Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
// SPDX-License-Identifier: GPL-2.0
/*
 * A memslot-related performance benchmark.
 *
 * Copyright (C) 2021 Oracle and/or its affiliates.
 *
 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
 */
#include <pthread.h>
#include <sched.h>
#include <semaphore.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>

#include <linux/compiler.h>

#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>

#define MEM_SIZE		((512U << 20) + 4096)
#define MEM_SIZE_PAGES		(MEM_SIZE / 4096)
#define MEM_GPA		0x10000000UL
#define MEM_AUX_GPA		MEM_GPA
#define MEM_SYNC_GPA		MEM_AUX_GPA
#define MEM_TEST_GPA		(MEM_AUX_GPA + 4096)
#define MEM_TEST_SIZE		(MEM_SIZE - 4096)
static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");

/*
 * 32 MiB is max size that gets well over 100 iterations on 509 slots.
 * Considering that each slot needs to have at least one page up to
 * 8194 slots in use can then be tested (although with slightly
 * limited resolution).
 */
#define MEM_SIZE_MAP		((32U << 20) + 4096)
#define MEM_SIZE_MAP_PAGES	(MEM_SIZE_MAP / 4096)
#define MEM_TEST_MAP_SIZE	(MEM_SIZE_MAP - 4096)
#define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");

/*
 * 128 MiB is min size that fills 32k slots with at least one page in each
 * while at the same time gets 100+ iterations in such test
 */
#define MEM_TEST_UNMAP_SIZE		(128U << 20)
#define MEM_TEST_UNMAP_SIZE_PAGES	(MEM_TEST_UNMAP_SIZE / 4096)
/* 2 MiB chunk size like a typical huge page */
#define MEM_TEST_UNMAP_CHUNK_PAGES	(2U << (20 - 12))
static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
	      "invalid unmap test region size");
static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
	      "invalid unmap test region size");
static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
	      (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
	      "invalid unmap test region size");

/*
 * For the move active test the middle of the test area is placed on
 * a memslot boundary: half lies in the memslot being moved, half in
 * other memslot(s).
 *
 * When running this test with 32k memslots (32764, really) each memslot
 * contains 4 pages.
 * The last one additionally contains the remaining 21 pages of memory,
 * for the total size of 25 pages.
 * Hence, the maximum size here is 50 pages.
 */
#define MEM_TEST_MOVE_SIZE_PAGES	(50)
#define MEM_TEST_MOVE_SIZE		(MEM_TEST_MOVE_SIZE_PAGES * 4096)
#define MEM_TEST_MOVE_GPA_DEST		(MEM_GPA + MEM_SIZE)
static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
	      "invalid move test region size");

#define MEM_TEST_VAL_1 0x1122334455667788
#define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00

struct vm_data {
	struct kvm_vm *vm;
	struct kvm_vcpu *vcpu;
	pthread_t vcpu_thread;
	uint32_t nslots;
	uint64_t npages;
	uint64_t pages_per_slot;
	void **hva_slots;
	bool mmio_ok;
	uint64_t mmio_gpa_min;
	uint64_t mmio_gpa_max;
};

struct sync_area {
	atomic_bool start_flag;
	atomic_bool exit_flag;
	atomic_bool sync_flag;
	void *move_area_ptr;
};

/*
 * Technically, we need also for the atomic bool to be address-free, which
 * is recommended, but not strictly required, by C11 for lockless
 * implementations.
 * However, in practice both GCC and Clang fulfill this requirement on
 * all KVM-supported platforms.
 */
static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");

static sem_t vcpu_ready;

static bool map_unmap_verify;

static bool verbose;
#define pr_info_v(...)				\
	do {					\
		if (verbose)			\
			pr_info(__VA_ARGS__);	\
	} while (0)

static void check_mmio_access(struct vm_data *data, struct kvm_run *run)
{
	TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit");
	TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
	TEST_ASSERT(run->mmio.len == 8,
		    "Unexpected exit mmio size = %u", run->mmio.len);
	TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min &&
		    run->mmio.phys_addr <= data->mmio_gpa_max,
		    "Unexpected exit mmio address = 0x%llx",
		    run->mmio.phys_addr);
}

static void *vcpu_worker(void *__data)
{
	struct vm_data *data = __data;
	struct kvm_vcpu *vcpu = data->vcpu;
	struct kvm_run *run = vcpu->run;
	struct ucall uc;

	while (1) {
		vcpu_run(vcpu);

		switch (get_ucall(vcpu, &uc)) {
		case UCALL_SYNC:
			TEST_ASSERT(uc.args[1] == 0,
				"Unexpected sync ucall, got %lx",
				(ulong)uc.args[1]);
			sem_post(&vcpu_ready);
			continue;
		case UCALL_NONE:
			if (run->exit_reason == KVM_EXIT_MMIO)
				check_mmio_access(data, run);
			else
				goto done;
			break;
		case UCALL_ABORT:
			REPORT_GUEST_ASSERT_1(uc, "val = %lu");
			break;
		case UCALL_DONE:
			goto done;
		default:
			TEST_FAIL("Unknown ucall %lu", uc.cmd);
		}
	}

done:
	return NULL;
}

static void wait_for_vcpu(void)
{
	struct timespec ts;

	TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
		    "clock_gettime() failed: %d\n", errno);

	ts.tv_sec += 2;
	TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
		    "sem_timedwait() failed: %d\n", errno);
}

static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
{
	uint64_t gpage, pgoffs;
	uint32_t slot, slotoffs;
	void *base;

	TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
	TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
		    "Too high gpa to translate");
	gpa -= MEM_GPA;

	gpage = gpa / 4096;
	pgoffs = gpa % 4096;
	slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
	slotoffs = gpage - (slot * data->pages_per_slot);

	if (rempages) {
		uint64_t slotpages;

		if (slot == data->nslots - 1)
			slotpages = data->npages - slot * data->pages_per_slot;
		else
			slotpages = data->pages_per_slot;

		TEST_ASSERT(!pgoffs,
			    "Asking for remaining pages in slot but gpa not page aligned");
		*rempages = slotpages - slotoffs;
	}

	base = data->hva_slots[slot];
	return (uint8_t *)base + slotoffs * 4096 + pgoffs;
}

static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
{
	TEST_ASSERT(slot < data->nslots, "Too high slot number");

	return MEM_GPA + slot * data->pages_per_slot * 4096;
}

static struct vm_data *alloc_vm(void)
{
	struct vm_data *data;

	data = malloc(sizeof(*data));
	TEST_ASSERT(data, "malloc(vmdata) failed");

	data->vm = NULL;
	data->vcpu = NULL;
	data->hva_slots = NULL;

	return data;
}

static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
		       void *guest_code, uint64_t mempages,
		       struct timespec *slot_runtime)
{
	uint32_t max_mem_slots;
	uint64_t rempages;
	uint64_t guest_addr;
	uint32_t slot;
	struct timespec tstart;
	struct sync_area *sync;

	max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
	TEST_ASSERT(max_mem_slots > 1,
		    "KVM_CAP_NR_MEMSLOTS should be greater than 1");
	TEST_ASSERT(nslots > 1 || nslots == -1,
		    "Slot count cap should be greater than 1");
	if (nslots != -1)
		max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
	pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);

	TEST_ASSERT(mempages > 1,
		    "Can't test without any memory");

	data->npages = mempages;
	data->nslots = max_mem_slots - 1;
	data->pages_per_slot = mempages / data->nslots;
	if (!data->pages_per_slot) {
		*maxslots = mempages + 1;
		return false;
	}

	rempages = mempages % data->nslots;
	data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
	TEST_ASSERT(data->hva_slots, "malloc() fail");

	data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code);
	ucall_init(data->vm, NULL);

	pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
		max_mem_slots - 1, data->pages_per_slot, rempages);

	clock_gettime(CLOCK_MONOTONIC, &tstart);
	for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
		uint64_t npages;

		npages = data->pages_per_slot;
		if (slot == max_mem_slots - 1)
			npages += rempages;

		vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
					    guest_addr, slot, npages,
					    0);
		guest_addr += npages * 4096;
	}
	*slot_runtime = timespec_elapsed(tstart);

	for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
		uint64_t npages;
		uint64_t gpa;

		npages = data->pages_per_slot;
		if (slot == max_mem_slots - 2)
			npages += rempages;

		gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
					 slot + 1);
		TEST_ASSERT(gpa == guest_addr,
			    "vm_phy_pages_alloc() failed\n");

		data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
		memset(data->hva_slots[slot], 0, npages * 4096);

		guest_addr += npages * 4096;
	}

	virt_map(data->vm, MEM_GPA, MEM_GPA, mempages);

	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
	atomic_init(&sync->start_flag, false);
	atomic_init(&sync->exit_flag, false);
	atomic_init(&sync->sync_flag, false);

	data->mmio_ok = false;

	return true;
}

static void launch_vm(struct vm_data *data)
{
	pr_info_v("Launching the test VM\n");

	pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);

	/* Ensure the guest thread is spun up. */
	wait_for_vcpu();
}

static void free_vm(struct vm_data *data)
{
	kvm_vm_free(data->vm);
	free(data->hva_slots);
	free(data);
}

static void wait_guest_exit(struct vm_data *data)
{
	pthread_join(data->vcpu_thread, NULL);
}

static void let_guest_run(struct sync_area *sync)
{
	atomic_store_explicit(&sync->start_flag, true, memory_order_release);
}

static void guest_spin_until_start(void)
{
	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;

	while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
		;
}

static void make_guest_exit(struct sync_area *sync)
{
	atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
}

static bool _guest_should_exit(void)
{
	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;

	return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
}

#define guest_should_exit() unlikely(_guest_should_exit())

/*
 * noinline so we can easily see how much time the host spends waiting
 * for the guest.
 * For the same reason use alarm() instead of polling clock_gettime()
 * to implement a wait timeout.
 */
static noinline void host_perform_sync(struct sync_area *sync)
{
	alarm(2);

	atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
	while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
		;

	alarm(0);
}

static bool guest_perform_sync(void)
{
	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
	bool expected;

	do {
		if (guest_should_exit())
			return false;

		expected = true;
	} while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
							&expected, false,
							memory_order_acq_rel,
							memory_order_relaxed));

	return true;
}

static void guest_code_test_memslot_move(void)
{
	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
	uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);

	GUEST_SYNC(0);

	guest_spin_until_start();

	while (!guest_should_exit()) {
		uintptr_t ptr;

		for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
		     ptr += 4096)
			*(uint64_t *)ptr = MEM_TEST_VAL_1;

		/*
		 * No host sync here since the MMIO exits are so expensive
		 * that the host would spend most of its time waiting for
		 * the guest and so instead of measuring memslot move
		 * performance we would measure the performance and
		 * likelihood of MMIO exits
		 */
	}

	GUEST_DONE();
}

static void guest_code_test_memslot_map(void)
{
	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;

	GUEST_SYNC(0);

	guest_spin_until_start();

	while (1) {
		uintptr_t ptr;

		for (ptr = MEM_TEST_GPA;
		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
			*(uint64_t *)ptr = MEM_TEST_VAL_1;

		if (!guest_perform_sync())
			break;

		for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
			*(uint64_t *)ptr = MEM_TEST_VAL_2;

		if (!guest_perform_sync())
			break;
	}

	GUEST_DONE();
}

static void guest_code_test_memslot_unmap(void)
{
	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;

	GUEST_SYNC(0);

	guest_spin_until_start();

	while (1) {
		uintptr_t ptr = MEM_TEST_GPA;

		/*
		 * We can afford to access (map) just a small number of pages
		 * per host sync as otherwise the host will spend
		 * a significant amount of its time waiting for the guest
		 * (instead of doing unmap operations), so this will
		 * effectively turn this test into a map performance test.
		 *
		 * Just access a single page to be on the safe side.
		 */
		*(uint64_t *)ptr = MEM_TEST_VAL_1;

		if (!guest_perform_sync())
			break;

		ptr += MEM_TEST_UNMAP_SIZE / 2;
		*(uint64_t *)ptr = MEM_TEST_VAL_2;

		if (!guest_perform_sync())
			break;
	}

	GUEST_DONE();
}

static void guest_code_test_memslot_rw(void)
{
	GUEST_SYNC(0);

	guest_spin_until_start();

	while (1) {
		uintptr_t ptr;

		for (ptr = MEM_TEST_GPA;
		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
			*(uint64_t *)ptr = MEM_TEST_VAL_1;

		if (!guest_perform_sync())
			break;

		for (ptr = MEM_TEST_GPA + 4096 / 2;
		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
			uint64_t val = *(uint64_t *)ptr;

			GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
			*(uint64_t *)ptr = 0;
		}

		if (!guest_perform_sync())
			break;
	}

	GUEST_DONE();
}

static bool test_memslot_move_prepare(struct vm_data *data,
				      struct sync_area *sync,
				      uint64_t *maxslots, bool isactive)
{
	uint64_t movesrcgpa, movetestgpa;

	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);

	if (isactive) {
		uint64_t lastpages;

		vm_gpa2hva(data, movesrcgpa, &lastpages);
		if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
			*maxslots = 0;
			return false;
		}
	}

	movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
	sync->move_area_ptr = (void *)movetestgpa;

	if (isactive) {
		data->mmio_ok = true;
		data->mmio_gpa_min = movesrcgpa;
		data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
	}

	return true;
}

static bool test_memslot_move_prepare_active(struct vm_data *data,
					     struct sync_area *sync,
					     uint64_t *maxslots)
{
	return test_memslot_move_prepare(data, sync, maxslots, true);
}

static bool test_memslot_move_prepare_inactive(struct vm_data *data,
					       struct sync_area *sync,
					       uint64_t *maxslots)
{
	return test_memslot_move_prepare(data, sync, maxslots, false);
}

static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
{
	uint64_t movesrcgpa;

	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
	vm_mem_region_move(data->vm, data->nslots - 1 + 1,
			   MEM_TEST_MOVE_GPA_DEST);
	vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
}

static void test_memslot_do_unmap(struct vm_data *data,
				  uint64_t offsp, uint64_t count)
{
	uint64_t gpa, ctr;

	for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
		uint64_t npages;
		void *hva;
		int ret;

		hva = vm_gpa2hva(data, gpa, &npages);
		TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
		npages = min(npages, count - ctr);
		ret = madvise(hva, npages * 4096, MADV_DONTNEED);
		TEST_ASSERT(!ret,
			    "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
			    hva, gpa);
		ctr += npages;
		gpa += npages * 4096;
	}
	TEST_ASSERT(ctr == count,
		    "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
}

static void test_memslot_map_unmap_check(struct vm_data *data,
					 uint64_t offsp, uint64_t valexp)
{
	uint64_t gpa;
	uint64_t *val;

	if (!map_unmap_verify)
		return;

	gpa = MEM_TEST_GPA + offsp * 4096;
	val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
	TEST_ASSERT(*val == valexp,
		    "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
		    *val, valexp, gpa);
	*val = 0;
}

static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
{
	/*
	 * Unmap the second half of the test area while guest writes to (maps)
	 * the first half.
	 */
	test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
			      MEM_TEST_MAP_SIZE_PAGES / 2);

	/*
	 * Wait for the guest to finish writing the first half of the test
	 * area, verify the written value on the first and the last page of
	 * this area and then unmap it.
	 * Meanwhile, the guest is writing to (mapping) the second half of
	 * the test area.
	 */
	host_perform_sync(sync);
	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
	test_memslot_map_unmap_check(data,
				     MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
				     MEM_TEST_VAL_1);
	test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);


	/*
	 * Wait for the guest to finish writing the second half of the test
	 * area and verify the written value on the first and the last page
	 * of this area.
	 * The area will be unmapped at the beginning of the next loop
	 * iteration.
	 * Meanwhile, the guest is writing to (mapping) the first half of
	 * the test area.
	 */
	host_perform_sync(sync);
	test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
				     MEM_TEST_VAL_2);
	test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
				     MEM_TEST_VAL_2);
}

static void test_memslot_unmap_loop_common(struct vm_data *data,
					   struct sync_area *sync,
					   uint64_t chunk)
{
	uint64_t ctr;

	/*
	 * Wait for the guest to finish mapping page(s) in the first half
	 * of the test area, verify the written value and then perform unmap
	 * of this area.
	 * Meanwhile, the guest is writing to (mapping) page(s) in the second
	 * half of the test area.
	 */
	host_perform_sync(sync);
	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
	for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
		test_memslot_do_unmap(data, ctr, chunk);

	/* Likewise, but for the opposite host / guest areas */
	host_perform_sync(sync);
	test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
				     MEM_TEST_VAL_2);
	for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
	     ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
		test_memslot_do_unmap(data, ctr, chunk);
}

static void test_memslot_unmap_loop(struct vm_data *data,
				    struct sync_area *sync)
{
	test_memslot_unmap_loop_common(data, sync, 1);
}

static void test_memslot_unmap_loop_chunked(struct vm_data *data,
					    struct sync_area *sync)
{
	test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
}

static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
{
	uint64_t gptr;

	for (gptr = MEM_TEST_GPA + 4096 / 2;
	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
		*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;

	host_perform_sync(sync);

	for (gptr = MEM_TEST_GPA;
	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
		uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
		uint64_t val = *vptr;

		TEST_ASSERT(val == MEM_TEST_VAL_1,
			    "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
			    val, gptr);
		*vptr = 0;
	}

	host_perform_sync(sync);
}

struct test_data {
	const char *name;
	uint64_t mem_size;
	void (*guest_code)(void);
	bool (*prepare)(struct vm_data *data, struct sync_area *sync,
			uint64_t *maxslots);
	void (*loop)(struct vm_data *data, struct sync_area *sync);
};

static bool test_execute(int nslots, uint64_t *maxslots,
			 unsigned int maxtime,
			 const struct test_data *tdata,
			 uint64_t *nloops,
			 struct timespec *slot_runtime,
			 struct timespec *guest_runtime)
{
	uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
	struct vm_data *data;
	struct sync_area *sync;
	struct timespec tstart;
	bool ret = true;

	data = alloc_vm();
	if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
			mem_size, slot_runtime)) {
		ret = false;
		goto exit_free;
	}

	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);

	if (tdata->prepare &&
	    !tdata->prepare(data, sync, maxslots)) {
		ret = false;
		goto exit_free;
	}

	launch_vm(data);

	clock_gettime(CLOCK_MONOTONIC, &tstart);
	let_guest_run(sync);

	while (1) {
		*guest_runtime = timespec_elapsed(tstart);
		if (guest_runtime->tv_sec >= maxtime)
			break;

		tdata->loop(data, sync);

		(*nloops)++;
	}

	make_guest_exit(sync);
	wait_guest_exit(data);

exit_free:
	free_vm(data);

	return ret;
}

static const struct test_data tests[] = {
	{
		.name = "map",
		.mem_size = MEM_SIZE_MAP_PAGES,
		.guest_code = guest_code_test_memslot_map,
		.loop = test_memslot_map_loop,
	},
	{
		.name = "unmap",
		.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
		.guest_code = guest_code_test_memslot_unmap,
		.loop = test_memslot_unmap_loop,
	},
	{
		.name = "unmap chunked",
		.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
		.guest_code = guest_code_test_memslot_unmap,
		.loop = test_memslot_unmap_loop_chunked,
	},
	{
		.name = "move active area",
		.guest_code = guest_code_test_memslot_move,
		.prepare = test_memslot_move_prepare_active,
		.loop = test_memslot_move_loop,
	},
	{
		.name = "move inactive area",
		.guest_code = guest_code_test_memslot_move,
		.prepare = test_memslot_move_prepare_inactive,
		.loop = test_memslot_move_loop,
	},
	{
		.name = "RW",
		.guest_code = guest_code_test_memslot_rw,
		.loop = test_memslot_rw_loop
	},
};

#define NTESTS ARRAY_SIZE(tests)

struct test_args {
	int tfirst;
	int tlast;
	int nslots;
	int seconds;
	int runs;
};

static void help(char *name, struct test_args *targs)
{
	int ctr;

	pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
		name);
	pr_info(" -h: print this help screen.\n");
	pr_info(" -v: enable verbose mode (not for benchmarking).\n");
	pr_info(" -d: enable extra debug checks.\n");
	pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
		targs->nslots);
	pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
		targs->tfirst, NTESTS - 1);
	pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
		targs->tlast, NTESTS - 1);
	pr_info(" -l: specify the test length in seconds (currently: %i)\n",
		targs->seconds);
	pr_info(" -r: specify the number of runs per test (currently: %i)\n",
		targs->runs);

	pr_info("\nAvailable tests:\n");
	for (ctr = 0; ctr < NTESTS; ctr++)
		pr_info("%d: %s\n", ctr, tests[ctr].name);
}

static bool parse_args(int argc, char *argv[],
		       struct test_args *targs)
{
	int opt;

	while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
		switch (opt) {
		case 'h':
		default:
			help(argv[0], targs);
			return false;
		case 'v':
			verbose = true;
			break;
		case 'd':
			map_unmap_verify = true;
			break;
		case 's':
			targs->nslots = atoi(optarg);
			if (targs->nslots <= 0 && targs->nslots != -1) {
				pr_info("Slot count cap has to be positive or -1 for no cap\n");
				return false;
			}
			break;
		case 'f':
			targs->tfirst = atoi(optarg);
			if (targs->tfirst < 0) {
				pr_info("First test to run has to be non-negative\n");
				return false;
			}
			break;
		case 'e':
			targs->tlast = atoi(optarg);
			if (targs->tlast < 0 || targs->tlast >= NTESTS) {
				pr_info("Last test to run has to be non-negative and less than %zu\n",
					NTESTS);
				return false;
			}
			break;
		case 'l':
			targs->seconds = atoi(optarg);
			if (targs->seconds < 0) {
				pr_info("Test length in seconds has to be non-negative\n");
				return false;
			}
			break;
		case 'r':
			targs->runs = atoi(optarg);
			if (targs->runs <= 0) {
				pr_info("Runs per test has to be positive\n");
				return false;
			}
			break;
		}
	}

	if (optind < argc) {
		help(argv[0], targs);
		return false;
	}

	if (targs->tfirst > targs->tlast) {
		pr_info("First test to run cannot be greater than the last test to run\n");
		return false;
	}

	return true;
}

struct test_result {
	struct timespec slot_runtime, guest_runtime, iter_runtime;
	int64_t slottimens, runtimens;
	uint64_t nloops;
};

static bool test_loop(const struct test_data *data,
		      const struct test_args *targs,
		      struct test_result *rbestslottime,
		      struct test_result *rbestruntime)
{
	uint64_t maxslots;
	struct test_result result;

	result.nloops = 0;
	if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
			  &result.nloops,
			  &result.slot_runtime, &result.guest_runtime)) {
		if (maxslots)
			pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
				maxslots);
		else
			pr_info("Memslot count may be too high for this test, try adjusting the cap\n");

		return false;
	}

	pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
		result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
		result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
	if (!result.nloops) {
		pr_info("No full loops done - too short test time or system too loaded?\n");
		return true;
	}

	result.iter_runtime = timespec_div(result.guest_runtime,
					   result.nloops);
	pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
		result.nloops,
		result.iter_runtime.tv_sec,
		result.iter_runtime.tv_nsec);
	result.slottimens = timespec_to_ns(result.slot_runtime);
	result.runtimens = timespec_to_ns(result.iter_runtime);

	/*
	 * Only rank the slot setup time for tests using the whole test memory
	 * area so they are comparable
	 */
	if (!data->mem_size &&
	    (!rbestslottime->slottimens ||
	     result.slottimens < rbestslottime->slottimens))
		*rbestslottime = result;
	if (!rbestruntime->runtimens ||
	    result.runtimens < rbestruntime->runtimens)
		*rbestruntime = result;

	return true;
}

int main(int argc, char *argv[])
{
	struct test_args targs = {
		.tfirst = 0,
		.tlast = NTESTS - 1,
		.nslots = -1,
		.seconds = 5,
		.runs = 1,
	};
	struct test_result rbestslottime;
	int tctr;

	/* Tell stdout not to buffer its content */
	setbuf(stdout, NULL);

	if (!parse_args(argc, argv, &targs))
		return -1;

	rbestslottime.slottimens = 0;
	for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
		const struct test_data *data = &tests[tctr];
		unsigned int runctr;
		struct test_result rbestruntime;

		if (tctr > targs.tfirst)
			pr_info("\n");

		pr_info("Testing %s performance with %i runs, %d seconds each\n",
			data->name, targs.runs, targs.seconds);

		rbestruntime.runtimens = 0;
		for (runctr = 0; runctr < targs.runs; runctr++)
			if (!test_loop(data, &targs,
				       &rbestslottime, &rbestruntime))
				break;

		if (rbestruntime.runtimens)
			pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
				rbestruntime.iter_runtime.tv_sec,
				rbestruntime.iter_runtime.tv_nsec,
				rbestruntime.nloops);
	}

	if (rbestslottime.slottimens)
		pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
			rbestslottime.slot_runtime.tv_sec,
			rbestslottime.slot_runtime.tv_nsec);

	return 0;
}