /* disable mmu */
		    "pmove %/a0@, %/tt0\n\t" /* disable tt0 */
		    "pmove %/a0@, %/tt1\n\t" /* disable tt1 */
		    "movel #0, %/a0\n\t"
		    "movec %/a0, %/vbr\n\t" /* clear vector base register */
		    "movec %/a0, %/cacr\n\t" /* disable caches */
		    "movel #0x0808,%/a0\n\t"
		    "movec %/a0, %/cacr\n\t" /* flush i&d caches */
		    "movew #0x2700,%/sr\n\t" /* set up status register */
		    "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
		    "movec %/a0, %/isp\n\t"
		    "movel %1@(0x4),%/a0\n\t" /* load reset vector */
		    "reset\n\t" /* reset external devices */
		    "jmp %/a0@\n\t" /* jump to the reset vector */
		    ".chip 68k"
		    : : "r" (offset), "a" (rombase) : "a0");
	}

	/* should never get here */
	pr_crit("Restart failed. Please restart manually.\n");
	local_irq_disable();
	while(1);
}

/*
 * This function translates seconds since 1970 into a proper date.
 *
 * Algorithm cribbed from glibc2.1, __offtime().
 *
 * This is roughly same as rtc_time64_to_tm(), which we should probably
 * use here, but it's only available when CONFIG_RTC_LIB is enabled.
 */
#define SECS_PER_MINUTE (60)
#define SECS_PER_HOUR  (SECS_PER_MINUTE * 60)
#define SECS_PER_DAY   (SECS_PER_HOUR * 24)

static void unmktime(time64_t time, long offset,
		     int *yearp, int *monp, int *dayp,
		     int *hourp, int *minp, int *secp)
{
        /* How many days come before each month (0-12).  */
	static const unsigned short int __mon_yday[2][13] =
	{
		/* Normal years.  */
		{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
		/* Leap years.  */
		{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
	};
	int days, rem, y, wday, yday;
	const unsigned short int *ip;

	days = div_u64_rem(time, SECS_PER_DAY, &rem);
	rem += offset;
	while (rem < 0) {
		rem += SECS_PER_DAY;
		--days;
	}
	while (rem >= SECS_PER_DAY) {
		rem -= SECS_PER_DAY;
		++days;
	}
	*hourp = rem / SECS_PER_HOUR;
	rem %= SECS_PER_HOUR;
	*minp = rem / SECS_PER_MINUTE;
	*secp = rem % SECS_PER_MINUTE;
	/* January 1, 1970 was a Thursday. */
	wday = (4 + days) % 7; /* Day in the week. Not currently used */
	if (wday < 0) wday += 7;
	y = 1970;

#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
#define __isleap(year)	\
  ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))

	while (days < 0 || days >= (__isleap (y) ? 366 : 365))
	{
		/* Guess a corrected year, assuming 365 days per year.  */
		long int yg = y + days / 365 - (days % 365 < 0);

		/* Adjust DAYS and Y to match the guessed year.  */
		days -= (yg - y) * 365 +
			LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1);
		y = yg;
	}
	*yearp = y - 1900;
	yday = days; /* day in the year.  Not currently used. */
	ip = __mon_yday[__isleap(y)];
	for (y = 11; days < (long int) ip[y]; --y)
		continue;
	days -= ip[y];
	*monp = y;
	*dayp = days + 1; /* day in the month */
	return;
}

/*
 * Read/write the hardware clock.
 */

int mac_hwclk(int op, struct rtc_time *t)
{
	time64_t now;

	if (!op) { /* read */
		switch (macintosh_config->adb_type) {
		case MAC_ADB_IOP:
		case MAC_ADB_II:
		case MAC_ADB_PB1:
			now = via_read_time();
			break;
#ifdef CONFIG_ADB_CUDA
		case MAC_ADB_EGRET:
		case MAC_ADB_CUDA:
			now = cuda_get_time();
			break;
#endif
#ifdef CONFIG_ADB_PMU
		case MAC_ADB_PB2:
			now = pmu_get_time();
			break;
#endif
		default:
			now = 0;
		}

		t->tm_wday = 0;
		unmktime(now, 0,
			 &t->tm_year, &t->tm_mon, &t->tm_mday,
			 &t->tm_hour, &t->tm_min, &t->tm_sec);
		pr_debug("%s: read %ptR\n", __func__, t);
	} else { /* write */
		pr_debug("%s: tried to write %ptR\n", __func__, t);

		switch (macintosh_config->adb_type) {
		case MAC_ADB_IOP:
		case MAC_ADB_II:
		case MAC_ADB_PB1:
			via_set_rtc_time(t);
			break;
#ifdef CONFIG_ADB_CUDA
		case MAC_ADB_EGRET:
		case MAC_ADB_CUDA:
			cuda_set_rtc_time(t);
			break;
#endif
#ifdef CONFIG_ADB_PMU
		case MAC_ADB_PB2:
			pmu_set_rtc_time(t);
			break;
#endif
		default:
			return -ENODEV;
		}
	}
	return 0;
}