Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 | // SPDX-License-Identifier: GPL-2.0 /* * Xen mmu operations * * This file contains the various mmu fetch and update operations. * The most important job they must perform is the mapping between the * domain's pfn and the overall machine mfns. * * Xen allows guests to directly update the pagetable, in a controlled * fashion. In other words, the guest modifies the same pagetable * that the CPU actually uses, which eliminates the overhead of having * a separate shadow pagetable. * * In order to allow this, it falls on the guest domain to map its * notion of a "physical" pfn - which is just a domain-local linear * address - into a real "machine address" which the CPU's MMU can * use. * * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be * inserted directly into the pagetable. When creating a new * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, * when reading the content back with __(pgd|pmd|pte)_val, it converts * the mfn back into a pfn. * * The other constraint is that all pages which make up a pagetable * must be mapped read-only in the guest. This prevents uncontrolled * guest updates to the pagetable. Xen strictly enforces this, and * will disallow any pagetable update which will end up mapping a * pagetable page RW, and will disallow using any writable page as a * pagetable. * * Naively, when loading %cr3 with the base of a new pagetable, Xen * would need to validate the whole pagetable before going on. * Naturally, this is quite slow. The solution is to "pin" a * pagetable, which enforces all the constraints on the pagetable even * when it is not actively in use. This menas that Xen can be assured * that it is still valid when you do load it into %cr3, and doesn't * need to revalidate it. * * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 */ #include <linux/sched/mm.h> #include <linux/debugfs.h> #include <linux/bug.h> #include <linux/vmalloc.h> #include <linux/export.h> #include <linux/init.h> #include <linux/gfp.h> #include <linux/memblock.h> #include <linux/seq_file.h> #include <linux/crash_dump.h> #include <linux/pgtable.h> #ifdef CONFIG_KEXEC_CORE #include <linux/kexec.h> #endif #include <trace/events/xen.h> #include <asm/tlbflush.h> #include <asm/fixmap.h> #include <asm/mmu_context.h> #include <asm/setup.h> #include <asm/paravirt.h> #include <asm/e820/api.h> #include <asm/linkage.h> #include <asm/page.h> #include <asm/init.h> #include <asm/memtype.h> #include <asm/smp.h> #include <asm/tlb.h> #include <asm/xen/hypercall.h> #include <asm/xen/hypervisor.h> #include <xen/xen.h> #include <xen/page.h> #include <xen/interface/xen.h> #include <xen/interface/hvm/hvm_op.h> #include <xen/interface/version.h> #include <xen/interface/memory.h> #include <xen/hvc-console.h> #include <xen/swiotlb-xen.h> #include "multicalls.h" #include "mmu.h" #include "debugfs.h" #ifdef CONFIG_X86_VSYSCALL_EMULATION /* l3 pud for userspace vsyscall mapping */ static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; #endif /* * Protects atomic reservation decrease/increase against concurrent increases. * Also protects non-atomic updates of current_pages and balloon lists. */ static DEFINE_SPINLOCK(xen_reservation_lock); /* * Note about cr3 (pagetable base) values: * * xen_cr3 contains the current logical cr3 value; it contains the * last set cr3. This may not be the current effective cr3, because * its update may be being lazily deferred. However, a vcpu looking * at its own cr3 can use this value knowing that it everything will * be self-consistent. * * xen_current_cr3 contains the actual vcpu cr3; it is set once the * hypercall to set the vcpu cr3 is complete (so it may be a little * out of date, but it will never be set early). If one vcpu is * looking at another vcpu's cr3 value, it should use this variable. */ DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ static phys_addr_t xen_pt_base, xen_pt_size __initdata; static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); /* * Just beyond the highest usermode address. STACK_TOP_MAX has a * redzone above it, so round it up to a PGD boundary. */ #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) void make_lowmem_page_readonly(void *vaddr) { pte_t *pte, ptev; unsigned long address = (unsigned long)vaddr; unsigned int level; pte = lookup_address(address, &level); if (pte == NULL) return; /* vaddr missing */ ptev = pte_wrprotect(*pte); if (HYPERVISOR_update_va_mapping(address, ptev, 0)) BUG(); } void make_lowmem_page_readwrite(void *vaddr) { pte_t *pte, ptev; unsigned long address = (unsigned long)vaddr; unsigned int level; pte = lookup_address(address, &level); if (pte == NULL) return; /* vaddr missing */ ptev = pte_mkwrite(*pte); if (HYPERVISOR_update_va_mapping(address, ptev, 0)) BUG(); } /* * During early boot all page table pages are pinned, but we do not have struct * pages, so return true until struct pages are ready. */ static bool xen_page_pinned(void *ptr) { if (static_branch_likely(&xen_struct_pages_ready)) { struct page *page = virt_to_page(ptr); return PagePinned(page); } return true; } static void xen_extend_mmu_update(const struct mmu_update *update) { struct multicall_space mcs; struct mmu_update *u; mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); if (mcs.mc != NULL) { mcs.mc->args[1]++; } else { mcs = __xen_mc_entry(sizeof(*u)); MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); } u = mcs.args; *u = *update; } static void xen_extend_mmuext_op(const struct mmuext_op *op) { struct multicall_space mcs; struct mmuext_op *u; mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); if (mcs.mc != NULL) { mcs.mc->args[1]++; } else { mcs = __xen_mc_entry(sizeof(*u)); MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); } u = mcs.args; *u = *op; } static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) { struct mmu_update u; preempt_disable(); xen_mc_batch(); /* ptr may be ioremapped for 64-bit pagetable setup */ u.ptr = arbitrary_virt_to_machine(ptr).maddr; u.val = pmd_val_ma(val); xen_extend_mmu_update(&u); xen_mc_issue(PARAVIRT_LAZY_MMU); preempt_enable(); } static void xen_set_pmd(pmd_t *ptr, pmd_t val) { trace_xen_mmu_set_pmd(ptr, val); /* If page is not pinned, we can just update the entry directly */ if (!xen_page_pinned(ptr)) { *ptr = val; return; } xen_set_pmd_hyper(ptr, val); } /* * Associate a virtual page frame with a given physical page frame * and protection flags for that frame. */ void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) { if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags), UVMF_INVLPG)) BUG(); } static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) { struct mmu_update u; if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) return false; xen_mc_batch(); u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; u.val = pte_val_ma(pteval); xen_extend_mmu_update(&u); xen_mc_issue(PARAVIRT_LAZY_MMU); return true; } static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) { if (!xen_batched_set_pte(ptep, pteval)) { /* * Could call native_set_pte() here and trap and * emulate the PTE write, but a hypercall is much cheaper. */ struct mmu_update u; u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; u.val = pte_val_ma(pteval); HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); } } static void xen_set_pte(pte_t *ptep, pte_t pteval) { trace_xen_mmu_set_pte(ptep, pteval); __xen_set_pte(ptep, pteval); } pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { /* Just return the pte as-is. We preserve the bits on commit */ trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep); return *ptep; } void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t pte) { struct mmu_update u; trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte); xen_mc_batch(); u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; u.val = pte_val_ma(pte); xen_extend_mmu_update(&u); xen_mc_issue(PARAVIRT_LAZY_MMU); } /* Assume pteval_t is equivalent to all the other *val_t types. */ static pteval_t pte_mfn_to_pfn(pteval_t val) { if (val & _PAGE_PRESENT) { unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; unsigned long pfn = mfn_to_pfn(mfn); pteval_t flags = val & PTE_FLAGS_MASK; if (unlikely(pfn == ~0)) val = flags & ~_PAGE_PRESENT; else val = ((pteval_t)pfn << PAGE_SHIFT) | flags; } return val; } static pteval_t pte_pfn_to_mfn(pteval_t val) { if (val & _PAGE_PRESENT) { unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; pteval_t flags = val & PTE_FLAGS_MASK; unsigned long mfn; mfn = __pfn_to_mfn(pfn); /* * If there's no mfn for the pfn, then just create an * empty non-present pte. Unfortunately this loses * information about the original pfn, so * pte_mfn_to_pfn is asymmetric. */ if (unlikely(mfn == INVALID_P2M_ENTRY)) { mfn = 0; flags = 0; } else mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); val = ((pteval_t)mfn << PAGE_SHIFT) | flags; } return val; } __visible pteval_t xen_pte_val(pte_t pte) { pteval_t pteval = pte.pte; return pte_mfn_to_pfn(pteval); } PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); __visible pgdval_t xen_pgd_val(pgd_t pgd) { return pte_mfn_to_pfn(pgd.pgd); } PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); __visible pte_t xen_make_pte(pteval_t pte) { pte = pte_pfn_to_mfn(pte); return native_make_pte(pte); } PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); __visible pgd_t xen_make_pgd(pgdval_t pgd) { pgd = pte_pfn_to_mfn(pgd); return native_make_pgd(pgd); } PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); __visible pmdval_t xen_pmd_val(pmd_t pmd) { return pte_mfn_to_pfn(pmd.pmd); } PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); static void xen_set_pud_hyper(pud_t *ptr, pud_t val) { struct mmu_update u; preempt_disable(); xen_mc_batch(); /* ptr may be ioremapped for 64-bit pagetable setup */ u.ptr = arbitrary_virt_to_machine(ptr).maddr; u.val = pud_val_ma(val); xen_extend_mmu_update(&u); xen_mc_issue(PARAVIRT_LAZY_MMU); preempt_enable(); } static void xen_set_pud(pud_t *ptr, pud_t val) { trace_xen_mmu_set_pud(ptr, val); /* If page is not pinned, we can just update the entry directly */ if (!xen_page_pinned(ptr)) { *ptr = val; return; } xen_set_pud_hyper(ptr, val); } __visible pmd_t xen_make_pmd(pmdval_t pmd) { pmd = pte_pfn_to_mfn(pmd); return native_make_pmd(pmd); } PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); __visible pudval_t xen_pud_val(pud_t pud) { return pte_mfn_to_pfn(pud.pud); } PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); __visible pud_t xen_make_pud(pudval_t pud) { pud = pte_pfn_to_mfn(pud); return native_make_pud(pud); } PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); static pgd_t *xen_get_user_pgd(pgd_t *pgd) { pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); unsigned offset = pgd - pgd_page; pgd_t *user_ptr = NULL; if (offset < pgd_index(USER_LIMIT)) { struct page *page = virt_to_page(pgd_page); user_ptr = (pgd_t *)page->private; if (user_ptr) user_ptr += offset; } return user_ptr; } static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) { struct mmu_update u; u.ptr = virt_to_machine(ptr).maddr; u.val = p4d_val_ma(val); xen_extend_mmu_update(&u); } /* * Raw hypercall-based set_p4d, intended for in early boot before * there's a page structure. This implies: * 1. The only existing pagetable is the kernel's * 2. It is always pinned * 3. It has no user pagetable attached to it */ static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) { preempt_disable(); xen_mc_batch(); __xen_set_p4d_hyper(ptr, val); xen_mc_issue(PARAVIRT_LAZY_MMU); preempt_enable(); } static void xen_set_p4d(p4d_t *ptr, p4d_t val) { pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); pgd_t pgd_val; trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); /* If page is not pinned, we can just update the entry directly */ if (!xen_page_pinned(ptr)) { *ptr = val; if (user_ptr) { WARN_ON(xen_page_pinned(user_ptr)); pgd_val.pgd = p4d_val_ma(val); *user_ptr = pgd_val; } return; } /* If it's pinned, then we can at least batch the kernel and user updates together. */ xen_mc_batch(); __xen_set_p4d_hyper(ptr, val); if (user_ptr) __xen_set_p4d_hyper((p4d_t *)user_ptr, val); xen_mc_issue(PARAVIRT_LAZY_MMU); } #if CONFIG_PGTABLE_LEVELS >= 5 __visible p4dval_t xen_p4d_val(p4d_t p4d) { return pte_mfn_to_pfn(p4d.p4d); } PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); __visible p4d_t xen_make_p4d(p4dval_t p4d) { p4d = pte_pfn_to_mfn(p4d); return native_make_p4d(p4d); } PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, void (*func)(struct mm_struct *mm, struct page *, enum pt_level), bool last, unsigned long limit) { int i, nr; nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; for (i = 0; i < nr; i++) { if (!pmd_none(pmd[i])) (*func)(mm, pmd_page(pmd[i]), PT_PTE); } } static void xen_pud_walk(struct mm_struct *mm, pud_t *pud, void (*func)(struct mm_struct *mm, struct page *, enum pt_level), bool last, unsigned long limit) { int i, nr; nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; for (i = 0; i < nr; i++) { pmd_t *pmd; if (pud_none(pud[i])) continue; pmd = pmd_offset(&pud[i], 0); if (PTRS_PER_PMD > 1) (*func)(mm, virt_to_page(pmd), PT_PMD); xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit); } } static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, void (*func)(struct mm_struct *mm, struct page *, enum pt_level), bool last, unsigned long limit) { pud_t *pud; if (p4d_none(*p4d)) return; pud = pud_offset(p4d, 0); if (PTRS_PER_PUD > 1) (*func)(mm, virt_to_page(pud), PT_PUD); xen_pud_walk(mm, pud, func, last, limit); } /* * (Yet another) pagetable walker. This one is intended for pinning a * pagetable. This means that it walks a pagetable and calls the * callback function on each page it finds making up the page table, * at every level. It walks the entire pagetable, but it only bothers * pinning pte pages which are below limit. In the normal case this * will be STACK_TOP_MAX, but at boot we need to pin up to * FIXADDR_TOP. * * We must skip the Xen hole in the middle of the address space, just after * the big x86-64 virtual hole. */ static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, void (*func)(struct mm_struct *mm, struct page *, enum pt_level), unsigned long limit) { int i, nr; unsigned hole_low = 0, hole_high = 0; /* The limit is the last byte to be touched */ limit--; BUG_ON(limit >= FIXADDR_TOP); /* * 64-bit has a great big hole in the middle of the address * space, which contains the Xen mappings. */ hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); hole_high = pgd_index(GUARD_HOLE_END_ADDR); nr = pgd_index(limit) + 1; for (i = 0; i < nr; i++) { p4d_t *p4d; if (i >= hole_low && i < hole_high) continue; if (pgd_none(pgd[i])) continue; p4d = p4d_offset(&pgd[i], 0); xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); } /* Do the top level last, so that the callbacks can use it as a cue to do final things like tlb flushes. */ (*func)(mm, virt_to_page(pgd), PT_PGD); } static void xen_pgd_walk(struct mm_struct *mm, void (*func)(struct mm_struct *mm, struct page *, enum pt_level), unsigned long limit) { __xen_pgd_walk(mm, mm->pgd, func, limit); } /* If we're using split pte locks, then take the page's lock and return a pointer to it. Otherwise return NULL. */ static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) { spinlock_t *ptl = NULL; #if USE_SPLIT_PTE_PTLOCKS ptl = ptlock_ptr(page); spin_lock_nest_lock(ptl, &mm->page_table_lock); #endif return ptl; } static void xen_pte_unlock(void *v) { spinlock_t *ptl = v; spin_unlock(ptl); } static void xen_do_pin(unsigned level, unsigned long pfn) { struct mmuext_op op; op.cmd = level; op.arg1.mfn = pfn_to_mfn(pfn); xen_extend_mmuext_op(&op); } static void xen_pin_page(struct mm_struct *mm, struct page *page, enum pt_level level) { unsigned pgfl = TestSetPagePinned(page); if (!pgfl) { void *pt = lowmem_page_address(page); unsigned long pfn = page_to_pfn(page); struct multicall_space mcs = __xen_mc_entry(0); spinlock_t *ptl; /* * We need to hold the pagetable lock between the time * we make the pagetable RO and when we actually pin * it. If we don't, then other users may come in and * attempt to update the pagetable by writing it, * which will fail because the memory is RO but not * pinned, so Xen won't do the trap'n'emulate. * * If we're using split pte locks, we can't hold the * entire pagetable's worth of locks during the * traverse, because we may wrap the preempt count (8 * bits). The solution is to mark RO and pin each PTE * page while holding the lock. This means the number * of locks we end up holding is never more than a * batch size (~32 entries, at present). * * If we're not using split pte locks, we needn't pin * the PTE pages independently, because we're * protected by the overall pagetable lock. */ ptl = NULL; if (level == PT_PTE) ptl = xen_pte_lock(page, mm); MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, pfn_pte(pfn, PAGE_KERNEL_RO), level == PT_PGD ? UVMF_TLB_FLUSH : 0); if (ptl) { xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); /* Queue a deferred unlock for when this batch is completed. */ xen_mc_callback(xen_pte_unlock, ptl); } } } /* This is called just after a mm has been created, but it has not been used yet. We need to make sure that its pagetable is all read-only, and can be pinned. */ static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) { pgd_t *user_pgd = xen_get_user_pgd(pgd); trace_xen_mmu_pgd_pin(mm, pgd); xen_mc_batch(); __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT); xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); if (user_pgd) { xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd))); } xen_mc_issue(0); } static void xen_pgd_pin(struct mm_struct *mm) { __xen_pgd_pin(mm, mm->pgd); } /* * On save, we need to pin all pagetables to make sure they get their * mfns turned into pfns. Search the list for any unpinned pgds and pin * them (unpinned pgds are not currently in use, probably because the * process is under construction or destruction). * * Expected to be called in stop_machine() ("equivalent to taking * every spinlock in the system"), so the locking doesn't really * matter all that much. */ void xen_mm_pin_all(void) { struct page *page; spin_lock(&pgd_lock); list_for_each_entry(page, &pgd_list, lru) { if (!PagePinned(page)) { __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); SetPageSavePinned(page); } } spin_unlock(&pgd_lock); } static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page, enum pt_level level) { SetPagePinned(page); } /* * The init_mm pagetable is really pinned as soon as its created, but * that's before we have page structures to store the bits. So do all * the book-keeping now once struct pages for allocated pages are * initialized. This happens only after memblock_free_all() is called. */ static void __init xen_after_bootmem(void) { static_branch_enable(&xen_struct_pages_ready); #ifdef CONFIG_X86_VSYSCALL_EMULATION SetPagePinned(virt_to_page(level3_user_vsyscall)); #endif xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); } static void xen_unpin_page(struct mm_struct *mm, struct page *page, enum pt_level level) { unsigned pgfl = TestClearPagePinned(page); if (pgfl) { void *pt = lowmem_page_address(page); unsigned long pfn = page_to_pfn(page); spinlock_t *ptl = NULL; struct multicall_space mcs; /* * Do the converse to pin_page. If we're using split * pte locks, we must be holding the lock for while * the pte page is unpinned but still RO to prevent * concurrent updates from seeing it in this * partially-pinned state. */ if (level == PT_PTE) { ptl = xen_pte_lock(page, mm); if (ptl) xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); } mcs = __xen_mc_entry(0); MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, pfn_pte(pfn, PAGE_KERNEL), level == PT_PGD ? UVMF_TLB_FLUSH : 0); if (ptl) { /* unlock when batch completed */ xen_mc_callback(xen_pte_unlock, ptl); } } } /* Release a pagetables pages back as normal RW */ static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) { pgd_t *user_pgd = xen_get_user_pgd(pgd); trace_xen_mmu_pgd_unpin(mm, pgd); xen_mc_batch(); xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); if (user_pgd) { xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd))); xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); } __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); xen_mc_issue(0); } static void xen_pgd_unpin(struct mm_struct *mm) { __xen_pgd_unpin(mm, mm->pgd); } /* * On resume, undo any pinning done at save, so that the rest of the * kernel doesn't see any unexpected pinned pagetables. */ void xen_mm_unpin_all(void) { struct page *page; spin_lock(&pgd_lock); list_for_each_entry(page, &pgd_list, lru) { if (PageSavePinned(page)) { BUG_ON(!PagePinned(page)); __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); ClearPageSavePinned(page); } } spin_unlock(&pgd_lock); } static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) { spin_lock(&next->page_table_lock); xen_pgd_pin(next); spin_unlock(&next->page_table_lock); } static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { spin_lock(&mm->page_table_lock); xen_pgd_pin(mm); spin_unlock(&mm->page_table_lock); } static void drop_mm_ref_this_cpu(void *info) { struct mm_struct *mm = info; if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) leave_mm(smp_processor_id()); /* * If this cpu still has a stale cr3 reference, then make sure * it has been flushed. */ if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) xen_mc_flush(); } #ifdef CONFIG_SMP /* * Another cpu may still have their %cr3 pointing at the pagetable, so * we need to repoint it somewhere else before we can unpin it. */ static void xen_drop_mm_ref(struct mm_struct *mm) { cpumask_var_t mask; unsigned cpu; drop_mm_ref_this_cpu(mm); /* Get the "official" set of cpus referring to our pagetable. */ if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { for_each_online_cpu(cpu) { if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) continue; smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); } return; } /* * It's possible that a vcpu may have a stale reference to our * cr3, because its in lazy mode, and it hasn't yet flushed * its set of pending hypercalls yet. In this case, we can * look at its actual current cr3 value, and force it to flush * if needed. */ cpumask_clear(mask); for_each_online_cpu(cpu) { if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) cpumask_set_cpu(cpu, mask); } smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); free_cpumask_var(mask); } #else static void xen_drop_mm_ref(struct mm_struct *mm) { drop_mm_ref_this_cpu(mm); } #endif /* * While a process runs, Xen pins its pagetables, which means that the * hypervisor forces it to be read-only, and it controls all updates * to it. This means that all pagetable updates have to go via the * hypervisor, which is moderately expensive. * * Since we're pulling the pagetable down, we switch to use init_mm, * unpin old process pagetable and mark it all read-write, which * allows further operations on it to be simple memory accesses. * * The only subtle point is that another CPU may be still using the * pagetable because of lazy tlb flushing. This means we need need to * switch all CPUs off this pagetable before we can unpin it. */ static void xen_exit_mmap(struct mm_struct *mm) { get_cpu(); /* make sure we don't move around */ xen_drop_mm_ref(mm); put_cpu(); spin_lock(&mm->page_table_lock); /* pgd may not be pinned in the error exit path of execve */ if (xen_page_pinned(mm->pgd)) xen_pgd_unpin(mm); spin_unlock(&mm->page_table_lock); } static void xen_post_allocator_init(void); static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) { struct mmuext_op op; op.cmd = cmd; op.arg1.mfn = pfn_to_mfn(pfn); if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) BUG(); } static void __init xen_cleanhighmap(unsigned long vaddr, unsigned long vaddr_end) { unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); /* NOTE: The loop is more greedy than the cleanup_highmap variant. * We include the PMD passed in on _both_ boundaries. */ for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); pmd++, vaddr += PMD_SIZE) { if (pmd_none(*pmd)) continue; if (vaddr < (unsigned long) _text || vaddr > kernel_end) set_pmd(pmd, __pmd(0)); } /* In case we did something silly, we should crash in this function * instead of somewhere later and be confusing. */ xen_mc_flush(); } /* * Make a page range writeable and free it. */ static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) { void *vaddr = __va(paddr); void *vaddr_end = vaddr + size; for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) make_lowmem_page_readwrite(vaddr); memblock_phys_free(paddr, size); } static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) { unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; if (unpin) pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); ClearPagePinned(virt_to_page(__va(pa))); xen_free_ro_pages(pa, PAGE_SIZE); } static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) { unsigned long pa; pte_t *pte_tbl; int i; if (pmd_large(*pmd)) { pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; xen_free_ro_pages(pa, PMD_SIZE); return; } pte_tbl = pte_offset_kernel(pmd, 0); for (i = 0; i < PTRS_PER_PTE; i++) { if (pte_none(pte_tbl[i])) continue; pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; xen_free_ro_pages(pa, PAGE_SIZE); } set_pmd(pmd, __pmd(0)); xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); } static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) { unsigned long pa; pmd_t *pmd_tbl; int i; if (pud_large(*pud)) { pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; xen_free_ro_pages(pa, PUD_SIZE); return; } pmd_tbl = pmd_offset(pud, 0); for (i = 0; i < PTRS_PER_PMD; i++) { if (pmd_none(pmd_tbl[i])) continue; xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); } set_pud(pud, __pud(0)); xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); } static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) { unsigned long pa; pud_t *pud_tbl; int i; if (p4d_large(*p4d)) { pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; xen_free_ro_pages(pa, P4D_SIZE); return; } pud_tbl = pud_offset(p4d, 0); for (i = 0; i < PTRS_PER_PUD; i++) { if (pud_none(pud_tbl[i])) continue; xen_cleanmfnmap_pud(pud_tbl + i, unpin); } set_p4d(p4d, __p4d(0)); xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); } /* * Since it is well isolated we can (and since it is perhaps large we should) * also free the page tables mapping the initial P->M table. */ static void __init xen_cleanmfnmap(unsigned long vaddr) { pgd_t *pgd; p4d_t *p4d; bool unpin; unpin = (vaddr == 2 * PGDIR_SIZE); vaddr &= PMD_MASK; pgd = pgd_offset_k(vaddr); p4d = p4d_offset(pgd, 0); if (!p4d_none(*p4d)) xen_cleanmfnmap_p4d(p4d, unpin); } static void __init xen_pagetable_p2m_free(void) { unsigned long size; unsigned long addr; size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); /* No memory or already called. */ if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) return; /* using __ka address and sticking INVALID_P2M_ENTRY! */ memset((void *)xen_start_info->mfn_list, 0xff, size); addr = xen_start_info->mfn_list; /* * We could be in __ka space. * We roundup to the PMD, which means that if anybody at this stage is * using the __ka address of xen_start_info or * xen_start_info->shared_info they are in going to crash. Fortunately * we have already revectored in xen_setup_kernel_pagetable. */ size = roundup(size, PMD_SIZE); if (addr >= __START_KERNEL_map) { xen_cleanhighmap(addr, addr + size); size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); memblock_free((void *)addr, size); } else { xen_cleanmfnmap(addr); } } static void __init xen_pagetable_cleanhighmap(void) { unsigned long size; unsigned long addr; /* At this stage, cleanup_highmap has already cleaned __ka space * from _brk_limit way up to the max_pfn_mapped (which is the end of * the ramdisk). We continue on, erasing PMD entries that point to page * tables - do note that they are accessible at this stage via __va. * As Xen is aligning the memory end to a 4MB boundary, for good * measure we also round up to PMD_SIZE * 2 - which means that if * anybody is using __ka address to the initial boot-stack - and try * to use it - they are going to crash. The xen_start_info has been * taken care of already in xen_setup_kernel_pagetable. */ addr = xen_start_info->pt_base; size = xen_start_info->nr_pt_frames * PAGE_SIZE; xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); } static void __init xen_pagetable_p2m_setup(void) { xen_vmalloc_p2m_tree(); xen_pagetable_p2m_free(); xen_pagetable_cleanhighmap(); /* And revector! Bye bye old array */ xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; } static void __init xen_pagetable_init(void) { /* * The majority of further PTE writes is to pagetables already * announced as such to Xen. Hence it is more efficient to use * hypercalls for these updates. */ pv_ops.mmu.set_pte = __xen_set_pte; paging_init(); xen_post_allocator_init(); xen_pagetable_p2m_setup(); /* Allocate and initialize top and mid mfn levels for p2m structure */ xen_build_mfn_list_list(); /* Remap memory freed due to conflicts with E820 map */ xen_remap_memory(); xen_setup_mfn_list_list(); } static noinstr void xen_write_cr2(unsigned long cr2) { this_cpu_read(xen_vcpu)->arch.cr2 = cr2; } static noinline void xen_flush_tlb(void) { struct mmuext_op *op; struct multicall_space mcs; preempt_disable(); mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_TLB_FLUSH_LOCAL; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU); preempt_enable(); } static void xen_flush_tlb_one_user(unsigned long addr) { struct mmuext_op *op; struct multicall_space mcs; trace_xen_mmu_flush_tlb_one_user(addr); preempt_disable(); mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_INVLPG_LOCAL; op->arg1.linear_addr = addr & PAGE_MASK; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU); preempt_enable(); } static void xen_flush_tlb_multi(const struct cpumask *cpus, const struct flush_tlb_info *info) { struct { struct mmuext_op op; DECLARE_BITMAP(mask, NR_CPUS); } *args; struct multicall_space mcs; const size_t mc_entry_size = sizeof(args->op) + sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end); if (cpumask_empty(cpus)) return; /* nothing to do */ mcs = xen_mc_entry(mc_entry_size); args = mcs.args; args->op.arg2.vcpumask = to_cpumask(args->mask); /* Remove any offline CPUs */ cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; if (info->end != TLB_FLUSH_ALL && (info->end - info->start) <= PAGE_SIZE) { args->op.cmd = MMUEXT_INVLPG_MULTI; args->op.arg1.linear_addr = info->start; } MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU); } static unsigned long xen_read_cr3(void) { return this_cpu_read(xen_cr3); } static void set_current_cr3(void *v) { this_cpu_write(xen_current_cr3, (unsigned long)v); } static void __xen_write_cr3(bool kernel, unsigned long cr3) { struct mmuext_op op; unsigned long mfn; trace_xen_mmu_write_cr3(kernel, cr3); if (cr3) mfn = pfn_to_mfn(PFN_DOWN(cr3)); else mfn = 0; WARN_ON(mfn == 0 && kernel); op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; op.arg1.mfn = mfn; xen_extend_mmuext_op(&op); if (kernel) { this_cpu_write(xen_cr3, cr3); /* Update xen_current_cr3 once the batch has actually been submitted. */ xen_mc_callback(set_current_cr3, (void *)cr3); } } static void xen_write_cr3(unsigned long cr3) { pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); BUG_ON(preemptible()); xen_mc_batch(); /* disables interrupts */ /* Update while interrupts are disabled, so its atomic with respect to ipis */ this_cpu_write(xen_cr3, cr3); __xen_write_cr3(true, cr3); if (user_pgd) __xen_write_cr3(false, __pa(user_pgd)); else __xen_write_cr3(false, 0); xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ } /* * At the start of the day - when Xen launches a guest, it has already * built pagetables for the guest. We diligently look over them * in xen_setup_kernel_pagetable and graft as appropriate them in the * init_top_pgt and its friends. Then when we are happy we load * the new init_top_pgt - and continue on. * * The generic code starts (start_kernel) and 'init_mem_mapping' sets * up the rest of the pagetables. When it has completed it loads the cr3. * N.B. that baremetal would start at 'start_kernel' (and the early * #PF handler would create bootstrap pagetables) - so we are running * with the same assumptions as what to do when write_cr3 is executed * at this point. * * Since there are no user-page tables at all, we have two variants * of xen_write_cr3 - the early bootup (this one), and the late one * (xen_write_cr3). The reason we have to do that is that in 64-bit * the Linux kernel and user-space are both in ring 3 while the * hypervisor is in ring 0. */ static void __init xen_write_cr3_init(unsigned long cr3) { BUG_ON(preemptible()); xen_mc_batch(); /* disables interrupts */ /* Update while interrupts are disabled, so its atomic with respect to ipis */ this_cpu_write(xen_cr3, cr3); __xen_write_cr3(true, cr3); xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ } static int xen_pgd_alloc(struct mm_struct *mm) { pgd_t *pgd = mm->pgd; struct page *page = virt_to_page(pgd); pgd_t *user_pgd; int ret = -ENOMEM; BUG_ON(PagePinned(virt_to_page(pgd))); BUG_ON(page->private != 0); user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); page->private = (unsigned long)user_pgd; if (user_pgd != NULL) { #ifdef CONFIG_X86_VSYSCALL_EMULATION user_pgd[pgd_index(VSYSCALL_ADDR)] = __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); #endif ret = 0; } BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); return ret; } static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) { pgd_t *user_pgd = xen_get_user_pgd(pgd); if (user_pgd) free_page((unsigned long)user_pgd); } /* * Init-time set_pte while constructing initial pagetables, which * doesn't allow RO page table pages to be remapped RW. * * If there is no MFN for this PFN then this page is initially * ballooned out so clear the PTE (as in decrease_reservation() in * drivers/xen/balloon.c). * * Many of these PTE updates are done on unpinned and writable pages * and doing a hypercall for these is unnecessary and expensive. At * this point it is rarely possible to tell if a page is pinned, so * mostly write the PTE directly and rely on Xen trapping and * emulating any updates as necessary. */ static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) { if (unlikely(is_early_ioremap_ptep(ptep))) __xen_set_pte(ptep, pte); else native_set_pte(ptep, pte); } __visible pte_t xen_make_pte_init(pteval_t pte) { unsigned long pfn; /* * Pages belonging to the initial p2m list mapped outside the default * address range must be mapped read-only. This region contains the * page tables for mapping the p2m list, too, and page tables MUST be * mapped read-only. */ pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; if (xen_start_info->mfn_list < __START_KERNEL_map && pfn >= xen_start_info->first_p2m_pfn && pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) pte &= ~_PAGE_RW; pte = pte_pfn_to_mfn(pte); return native_make_pte(pte); } PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); /* Early in boot, while setting up the initial pagetable, assume everything is pinned. */ static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) { #ifdef CONFIG_FLATMEM BUG_ON(mem_map); /* should only be used early */ #endif make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); } /* Used for pmd and pud */ static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) { #ifdef CONFIG_FLATMEM BUG_ON(mem_map); /* should only be used early */ #endif make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); } /* Early release_pte assumes that all pts are pinned, since there's only init_mm and anything attached to that is pinned. */ static void __init xen_release_pte_init(unsigned long pfn) { pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); } static void __init xen_release_pmd_init(unsigned long pfn) { make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); } static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) { struct multicall_space mcs; struct mmuext_op *op; mcs = __xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = cmd; op->arg1.mfn = pfn_to_mfn(pfn); MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); } static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) { struct multicall_space mcs; unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); mcs = __xen_mc_entry(0); MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, pfn_pte(pfn, prot), 0); } /* This needs to make sure the new pte page is pinned iff its being attached to a pinned pagetable. */ static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) { bool pinned = xen_page_pinned(mm->pgd); trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); if (pinned) { struct page *page = pfn_to_page(pfn); pinned = false; if (static_branch_likely(&xen_struct_pages_ready)) { pinned = PagePinned(page); SetPagePinned(page); } xen_mc_batch(); __set_pfn_prot(pfn, PAGE_KERNEL_RO); if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned) __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); xen_mc_issue(PARAVIRT_LAZY_MMU); } } static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) { xen_alloc_ptpage(mm, pfn, PT_PTE); } static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) { xen_alloc_ptpage(mm, pfn, PT_PMD); } /* This should never happen until we're OK to use struct page */ static inline void xen_release_ptpage(unsigned long pfn, unsigned level) { struct page *page = pfn_to_page(pfn); bool pinned = PagePinned(page); trace_xen_mmu_release_ptpage(pfn, level, pinned); if (pinned) { xen_mc_batch(); if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); __set_pfn_prot(pfn, PAGE_KERNEL); xen_mc_issue(PARAVIRT_LAZY_MMU); ClearPagePinned(page); } } static void xen_release_pte(unsigned long pfn) { xen_release_ptpage(pfn, PT_PTE); } static void xen_release_pmd(unsigned long pfn) { xen_release_ptpage(pfn, PT_PMD); } static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) { xen_alloc_ptpage(mm, pfn, PT_PUD); } static void xen_release_pud(unsigned long pfn) { xen_release_ptpage(pfn, PT_PUD); } /* * Like __va(), but returns address in the kernel mapping (which is * all we have until the physical memory mapping has been set up. */ static void * __init __ka(phys_addr_t paddr) { return (void *)(paddr + __START_KERNEL_map); } /* Convert a machine address to physical address */ static unsigned long __init m2p(phys_addr_t maddr) { phys_addr_t paddr; maddr &= XEN_PTE_MFN_MASK; paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; return paddr; } /* Convert a machine address to kernel virtual */ static void * __init m2v(phys_addr_t maddr) { return __ka(m2p(maddr)); } /* Set the page permissions on an identity-mapped pages */ static void __init set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags) { unsigned long pfn = __pa(addr) >> PAGE_SHIFT; pte_t pte = pfn_pte(pfn, prot); if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) BUG(); } static void __init set_page_prot(void *addr, pgprot_t prot) { return set_page_prot_flags(addr, prot, UVMF_NONE); } void __init xen_setup_machphys_mapping(void) { struct xen_machphys_mapping mapping; if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { machine_to_phys_mapping = (unsigned long *)mapping.v_start; machine_to_phys_nr = mapping.max_mfn + 1; } else { machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; } } static void __init convert_pfn_mfn(void *v) { pte_t *pte = v; int i; /* All levels are converted the same way, so just treat them as ptes. */ for (i = 0; i < PTRS_PER_PTE; i++) pte[i] = xen_make_pte(pte[i].pte); } static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, unsigned long addr) { if (*pt_base == PFN_DOWN(__pa(addr))) { set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); clear_page((void *)addr); (*pt_base)++; } if (*pt_end == PFN_DOWN(__pa(addr))) { set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); clear_page((void *)addr); (*pt_end)--; } } /* * Set up the initial kernel pagetable. * * We can construct this by grafting the Xen provided pagetable into * head_64.S's preconstructed pagetables. We copy the Xen L2's into * level2_ident_pgt, and level2_kernel_pgt. This means that only the * kernel has a physical mapping to start with - but that's enough to * get __va working. We need to fill in the rest of the physical * mapping once some sort of allocator has been set up. */ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) { pud_t *l3; pmd_t *l2; unsigned long addr[3]; unsigned long pt_base, pt_end; unsigned i; /* max_pfn_mapped is the last pfn mapped in the initial memory * mappings. Considering that on Xen after the kernel mappings we * have the mappings of some pages that don't exist in pfn space, we * set max_pfn_mapped to the last real pfn mapped. */ if (xen_start_info->mfn_list < __START_KERNEL_map) max_pfn_mapped = xen_start_info->first_p2m_pfn; else max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); pt_end = pt_base + xen_start_info->nr_pt_frames; /* Zap identity mapping */ init_top_pgt[0] = __pgd(0); /* Pre-constructed entries are in pfn, so convert to mfn */ /* L4[273] -> level3_ident_pgt */ /* L4[511] -> level3_kernel_pgt */ convert_pfn_mfn(init_top_pgt); /* L3_i[0] -> level2_ident_pgt */ convert_pfn_mfn(level3_ident_pgt); /* L3_k[510] -> level2_kernel_pgt */ /* L3_k[511] -> level2_fixmap_pgt */ convert_pfn_mfn(level3_kernel_pgt); /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ convert_pfn_mfn(level2_fixmap_pgt); /* We get [511][511] and have Xen's version of level2_kernel_pgt */ l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); addr[0] = (unsigned long)pgd; addr[1] = (unsigned long)l3; addr[2] = (unsigned long)l2; /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: * Both L4[273][0] and L4[511][510] have entries that point to the same * L2 (PMD) tables. Meaning that if you modify it in __va space * it will be also modified in the __ka space! (But if you just * modify the PMD table to point to other PTE's or none, then you * are OK - which is what cleanup_highmap does) */ copy_page(level2_ident_pgt, l2); /* Graft it onto L4[511][510] */ copy_page(level2_kernel_pgt, l2); /* * Zap execute permission from the ident map. Due to the sharing of * L1 entries we need to do this in the L2. */ if (__supported_pte_mask & _PAGE_NX) { for (i = 0; i < PTRS_PER_PMD; ++i) { if (pmd_none(level2_ident_pgt[i])) continue; level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); } } /* Copy the initial P->M table mappings if necessary. */ i = pgd_index(xen_start_info->mfn_list); if (i && i < pgd_index(__START_KERNEL_map)) init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; /* Make pagetable pieces RO */ set_page_prot(init_top_pgt, PAGE_KERNEL_RO); set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); for (i = 0; i < FIXMAP_PMD_NUM; i++) { set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, PAGE_KERNEL_RO); } /* Pin down new L4 */ pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa_symbol(init_top_pgt))); /* Unpin Xen-provided one */ pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); #ifdef CONFIG_X86_VSYSCALL_EMULATION /* Pin user vsyscall L3 */ set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa_symbol(level3_user_vsyscall))); #endif /* * At this stage there can be no user pgd, and no page structure to * attach it to, so make sure we just set kernel pgd. */ xen_mc_batch(); __xen_write_cr3(true, __pa(init_top_pgt)); xen_mc_issue(PARAVIRT_LAZY_CPU); /* We can't that easily rip out L3 and L2, as the Xen pagetables are * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for * the initial domain. For guests using the toolstack, they are in: * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only * rip out the [L4] (pgd), but for guests we shave off three pages. */ for (i = 0; i < ARRAY_SIZE(addr); i++) check_pt_base(&pt_base, &pt_end, addr[i]); /* Our (by three pages) smaller Xen pagetable that we are using */ xen_pt_base = PFN_PHYS(pt_base); xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; memblock_reserve(xen_pt_base, xen_pt_size); /* Revector the xen_start_info */ xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); } /* * Read a value from a physical address. */ static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) { unsigned long *vaddr; unsigned long val; vaddr = early_memremap_ro(addr, sizeof(val)); val = *vaddr; early_memunmap(vaddr, sizeof(val)); return val; } /* * Translate a virtual address to a physical one without relying on mapped * page tables. Don't rely on big pages being aligned in (guest) physical * space! */ static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) { phys_addr_t pa; pgd_t pgd; pud_t pud; pmd_t pmd; pte_t pte; pa = read_cr3_pa(); pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * sizeof(pgd))); if (!pgd_present(pgd)) return 0; pa = pgd_val(pgd) & PTE_PFN_MASK; pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * sizeof(pud))); if (!pud_present(pud)) return 0; pa = pud_val(pud) & PTE_PFN_MASK; if (pud_large(pud)) return pa + (vaddr & ~PUD_MASK); pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * sizeof(pmd))); if (!pmd_present(pmd)) return 0; pa = pmd_val(pmd) & PTE_PFN_MASK; if (pmd_large(pmd)) return pa + (vaddr & ~PMD_MASK); pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * sizeof(pte))); if (!pte_present(pte)) return 0; pa = pte_pfn(pte) << PAGE_SHIFT; return pa | (vaddr & ~PAGE_MASK); } /* * Find a new area for the hypervisor supplied p2m list and relocate the p2m to * this area. */ void __init xen_relocate_p2m(void) { phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; pte_t *pt; pmd_t *pmd; pud_t *pud; pgd_t *pgd; unsigned long *new_p2m; size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; n_frames = n_pte + n_pt + n_pmd + n_pud; new_area = xen_find_free_area(PFN_PHYS(n_frames)); if (!new_area) { xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); BUG(); } /* * Setup the page tables for addressing the new p2m list. * We have asked the hypervisor to map the p2m list at the user address * PUD_SIZE. It may have done so, or it may have used a kernel space * address depending on the Xen version. * To avoid any possible virtual address collision, just use * 2 * PUD_SIZE for the new area. */ pud_phys = new_area; pmd_phys = pud_phys + PFN_PHYS(n_pud); pt_phys = pmd_phys + PFN_PHYS(n_pmd); p2m_pfn = PFN_DOWN(pt_phys) + n_pt; pgd = __va(read_cr3_pa()); new_p2m = (unsigned long *)(2 * PGDIR_SIZE); for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { pud = early_memremap(pud_phys, PAGE_SIZE); clear_page(pud); for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); idx_pmd++) { pmd = early_memremap(pmd_phys, PAGE_SIZE); clear_page(pmd); for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); idx_pt++) { pt = early_memremap(pt_phys, PAGE_SIZE); clear_page(pt); for (idx_pte = 0; idx_pte < min(n_pte, PTRS_PER_PTE); idx_pte++) { pt[idx_pte] = pfn_pte(p2m_pfn, PAGE_KERNEL); p2m_pfn++; } n_pte -= PTRS_PER_PTE; early_memunmap(pt, PAGE_SIZE); make_lowmem_page_readonly(__va(pt_phys)); pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, PFN_DOWN(pt_phys)); pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys); pt_phys += PAGE_SIZE; } n_pt -= PTRS_PER_PMD; early_memunmap(pmd, PAGE_SIZE); make_lowmem_page_readonly(__va(pmd_phys)); pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, PFN_DOWN(pmd_phys)); pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys); pmd_phys += PAGE_SIZE; } n_pmd -= PTRS_PER_PUD; early_memunmap(pud, PAGE_SIZE); make_lowmem_page_readonly(__va(pud_phys)); pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); pud_phys += PAGE_SIZE; } /* Now copy the old p2m info to the new area. */ memcpy(new_p2m, xen_p2m_addr, size); xen_p2m_addr = new_p2m; /* Release the old p2m list and set new list info. */ p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); BUG_ON(!p2m_pfn); p2m_pfn_end = p2m_pfn + PFN_DOWN(size); if (xen_start_info->mfn_list < __START_KERNEL_map) { pfn = xen_start_info->first_p2m_pfn; pfn_end = xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames; set_pgd(pgd + 1, __pgd(0)); } else { pfn = p2m_pfn; pfn_end = p2m_pfn_end; } memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); while (pfn < pfn_end) { if (pfn == p2m_pfn) { pfn = p2m_pfn_end; continue; } make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); pfn++; } xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); xen_start_info->nr_p2m_frames = n_frames; } void __init xen_reserve_special_pages(void) { phys_addr_t paddr; memblock_reserve(__pa(xen_start_info), PAGE_SIZE); if (xen_start_info->store_mfn) { paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); memblock_reserve(paddr, PAGE_SIZE); } if (!xen_initial_domain()) { paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); memblock_reserve(paddr, PAGE_SIZE); } } void __init xen_pt_check_e820(void) { if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); BUG(); } } static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) { pte_t pte; unsigned long vaddr; phys >>= PAGE_SHIFT; switch (idx) { case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: #ifdef CONFIG_X86_VSYSCALL_EMULATION case VSYSCALL_PAGE: #endif /* All local page mappings */ pte = pfn_pte(phys, prot); break; #ifdef CONFIG_X86_LOCAL_APIC case FIX_APIC_BASE: /* maps dummy local APIC */ pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); break; #endif #ifdef CONFIG_X86_IO_APIC case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: /* * We just don't map the IO APIC - all access is via * hypercalls. Keep the address in the pte for reference. */ pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); break; #endif case FIX_PARAVIRT_BOOTMAP: /* This is an MFN, but it isn't an IO mapping from the IO domain */ pte = mfn_pte(phys, prot); break; default: /* By default, set_fixmap is used for hardware mappings */ pte = mfn_pte(phys, prot); break; } vaddr = __fix_to_virt(idx); if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG)) BUG(); #ifdef CONFIG_X86_VSYSCALL_EMULATION /* Replicate changes to map the vsyscall page into the user pagetable vsyscall mapping. */ if (idx == VSYSCALL_PAGE) set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); #endif } static void __init xen_post_allocator_init(void) { pv_ops.mmu.set_pte = xen_set_pte; pv_ops.mmu.set_pmd = xen_set_pmd; pv_ops.mmu.set_pud = xen_set_pud; pv_ops.mmu.set_p4d = xen_set_p4d; /* This will work as long as patching hasn't happened yet (which it hasn't) */ pv_ops.mmu.alloc_pte = xen_alloc_pte; pv_ops.mmu.alloc_pmd = xen_alloc_pmd; pv_ops.mmu.release_pte = xen_release_pte; pv_ops.mmu.release_pmd = xen_release_pmd; pv_ops.mmu.alloc_pud = xen_alloc_pud; pv_ops.mmu.release_pud = xen_release_pud; pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte); pv_ops.mmu.write_cr3 = &xen_write_cr3; } static void xen_leave_lazy_mmu(void) { preempt_disable(); xen_mc_flush(); paravirt_leave_lazy_mmu(); preempt_enable(); } static const typeof(pv_ops) xen_mmu_ops __initconst = { .mmu = { .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2), .write_cr2 = xen_write_cr2, .read_cr3 = xen_read_cr3, .write_cr3 = xen_write_cr3_init, .flush_tlb_user = xen_flush_tlb, .flush_tlb_kernel = xen_flush_tlb, .flush_tlb_one_user = xen_flush_tlb_one_user, .flush_tlb_multi = xen_flush_tlb_multi, .tlb_remove_table = tlb_remove_table, .pgd_alloc = xen_pgd_alloc, .pgd_free = xen_pgd_free, .alloc_pte = xen_alloc_pte_init, .release_pte = xen_release_pte_init, .alloc_pmd = xen_alloc_pmd_init, .release_pmd = xen_release_pmd_init, .set_pte = xen_set_pte_init, .set_pmd = xen_set_pmd_hyper, .ptep_modify_prot_start = xen_ptep_modify_prot_start, .ptep_modify_prot_commit = xen_ptep_modify_prot_commit, .pte_val = PV_CALLEE_SAVE(xen_pte_val), .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), .set_pud = xen_set_pud_hyper, .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), .pud_val = PV_CALLEE_SAVE(xen_pud_val), .make_pud = PV_CALLEE_SAVE(xen_make_pud), .set_p4d = xen_set_p4d_hyper, .alloc_pud = xen_alloc_pmd_init, .release_pud = xen_release_pmd_init, #if CONFIG_PGTABLE_LEVELS >= 5 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), #endif .activate_mm = xen_activate_mm, .dup_mmap = xen_dup_mmap, .exit_mmap = xen_exit_mmap, .lazy_mode = { .enter = paravirt_enter_lazy_mmu, .leave = xen_leave_lazy_mmu, .flush = paravirt_flush_lazy_mmu, }, .set_fixmap = xen_set_fixmap, }, }; void __init xen_init_mmu_ops(void) { x86_init.paging.pagetable_init = xen_pagetable_init; x86_init.hyper.init_after_bootmem = xen_after_bootmem; pv_ops.mmu = xen_mmu_ops.mmu; memset(dummy_mapping, 0xff, PAGE_SIZE); } /* Protected by xen_reservation_lock. */ #define MAX_CONTIG_ORDER 9 /* 2MB */ static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; #define VOID_PTE (mfn_pte(0, __pgprot(0))) static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, unsigned long *in_frames, unsigned long *out_frames) { int i; struct multicall_space mcs; xen_mc_batch(); for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { mcs = __xen_mc_entry(0); if (in_frames) in_frames[i] = virt_to_mfn(vaddr); MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); if (out_frames) out_frames[i] = virt_to_pfn(vaddr); } xen_mc_issue(0); } /* * Update the pfn-to-mfn mappings for a virtual address range, either to * point to an array of mfns, or contiguously from a single starting * mfn. */ static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, unsigned long *mfns, unsigned long first_mfn) { unsigned i, limit; unsigned long mfn; xen_mc_batch(); limit = 1u << order; for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { struct multicall_space mcs; unsigned flags; mcs = __xen_mc_entry(0); if (mfns) mfn = mfns[i]; else mfn = first_mfn + i; if (i < (limit - 1)) flags = 0; else { if (order == 0) flags = UVMF_INVLPG | UVMF_ALL; else flags = UVMF_TLB_FLUSH | UVMF_ALL; } MULTI_update_va_mapping(mcs.mc, vaddr, mfn_pte(mfn, PAGE_KERNEL), flags); set_phys_to_machine(virt_to_pfn(vaddr), mfn); } xen_mc_issue(0); } /* * Perform the hypercall to exchange a region of our pfns to point to * memory with the required contiguous alignment. Takes the pfns as * input, and populates mfns as output. * * Returns a success code indicating whether the hypervisor was able to * satisfy the request or not. */ static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, unsigned long *pfns_in, unsigned long extents_out, unsigned int order_out, unsigned long *mfns_out, unsigned int address_bits) { long rc; int success; struct xen_memory_exchange exchange = { .in = { .nr_extents = extents_in, .extent_order = order_in, .extent_start = pfns_in, .domid = DOMID_SELF }, .out = { .nr_extents = extents_out, .extent_order = order_out, .extent_start = mfns_out, .address_bits = address_bits, .domid = DOMID_SELF } }; BUG_ON(extents_in << order_in != extents_out << order_out); rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); success = (exchange.nr_exchanged == extents_in); BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); BUG_ON(success && (rc != 0)); return success; } int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, unsigned int address_bits, dma_addr_t *dma_handle) { unsigned long *in_frames = discontig_frames, out_frame; unsigned long flags; int success; unsigned long vstart = (unsigned long)phys_to_virt(pstart); /* * Currently an auto-translated guest will not perform I/O, nor will * it require PAE page directories below 4GB. Therefore any calls to * this function are redundant and can be ignored. */ if (unlikely(order > MAX_CONTIG_ORDER)) return -ENOMEM; memset((void *) vstart, 0, PAGE_SIZE << order); spin_lock_irqsave(&xen_reservation_lock, flags); /* 1. Zap current PTEs, remembering MFNs. */ xen_zap_pfn_range(vstart, order, in_frames, NULL); /* 2. Get a new contiguous memory extent. */ out_frame = virt_to_pfn(vstart); success = xen_exchange_memory(1UL << order, 0, in_frames, 1, order, &out_frame, address_bits); /* 3. Map the new extent in place of old pages. */ if (success) xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); else xen_remap_exchanged_ptes(vstart, order, in_frames, 0); spin_unlock_irqrestore(&xen_reservation_lock, flags); *dma_handle = virt_to_machine(vstart).maddr; return success ? 0 : -ENOMEM; } void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) { unsigned long *out_frames = discontig_frames, in_frame; unsigned long flags; int success; unsigned long vstart; if (unlikely(order > MAX_CONTIG_ORDER)) return; vstart = (unsigned long)phys_to_virt(pstart); memset((void *) vstart, 0, PAGE_SIZE << order); spin_lock_irqsave(&xen_reservation_lock, flags); /* 1. Find start MFN of contiguous extent. */ in_frame = virt_to_mfn(vstart); /* 2. Zap current PTEs. */ xen_zap_pfn_range(vstart, order, NULL, out_frames); /* 3. Do the exchange for non-contiguous MFNs. */ success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 0, out_frames, 0); /* 4. Map new pages in place of old pages. */ if (success) xen_remap_exchanged_ptes(vstart, order, out_frames, 0); else xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); spin_unlock_irqrestore(&xen_reservation_lock, flags); } static noinline void xen_flush_tlb_all(void) { struct mmuext_op *op; struct multicall_space mcs; preempt_disable(); mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_TLB_FLUSH_ALL; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU); preempt_enable(); } #define REMAP_BATCH_SIZE 16 struct remap_data { xen_pfn_t *pfn; bool contiguous; bool no_translate; pgprot_t prot; struct mmu_update *mmu_update; }; static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data) { struct remap_data *rmd = data; pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot)); /* * If we have a contiguous range, just update the pfn itself, * else update pointer to be "next pfn". */ if (rmd->contiguous) (*rmd->pfn)++; else rmd->pfn++; rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; rmd->mmu_update->ptr |= rmd->no_translate ? MMU_PT_UPDATE_NO_TRANSLATE : MMU_NORMAL_PT_UPDATE; rmd->mmu_update->val = pte_val_ma(pte); rmd->mmu_update++; return 0; } int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr, xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot, unsigned int domid, bool no_translate) { int err = 0; struct remap_data rmd; struct mmu_update mmu_update[REMAP_BATCH_SIZE]; unsigned long range; int mapped = 0; BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); rmd.pfn = pfn; rmd.prot = prot; /* * We use the err_ptr to indicate if there we are doing a contiguous * mapping or a discontiguous mapping. */ rmd.contiguous = !err_ptr; rmd.no_translate = no_translate; while (nr) { int index = 0; int done = 0; int batch = min(REMAP_BATCH_SIZE, nr); int batch_left = batch; range = (unsigned long)batch << PAGE_SHIFT; rmd.mmu_update = mmu_update; err = apply_to_page_range(vma->vm_mm, addr, range, remap_area_pfn_pte_fn, &rmd); if (err) goto out; /* * We record the error for each page that gives an error, but * continue mapping until the whole set is done */ do { int i; err = HYPERVISOR_mmu_update(&mmu_update[index], batch_left, &done, domid); /* * @err_ptr may be the same buffer as @gfn, so * only clear it after each chunk of @gfn is * used. */ if (err_ptr) { for (i = index; i < index + done; i++) err_ptr[i] = 0; } if (err < 0) { if (!err_ptr) goto out; err_ptr[i] = err; done++; /* Skip failed frame. */ } else mapped += done; batch_left -= done; index += done; } while (batch_left); nr -= batch; addr += range; if (err_ptr) err_ptr += batch; cond_resched(); } out: xen_flush_tlb_all(); return err < 0 ? err : mapped; } EXPORT_SYMBOL_GPL(xen_remap_pfn); #ifdef CONFIG_KEXEC_CORE phys_addr_t paddr_vmcoreinfo_note(void) { if (xen_pv_domain()) return virt_to_machine(vmcoreinfo_note).maddr; else return __pa(vmcoreinfo_note); } #endif /* CONFIG_KEXEC_CORE */ |