Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
// SPDX-License-Identifier: GPL-2.0+
//
// Freescale ALSA SoC Digital Audio Interface (SAI) driver.
//
// Copyright 2012-2015 Freescale Semiconductor, Inc.

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>

#include "fsl_sai.h"
#include "fsl_utils.h"
#include "imx-pcm.h"

#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)

static const unsigned int fsl_sai_rates[] = {
	8000, 11025, 12000, 16000, 22050,
	24000, 32000, 44100, 48000, 64000,
	88200, 96000, 176400, 192000, 352800,
	384000, 705600, 768000, 1411200, 2822400,
};

static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
	.count = ARRAY_SIZE(fsl_sai_rates),
	.list = fsl_sai_rates,
};

/**
 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
 *
 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
 * or Receiver's for both streams. This function is used to check if clocks of
 * the stream's are synced by the opposite stream.
 *
 * @sai: SAI context
 * @dir: stream direction
 */
static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
{
	int adir = (dir == TX) ? RX : TX;

	/* current dir in async mode while opposite dir in sync mode */
	return !sai->synchronous[dir] && sai->synchronous[adir];
}

static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
{
	struct pinctrl_state *state = NULL;

	if (sai->is_pdm_mode) {
		/* DSD512@44.1kHz, DSD512@48kHz */
		if (bclk >= 22579200)
			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");

		/* Get default DSD state */
		if (IS_ERR_OR_NULL(state))
			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
	} else {
		/* 706k32b2c, 768k32b2c, etc */
		if (bclk >= 45158400)
			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
	}

	/* Get default state */
	if (IS_ERR_OR_NULL(state))
		state = pinctrl_lookup_state(sai->pinctrl, "default");

	return state;
}

static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
	struct fsl_sai *sai = (struct fsl_sai *)devid;
	unsigned int ofs = sai->soc_data->reg_offset;
	struct device *dev = &sai->pdev->dev;
	u32 flags, xcsr, mask;
	irqreturn_t iret = IRQ_NONE;

	/*
	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
	 * different shifts. And we here create a mask only for those
	 * IRQs that we activated.
	 */
	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;

	/* Tx IRQ */
	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
	flags = xcsr & mask;

	if (flags)
		iret = IRQ_HANDLED;
	else
		goto irq_rx;

	if (flags & FSL_SAI_CSR_WSF)
		dev_dbg(dev, "isr: Start of Tx word detected\n");

	if (flags & FSL_SAI_CSR_SEF)
		dev_dbg(dev, "isr: Tx Frame sync error detected\n");

	if (flags & FSL_SAI_CSR_FEF)
		dev_dbg(dev, "isr: Transmit underrun detected\n");

	if (flags & FSL_SAI_CSR_FWF)
		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");

	if (flags & FSL_SAI_CSR_FRF)
		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");

	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);

irq_rx:
	/* Rx IRQ */
	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
	flags = xcsr & mask;

	if (flags)
		iret = IRQ_HANDLED;
	else
		goto out;

	if (flags & FSL_SAI_CSR_WSF)
		dev_dbg(dev, "isr: Start of Rx word detected\n");

	if (flags & FSL_SAI_CSR_SEF)
		dev_dbg(dev, "isr: Rx Frame sync error detected\n");

	if (flags & FSL_SAI_CSR_FEF)
		dev_dbg(dev, "isr: Receive overflow detected\n");

	if (flags & FSL_SAI_CSR_FWF)
		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");

	if (flags & FSL_SAI_CSR_FRF)
		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");

	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);

out:
	return iret;
}

static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);

	sai->slots = slots;
	sai->slot_width = slot_width;

	return 0;
}

static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
				      unsigned int ratio)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);

	sai->bclk_ratio = ratio;

	return 0;
}

static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, bool tx)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	unsigned int ofs = sai->soc_data->reg_offset;
	u32 val_cr2 = 0;

	switch (clk_id) {
	case FSL_SAI_CLK_BUS:
		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
		break;
	case FSL_SAI_CLK_MAST1:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
		break;
	case FSL_SAI_CLK_MAST2:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
		break;
	case FSL_SAI_CLK_MAST3:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
		break;
	default:
		return -EINVAL;
	}

	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
			   FSL_SAI_CR2_MSEL_MASK, val_cr2);

	return 0;
}

static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
	int ret;

	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
				     sai->pll8k_clk, sai->pll11k_clk, freq);

	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
	if (ret < 0)
		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);

	return ret;
}

static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	int ret;

	if (dir == SND_SOC_CLOCK_IN)
		return 0;

	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
			return -EINVAL;
		}

		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
			return -EINVAL;
		}

		if (sai->mclk_streams == 0) {
			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
			if (ret < 0)
				return ret;
		}
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
	if (ret) {
		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
		return ret;
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
	if (ret)
		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);

	return ret;
}

static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
				unsigned int fmt, bool tx)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	unsigned int ofs = sai->soc_data->reg_offset;
	u32 val_cr2 = 0, val_cr4 = 0;

	if (!sai->is_lsb_first)
		val_cr4 |= FSL_SAI_CR4_MF;

	sai->is_pdm_mode = false;
	/* DAI mode */
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		/*
		 * Frame low, 1clk before data, one word length for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/*
		 * Frame high, one word length for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/*
		 * Frame high, 1clk before data, one bit for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		val_cr4 |= FSL_SAI_CR4_FSE;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/*
		 * Frame high, one bit for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_PDM:
		val_cr2 |= FSL_SAI_CR2_BCP;
		val_cr4 &= ~FSL_SAI_CR4_MF;
		sai->is_pdm_mode = true;
		break;
	case SND_SOC_DAIFMT_RIGHT_J:
		/* To be done */
	default:
		return -EINVAL;
	}

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		val_cr4 ^= FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		val_cr4 ^= FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock provider masks */
	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
	case SND_SOC_DAIFMT_BP_FP:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		sai->is_consumer_mode = false;
		break;
	case SND_SOC_DAIFMT_BC_FC:
		sai->is_consumer_mode = true;
		break;
	case SND_SOC_DAIFMT_BP_FC:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		sai->is_consumer_mode = false;
		break;
	case SND_SOC_DAIFMT_BC_FP:
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		sai->is_consumer_mode = true;
		break;
	default:
		return -EINVAL;
	}

	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);

	return 0;
}

static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
	int ret;

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
	if (ret) {
		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
		return ret;
	}

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
	if (ret)
		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);

	return ret;
}

static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
	unsigned int reg, ofs = sai->soc_data->reg_offset;
	unsigned long clk_rate;
	u32 savediv = 0, ratio, bestdiff = freq;
	int adir = tx ? RX : TX;
	int dir = tx ? TX : RX;
	u32 id;
	bool support_1_1_ratio = sai->verid.version >= 0x0301;

	/* Don't apply to consumer mode */
	if (sai->is_consumer_mode)
		return 0;

	/*
	 * There is no point in polling MCLK0 if it is identical to MCLK1.
	 * And given that MQS use case has to use MCLK1 though two clocks
	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
	 */
	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;

	for (; id < FSL_SAI_MCLK_MAX; id++) {
		int diff;

		clk_rate = clk_get_rate(sai->mclk_clk[id]);
		if (!clk_rate)
			continue;

		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
		if (!ratio || ratio > 512)
			continue;
		if (ratio == 1 && !support_1_1_ratio)
			continue;
		if ((ratio & 1) && ratio > 1)
			continue;

		diff = abs((long)clk_rate - ratio * freq);

		/*
		 * Drop the source that can not be
		 * divided into the required rate.
		 */
		if (diff != 0 && clk_rate / diff < 1000)
			continue;

		dev_dbg(dai->dev,
			"ratio %d for freq %dHz based on clock %ldHz\n",
			ratio, freq, clk_rate);


		if (diff < bestdiff) {
			savediv = ratio;
			sai->mclk_id[tx] = id;
			bestdiff = diff;
		}

		if (diff == 0)
			break;
	}

	if (savediv == 0) {
		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
				tx ? 'T' : 'R', freq);
		return -EINVAL;
	}

	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
			sai->mclk_id[tx], savediv, bestdiff);

	/*
	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
	 *    set TCR2 register for playback.
	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
	 *    and capture.
	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
	 *    and capture.
	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
	 *    ignore it.
	 */
	if (fsl_sai_dir_is_synced(sai, adir))
		reg = FSL_SAI_xCR2(!tx, ofs);
	else if (!sai->synchronous[dir])
		reg = FSL_SAI_xCR2(tx, ofs);
	else
		return 0;

	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));

	if (savediv == 1)
		regmap_update_bits(sai->regmap, reg,
				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
				   FSL_SAI_CR2_BYP);
	else
		regmap_update_bits(sai->regmap, reg,
				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
				   savediv / 2 - 1);

	if (sai->soc_data->max_register >= FSL_SAI_MCTL) {
		/* SAI is in master mode at this point, so enable MCLK */
		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
	}

	return 0;
}

static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	unsigned int ofs = sai->soc_data->reg_offset;
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	unsigned int channels = params_channels(params);
	struct snd_dmaengine_dai_dma_data *dma_params;
	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
	u32 word_width = params_width(params);
	int trce_mask = 0, dl_cfg_idx = 0;
	int dl_cfg_cnt = sai->dl_cfg_cnt;
	u32 dl_type = FSL_SAI_DL_I2S;
	u32 val_cr4 = 0, val_cr5 = 0;
	u32 slots = (channels == 1) ? 2 : channels;
	u32 slot_width = word_width;
	int adir = tx ? RX : TX;
	u32 pins, bclk;
	u32 watermark;
	int ret, i;

	if (sai->slot_width)
		slot_width = sai->slot_width;

	if (sai->slots)
		slots = sai->slots;
	else if (sai->bclk_ratio)
		slots = sai->bclk_ratio / slot_width;

	pins = DIV_ROUND_UP(channels, slots);

	/*
	 * PDM mode, channels are independent
	 * each channels are on one dataline/FIFO.
	 */
	if (sai->is_pdm_mode) {
		pins = channels;
		dl_type = FSL_SAI_DL_PDM;
	}

	for (i = 0; i < dl_cfg_cnt; i++) {
		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
			dl_cfg_idx = i;
			break;
		}
	}

	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
		dev_err(cpu_dai->dev, "channel not supported\n");
		return -EINVAL;
	}

	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);

	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
		if (!IS_ERR_OR_NULL(sai->pins_state)) {
			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
			if (ret) {
				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
				return ret;
			}
		}
	}

	if (!sai->is_consumer_mode) {
		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
		if (ret)
			return ret;

		/* Do not enable the clock if it is already enabled */
		if (!(sai->mclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
			if (ret)
				return ret;

			sai->mclk_streams |= BIT(substream->stream);
		}
	}

	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);

	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);

	if (sai->is_lsb_first || sai->is_pdm_mode)
		val_cr5 |= FSL_SAI_CR5_FBT(0);
	else
		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);

	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);

	/* Set to output mode to avoid tri-stated data pins */
	if (tx)
		val_cr4 |= FSL_SAI_CR4_CHMOD;

	/*
	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
	 * RCR5(TCR5) for playback(capture), or there will be sync error.
	 */

	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
				   FSL_SAI_CR4_CHMOD_MASK,
				   val_cr4);
		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				   FSL_SAI_CR5_FBT_MASK, val_cr5);
	}

	/*
	 * Combine mode has limation:
	 * - Can't used for singel dataline/FIFO case except the FIFO0
	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
	 *   are successive and start from FIFO0
	 *
	 * So for common usage, all multi fifo case disable the combine mode.
	 */
	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
				   FSL_SAI_CR4_FCOMB_MASK, 0);
	else
		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);

	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;

	if (sai->is_multi_fifo_dma) {
		sai->audio_config[tx].words_per_fifo = min(slots, channels);
		if (tx) {
			sai->audio_config[tx].n_fifos_dst = pins;
			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
		} else {
			sai->audio_config[tx].n_fifos_src = pins;
			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
		}
		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
		dma_params->peripheral_config = &sai->audio_config[tx];
		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);

		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
				 (dma_params->maxburst - 1);
		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
				   watermark);
	}

	/* Find a proper tcre setting */
	for (i = 0; i < sai->soc_data->pins; i++) {
		trce_mask = (1 << (i + 1)) - 1;
		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
			break;
	}

	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
			   FSL_SAI_CR3_TRCE_MASK,
			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));

	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
			   FSL_SAI_CR4_CHMOD_MASK,
			   val_cr4);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
			   FSL_SAI_CR5_FBT_MASK, val_cr5);
	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
		     ~0UL - ((1 << min(channels, slots)) - 1));

	return 0;
}

static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	unsigned int ofs = sai->soc_data->reg_offset;

	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
			   FSL_SAI_CR3_TRCE_MASK, 0);

	if (!sai->is_consumer_mode &&
			sai->mclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
		sai->mclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}

static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
{
	unsigned int ofs = sai->soc_data->reg_offset;
	bool tx = dir == TX;
	u32 xcsr, count = 100;

	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
			   FSL_SAI_CSR_TERE, 0);

	/* TERE will remain set till the end of current frame */
	do {
		udelay(10);
		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
	} while (--count && xcsr & FSL_SAI_CSR_TERE);

	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);

	/*
	 * For sai master mode, after several open/close sai,
	 * there will be no frame clock, and can't recover
	 * anymore. Add software reset to fix this issue.
	 * This is a hardware bug, and will be fix in the
	 * next sai version.
	 */
	if (!sai->is_consumer_mode) {
		/* Software Reset */
		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
		/* Clear SR bit to finish the reset */
		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
	}
}

static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	unsigned int ofs = sai->soc_data->reg_offset;

	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int adir = tx ? RX : TX;
	int dir = tx ? TX : RX;
	u32 xcsr;

	/*
	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);

	/*
	 * It is recommended that the transmitter is the last enabled
	 * and the first disabled.
	 */
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);

		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
		/*
		 * Enable the opposite direction for synchronous mode
		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
		 *
		 * RM recommends to enable RE after TE for case 1 and to enable
		 * TE after RE for case 2, but we here may not always guarantee
		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
		 * TE after RE, which is against what RM recommends but should
		 * be safe to do, judging by years of testing results.
		 */
		if (fsl_sai_dir_is_synced(sai, adir))
			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);

		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
				   FSL_SAI_CSR_FRDE, 0);
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
				   FSL_SAI_CSR_xIE_MASK, 0);

		/* Check if the opposite FRDE is also disabled */
		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);

		/*
		 * If opposite stream provides clocks for synchronous mode and
		 * it is inactive, disable it before disabling the current one
		 */
		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
			fsl_sai_config_disable(sai, adir);

		/*
		 * Disable current stream if either of:
		 * 1. current stream doesn't provide clocks for synchronous mode
		 * 2. current stream provides clocks for synchronous mode but no
		 *    more stream is active.
		 */
		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
			fsl_sai_config_disable(sai, dir);

		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret;

	/*
	 * EDMA controller needs period size to be a multiple of
	 * tx/rx maxburst
	 */
	if (sai->soc_data->use_edma)
		snd_pcm_hw_constraint_step(substream->runtime, 0,
					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
					   tx ? sai->dma_params_tx.maxburst :
					   sai->dma_params_rx.maxburst);

	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);

	return ret;
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
	.set_sysclk	= fsl_sai_set_dai_sysclk,
	.set_fmt	= fsl_sai_set_dai_fmt,
	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
	.hw_params	= fsl_sai_hw_params,
	.hw_free	= fsl_sai_hw_free,
	.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
	unsigned int ofs = sai->soc_data->reg_offset;

	/* Software Reset for both Tx and Rx */
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
	/* Clear SR bit to finish the reset */
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);

	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
			   sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
			   FSL_SAI_MAXBURST_RX - 1);

	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
				&sai->dma_params_rx);

	return 0;
}

static int fsl_sai_dai_resume(struct snd_soc_component *component)
{
	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
	struct device *dev = &sai->pdev->dev;
	int ret;

	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
		if (ret) {
			dev_err(dev, "failed to set proper pins state: %d\n", ret);
			return ret;
		}
	}

	return 0;
}

static struct snd_soc_dai_driver fsl_sai_dai_template = {
	.probe = fsl_sai_dai_probe,
	.playback = {
		.stream_name = "CPU-Playback",
		.channels_min = 1,
		.channels_max = 32,
		.rate_min = 8000,
		.rate_max = 2822400,
		.rates = SNDRV_PCM_RATE_KNOT,
		.formats = FSL_SAI_FORMATS,
	},
	.capture = {
		.stream_name = "CPU-Capture",
		.channels_min = 1,
		.channels_max = 32,
		.rate_min = 8000,
		.rate_max = 2822400,
		.rates = SNDRV_PCM_RATE_KNOT,
		.formats = FSL_SAI_FORMATS,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name			= "fsl-sai",
	.resume			= fsl_sai_dai_resume,
	.legacy_dai_naming	= 1,
};

static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
	{FSL_SAI_TCR1(0), 0},
	{FSL_SAI_TCR2(0), 0},
	{FSL_SAI_TCR3(0), 0},
	{FSL_SAI_TCR4(0), 0},
	{FSL_SAI_TCR5(0), 0},
	{FSL_SAI_TDR0, 0},
	{FSL_SAI_TDR1, 0},
	{FSL_SAI_TDR2, 0},
	{FSL_SAI_TDR3, 0},
	{FSL_SAI_TDR4, 0},
	{FSL_SAI_TDR5, 0},
	{FSL_SAI_TDR6, 0},
	{FSL_SAI_TDR7, 0},
	{FSL_SAI_TMR, 0},
	{FSL_SAI_RCR1(0), 0},
	{FSL_SAI_RCR2(0), 0},
	{FSL_SAI_RCR3(0), 0},
	{FSL_SAI_RCR4(0), 0},
	{FSL_SAI_RCR5(0), 0},
	{FSL_SAI_RMR, 0},
};

static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
	{FSL_SAI_TCR1(8), 0},
	{FSL_SAI_TCR2(8), 0},
	{FSL_SAI_TCR3(8), 0},
	{FSL_SAI_TCR4(8), 0},
	{FSL_SAI_TCR5(8), 0},
	{FSL_SAI_TDR0, 0},
	{FSL_SAI_TDR1, 0},
	{FSL_SAI_TDR2, 0},
	{FSL_SAI_TDR3, 0},
	{FSL_SAI_TDR4, 0},
	{FSL_SAI_TDR5, 0},
	{FSL_SAI_TDR6, 0},
	{FSL_SAI_TDR7, 0},
	{FSL_SAI_TMR, 0},
	{FSL_SAI_RCR1(8), 0},
	{FSL_SAI_RCR2(8), 0},
	{FSL_SAI_RCR3(8), 0},
	{FSL_SAI_RCR4(8), 0},
	{FSL_SAI_RCR5(8), 0},
	{FSL_SAI_RMR, 0},
	{FSL_SAI_MCTL, 0},
	{FSL_SAI_MDIV, 0},
};

static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned int ofs = sai->soc_data->reg_offset;

	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
		return true;

	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
		return true;

	switch (reg) {
	case FSL_SAI_TFR0:
	case FSL_SAI_TFR1:
	case FSL_SAI_TFR2:
	case FSL_SAI_TFR3:
	case FSL_SAI_TFR4:
	case FSL_SAI_TFR5:
	case FSL_SAI_TFR6:
	case FSL_SAI_TFR7:
	case FSL_SAI_TMR:
	case FSL_SAI_RDR0:
	case FSL_SAI_RDR1:
	case FSL_SAI_RDR2:
	case FSL_SAI_RDR3:
	case FSL_SAI_RDR4:
	case FSL_SAI_RDR5:
	case FSL_SAI_RDR6:
	case FSL_SAI_RDR7:
	case FSL_SAI_RFR0:
	case FSL_SAI_RFR1:
	case FSL_SAI_RFR2:
	case FSL_SAI_RFR3:
	case FSL_SAI_RFR4:
	case FSL_SAI_RFR5:
	case FSL_SAI_RFR6:
	case FSL_SAI_RFR7:
	case FSL_SAI_RMR:
	case FSL_SAI_MCTL:
	case FSL_SAI_MDIV:
	case FSL_SAI_VERID:
	case FSL_SAI_PARAM:
	case FSL_SAI_TTCTN:
	case FSL_SAI_RTCTN:
	case FSL_SAI_TTCTL:
	case FSL_SAI_TBCTN:
	case FSL_SAI_TTCAP:
	case FSL_SAI_RTCTL:
	case FSL_SAI_RBCTN:
	case FSL_SAI_RTCAP:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned int ofs = sai->soc_data->reg_offset;

	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
		return true;

	/* Set VERID and PARAM be volatile for reading value in probe */
	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
		return true;

	switch (reg) {
	case FSL_SAI_TFR0:
	case FSL_SAI_TFR1:
	case FSL_SAI_TFR2:
	case FSL_SAI_TFR3:
	case FSL_SAI_TFR4:
	case FSL_SAI_TFR5:
	case FSL_SAI_TFR6:
	case FSL_SAI_TFR7:
	case FSL_SAI_RFR0:
	case FSL_SAI_RFR1:
	case FSL_SAI_RFR2:
	case FSL_SAI_RFR3:
	case FSL_SAI_RFR4:
	case FSL_SAI_RFR5:
	case FSL_SAI_RFR6:
	case FSL_SAI_RFR7:
	case FSL_SAI_RDR0:
	case FSL_SAI_RDR1:
	case FSL_SAI_RDR2:
	case FSL_SAI_RDR3:
	case FSL_SAI_RDR4:
	case FSL_SAI_RDR5:
	case FSL_SAI_RDR6:
	case FSL_SAI_RDR7:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned int ofs = sai->soc_data->reg_offset;

	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
		return true;

	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
		return true;

	switch (reg) {
	case FSL_SAI_TDR0:
	case FSL_SAI_TDR1:
	case FSL_SAI_TDR2:
	case FSL_SAI_TDR3:
	case FSL_SAI_TDR4:
	case FSL_SAI_TDR5:
	case FSL_SAI_TDR6:
	case FSL_SAI_TDR7:
	case FSL_SAI_TMR:
	case FSL_SAI_RMR:
	case FSL_SAI_MCTL:
	case FSL_SAI_MDIV:
	case FSL_SAI_TTCTL:
	case FSL_SAI_RTCTL:
		return true;
	default:
		return false;
	}
}

static struct regmap_config fsl_sai_regmap_config = {
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,
	.fast_io = true,

	.max_register = FSL_SAI_RMR,
	.reg_defaults = fsl_sai_reg_defaults_ofs0,
	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
	.cache_type = REGCACHE_FLAT,
};

static int fsl_sai_check_version(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned char ofs = sai->soc_data->reg_offset;
	unsigned int val;
	int ret;

	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
		return 0;

	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
	if (ret < 0)
		return ret;

	dev_dbg(dev, "VERID: 0x%016X\n", val);

	sai->verid.version = val &
		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
	sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;

	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
	if (ret < 0)
		return ret;

	dev_dbg(dev, "PARAM: 0x%016X\n", val);

	/* Max slots per frame, power of 2 */
	sai->param.slot_num = 1 <<
		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);

	/* Words per fifo, power of 2 */
	sai->param.fifo_depth = 1 <<
		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);

	/* Number of datalines implemented */
	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;

	return 0;
}

/*
 * Calculate the offset between first two datalines, don't
 * different offset in one case.
 */
static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
{
	int fbidx, nbidx, offset;

	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
	offset = nbidx - fbidx - 1;

	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
}

/*
 * read the fsl,dataline property from dts file.
 * It has 3 value for each configuration, first one means the type:
 * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
 * dataline mask for 'tx'. for example
 *
 * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
 *
 * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
 * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
 *
 */
static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
{
	struct platform_device *pdev = sai->pdev;
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	int ret, elems, i, index, num_cfg;
	char *propname = "fsl,dataline";
	struct fsl_sai_dl_cfg *cfg;
	unsigned long dl_mask;
	unsigned int soc_dl;
	u32 rx, tx, type;

	elems = of_property_count_u32_elems(np, propname);

	if (elems <= 0) {
		elems = 0;
	} else if (elems % 3) {
		dev_err(dev, "Number of elements must be divisible to 3.\n");
		return -EINVAL;
	}

	num_cfg = elems / 3;
	/*  Add one more for default value */
	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
	if (!cfg)
		return -ENOMEM;

	/* Consider default value "0 0xFF 0xFF" if property is missing */
	soc_dl = BIT(sai->soc_data->pins) - 1;
	cfg[0].type = FSL_SAI_DL_DEFAULT;
	cfg[0].pins[0] = sai->soc_data->pins;
	cfg[0].mask[0] = soc_dl;
	cfg[0].start_off[0] = 0;
	cfg[0].next_off[0] = 0;

	cfg[0].pins[1] = sai->soc_data->pins;
	cfg[0].mask[1] = soc_dl;
	cfg[0].start_off[1] = 0;
	cfg[0].next_off[1] = 0;
	for (i = 1, index = 0; i < num_cfg + 1; i++) {
		/*
		 * type of dataline
		 * 0 means default mode
		 * 1 means I2S mode
		 * 2 means PDM mode
		 */
		ret = of_property_read_u32_index(np, propname, index++, &type);
		if (ret)
			return -EINVAL;

		ret = of_property_read_u32_index(np, propname, index++, &rx);
		if (ret)
			return -EINVAL;

		ret = of_property_read_u32_index(np, propname, index++, &tx);
		if (ret)
			return -EINVAL;

		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
			return -EINVAL;
		}

		rx = rx & soc_dl;
		tx = tx & soc_dl;

		cfg[i].type = type;
		cfg[i].pins[0] = hweight8(rx);
		cfg[i].mask[0] = rx;
		dl_mask = rx;
		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);

		cfg[i].pins[1] = hweight8(tx);
		cfg[i].mask[1] = tx;
		dl_mask = tx;
		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
	}

	sai->dl_cfg = cfg;
	sai->dl_cfg_cnt = num_cfg + 1;
	return 0;
}

static int fsl_sai_runtime_suspend(struct device *dev);
static int fsl_sai_runtime_resume(struct device *dev);

static int fsl_sai_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct fsl_sai *sai;
	struct regmap *gpr;
	void __iomem *base;
	char tmp[8];
	int irq, ret, i;
	int index;
	u32 dmas[4];

	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

	sai->pdev = pdev;
	sai->soc_data = of_device_get_match_data(dev);

	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");

	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	if (sai->soc_data->reg_offset == 8) {
		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
		fsl_sai_regmap_config.num_reg_defaults =
			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
	}

	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
	if (IS_ERR(sai->regmap)) {
		dev_err(dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
	}

	sai->bus_clk = devm_clk_get(dev, "bus");
	/* Compatible with old DTB cases */
	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
		sai->bus_clk = devm_clk_get(dev, "sai");
	if (IS_ERR(sai->bus_clk)) {
		dev_err(dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
		/* -EPROBE_DEFER */
		return PTR_ERR(sai->bus_clk);
	}

	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i);
		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(dev, "failed to get mclk%d clock: %ld\n",
					i, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

	if (sai->soc_data->mclk0_is_mclk1)
		sai->mclk_clk[0] = sai->mclk_clk[1];
	else
		sai->mclk_clk[0] = sai->bus_clk;

	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
				&sai->pll11k_clk);

	/* Use Multi FIFO mode depending on the support from SDMA script */
	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
		sai->is_multi_fifo_dma = true;

	/* read dataline mask for rx and tx*/
	ret = fsl_sai_read_dlcfg(sai);
	if (ret < 0) {
		dev_err(dev, "failed to read dlcfg %d\n", ret);
		return ret;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
			       np->name, sai);
	if (ret) {
		dev_err(dev, "failed to claim irq %u\n", irq);
		return ret;
	}

	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
	       sizeof(fsl_sai_dai_template));

	/* Sync Tx with Rx as default by following old DT binding */
	sai->synchronous[RX] = true;
	sai->synchronous[TX] = false;
	sai->cpu_dai_drv.symmetric_rate = 1;
	sai->cpu_dai_drv.symmetric_channels = 1;
	sai->cpu_dai_drv.symmetric_sample_bits = 1;

	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* error out if both synchronous and asynchronous are present */
		dev_err(dev, "invalid binding for synchronous mode\n");
		return -EINVAL;
	}

	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
		/* Sync Rx with Tx */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = true;
	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* Discard all settings for asynchronous mode */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = false;
		sai->cpu_dai_drv.symmetric_rate = 0;
		sai->cpu_dai_drv.symmetric_channels = 0;
		sai->cpu_dai_drv.symmetric_sample_bits = 0;
	}

	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
		if (IS_ERR(gpr)) {
			dev_err(dev, "cannot find iomuxc registers\n");
			return PTR_ERR(gpr);
		}

		index = of_alias_get_id(np, "sai");
		if (index < 0)
			return index;

		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
				   MCLK_DIR(index));
	}

	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;

	sai->pinctrl = devm_pinctrl_get(&pdev->dev);

	platform_set_drvdata(pdev, sai);
	pm_runtime_enable(dev);
	if (!pm_runtime_enabled(dev)) {
		ret = fsl_sai_runtime_resume(dev);
		if (ret)
			goto err_pm_disable;
	}

	ret = pm_runtime_resume_and_get(dev);
	if (ret < 0)
		goto err_pm_get_sync;

	/* Get sai version */
	ret = fsl_sai_check_version(dev);
	if (ret < 0)
		dev_warn(dev, "Error reading SAI version: %d\n", ret);

	/* Select MCLK direction */
	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
	}

	ret = pm_runtime_put_sync(dev);
	if (ret < 0 && ret != -ENOSYS)
		goto err_pm_get_sync;

	/*
	 * Register platform component before registering cpu dai for there
	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
	 */
	if (sai->soc_data->use_imx_pcm) {
		ret = imx_pcm_dma_init(pdev);
		if (ret) {
			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
			goto err_pm_get_sync;
		}
	} else {
		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
		if (ret)
			goto err_pm_get_sync;
	}

	ret = devm_snd_soc_register_component(dev, &fsl_component,
					      &sai->cpu_dai_drv, 1);
	if (ret)
		goto err_pm_get_sync;

	return ret;

err_pm_get_sync:
	if (!pm_runtime_status_suspended(dev))
		fsl_sai_runtime_suspend(dev);
err_pm_disable:
	pm_runtime_disable(dev);

	return ret;
}

static int fsl_sai_remove(struct platform_device *pdev)
{
	pm_runtime_disable(&pdev->dev);
	if (!pm_runtime_status_suspended(&pdev->dev))
		fsl_sai_runtime_suspend(&pdev->dev);

	return 0;
}

static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
	.use_imx_pcm = false,
	.use_edma = false,
	.fifo_depth = 32,
	.pins = 1,
	.reg_offset = 0,
	.mclk0_is_mclk1 = false,
	.flags = 0,
	.max_register = FSL_SAI_RMR,
};

static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
	.use_imx_pcm = true,
	.use_edma = false,
	.fifo_depth = 32,
	.pins = 1,
	.reg_offset = 0,
	.mclk0_is_mclk1 = true,
	.flags = 0,
	.max_register = FSL_SAI_RMR,
};

static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
	.use_imx_pcm = true,
	.use_edma = false,
	.fifo_depth = 16,
	.pins = 2,
	.reg_offset = 8,
	.mclk0_is_mclk1 = false,
	.flags = PMQOS_CPU_LATENCY,
	.max_register = FSL_SAI_RMR,
};

static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
	.use_imx_pcm = true,
	.use_edma = false,
	.fifo_depth = 128,
	.pins = 8,
	.reg_offset = 8,
	.mclk0_is_mclk1 = false,
	.flags = 0,
	.max_register = FSL_SAI_RMR,
};

static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
	.use_imx_pcm = true,
	.use_edma = true,
	.fifo_depth = 64,
	.pins = 1,
	.reg_offset = 0,
	.mclk0_is_mclk1 = false,
	.flags = 0,
	.max_register = FSL_SAI_RMR,
};

static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
	.use_imx_pcm = true,
	.use_edma = false,
	.fifo_depth = 128,
	.reg_offset = 8,
	.mclk0_is_mclk1 = false,
	.pins = 8,
	.flags = 0,
	.max_register = FSL_SAI_MCTL,
};

static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
	.use_imx_pcm = true,
	.use_edma = false,
	.fifo_depth = 128,
	.reg_offset = 8,
	.mclk0_is_mclk1 = false,
	.pins = 8,
	.flags = 0,
	.max_register = FSL_SAI_MDIV,
};

static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
	.use_imx_pcm = true,
	.use_edma = true,
	.fifo_depth = 16,
	.reg_offset = 8,
	.mclk0_is_mclk1 = false,
	.pins = 4,
	.flags = PMQOS_CPU_LATENCY,
	.max_register = FSL_SAI_RTCAP,
};

static const struct of_device_id fsl_sai_ids[] = {
	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mp_data },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_sai_ids);

static int fsl_sai_runtime_suspend(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);

	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);

	clk_disable_unprepare(sai->bus_clk);

	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
		cpu_latency_qos_remove_request(&sai->pm_qos_req);

	regcache_cache_only(sai->regmap, true);

	return 0;
}

static int fsl_sai_runtime_resume(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);
	unsigned int ofs = sai->soc_data->reg_offset;
	int ret;

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(dev, "failed to enable bus clock: %d\n", ret);
		return ret;
	}

	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
		if (ret)
			goto disable_bus_clk;
	}

	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
		if (ret)
			goto disable_tx_clk;
	}

	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);

	regcache_cache_only(sai->regmap, false);
	regcache_mark_dirty(sai->regmap);
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
	usleep_range(1000, 2000);
	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);

	ret = regcache_sync(sai->regmap);
	if (ret)
		goto disable_rx_clk;

	return 0;

disable_rx_clk:
	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
disable_tx_clk:
	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
disable_bus_clk:
	clk_disable_unprepare(sai->bus_clk);

	return ret;
}

static const struct dev_pm_ops fsl_sai_pm_ops = {
	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
			   fsl_sai_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
};

static struct platform_driver fsl_sai_driver = {
	.probe = fsl_sai_probe,
	.remove = fsl_sai_remove,
	.driver = {
		.name = "fsl-sai",
		.pm = &fsl_sai_pm_ops,
		.of_match_table = fsl_sai_ids,
	},
};
module_platform_driver(fsl_sai_driver);

MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");