Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 | // SPDX-License-Identifier: GPL-2.0 /* * KCSAN core runtime. * * Copyright (C) 2019, Google LLC. */ #define pr_fmt(fmt) "kcsan: " fmt #include <linux/atomic.h> #include <linux/bug.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/minmax.h> #include <linux/moduleparam.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/uaccess.h> #include "encoding.h" #include "kcsan.h" #include "permissive.h" static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE); unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK; unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT; static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH; static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER); #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "kcsan." module_param_named(early_enable, kcsan_early_enable, bool, 0); module_param_named(udelay_task, kcsan_udelay_task, uint, 0644); module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644); module_param_named(skip_watch, kcsan_skip_watch, long, 0644); module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444); #ifdef CONFIG_KCSAN_WEAK_MEMORY static bool kcsan_weak_memory = true; module_param_named(weak_memory, kcsan_weak_memory, bool, 0644); #else #define kcsan_weak_memory false #endif bool kcsan_enabled; /* Per-CPU kcsan_ctx for interrupts */ static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = { .scoped_accesses = {LIST_POISON1, NULL}, }; /* * Helper macros to index into adjacent slots, starting from address slot * itself, followed by the right and left slots. * * The purpose is 2-fold: * * 1. if during insertion the address slot is already occupied, check if * any adjacent slots are free; * 2. accesses that straddle a slot boundary due to size that exceeds a * slot's range may check adjacent slots if any watchpoint matches. * * Note that accesses with very large size may still miss a watchpoint; however, * given this should be rare, this is a reasonable trade-off to make, since this * will avoid: * * 1. excessive contention between watchpoint checks and setup; * 2. larger number of simultaneous watchpoints without sacrificing * performance. * * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]: * * slot=0: [ 1, 2, 0] * slot=9: [10, 11, 9] * slot=63: [64, 65, 63] */ #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS)) /* * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary * slot (middle) is fine if we assume that races occur rarely. The set of * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}. */ #define SLOT_IDX_FAST(slot, i) (slot + i) /* * Watchpoints, with each entry encoded as defined in encoding.h: in order to be * able to safely update and access a watchpoint without introducing locking * overhead, we encode each watchpoint as a single atomic long. The initial * zero-initialized state matches INVALID_WATCHPOINT. * * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path. */ static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1]; /* * Instructions to skip watching counter, used in should_watch(). We use a * per-CPU counter to avoid excessive contention. */ static DEFINE_PER_CPU(long, kcsan_skip); /* For kcsan_prandom_u32_max(). */ static DEFINE_PER_CPU(u32, kcsan_rand_state); static __always_inline atomic_long_t *find_watchpoint(unsigned long addr, size_t size, bool expect_write, long *encoded_watchpoint) { const int slot = watchpoint_slot(addr); const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK; atomic_long_t *watchpoint; unsigned long wp_addr_masked; size_t wp_size; bool is_write; int i; BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS); for (i = 0; i < NUM_SLOTS; ++i) { watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)]; *encoded_watchpoint = atomic_long_read(watchpoint); if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked, &wp_size, &is_write)) continue; if (expect_write && !is_write) continue; /* Check if the watchpoint matches the access. */ if (matching_access(wp_addr_masked, wp_size, addr_masked, size)) return watchpoint; } return NULL; } static inline atomic_long_t * insert_watchpoint(unsigned long addr, size_t size, bool is_write) { const int slot = watchpoint_slot(addr); const long encoded_watchpoint = encode_watchpoint(addr, size, is_write); atomic_long_t *watchpoint; int i; /* Check slot index logic, ensuring we stay within array bounds. */ BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT); BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0); BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1); BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS); for (i = 0; i < NUM_SLOTS; ++i) { long expect_val = INVALID_WATCHPOINT; /* Try to acquire this slot. */ watchpoint = &watchpoints[SLOT_IDX(slot, i)]; if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint)) return watchpoint; } return NULL; } /* * Return true if watchpoint was successfully consumed, false otherwise. * * This may return false if: * * 1. another thread already consumed the watchpoint; * 2. the thread that set up the watchpoint already removed it; * 3. the watchpoint was removed and then re-used. */ static __always_inline bool try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint) { return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT); } /* Return true if watchpoint was not touched, false if already consumed. */ static inline bool consume_watchpoint(atomic_long_t *watchpoint) { return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT; } /* Remove the watchpoint -- its slot may be reused after. */ static inline void remove_watchpoint(atomic_long_t *watchpoint) { atomic_long_set(watchpoint, INVALID_WATCHPOINT); } static __always_inline struct kcsan_ctx *get_ctx(void) { /* * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would * also result in calls that generate warnings in uaccess regions. */ return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx); } static __always_inline void check_access(const volatile void *ptr, size_t size, int type, unsigned long ip); /* Check scoped accesses; never inline because this is a slow-path! */ static noinline void kcsan_check_scoped_accesses(void) { struct kcsan_ctx *ctx = get_ctx(); struct kcsan_scoped_access *scoped_access; if (ctx->disable_scoped) return; ctx->disable_scoped++; list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) { check_access(scoped_access->ptr, scoped_access->size, scoped_access->type, scoped_access->ip); } ctx->disable_scoped--; } /* Rules for generic atomic accesses. Called from fast-path. */ static __always_inline bool is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type) { if (type & KCSAN_ACCESS_ATOMIC) return true; /* * Unless explicitly declared atomic, never consider an assertion access * as atomic. This allows using them also in atomic regions, such as * seqlocks, without implicitly changing their semantics. */ if (type & KCSAN_ACCESS_ASSERT) return false; if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) && (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) && !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size)) return true; /* Assume aligned writes up to word size are atomic. */ if (ctx->atomic_next > 0) { /* * Because we do not have separate contexts for nested * interrupts, in case atomic_next is set, we simply assume that * the outer interrupt set atomic_next. In the worst case, we * will conservatively consider operations as atomic. This is a * reasonable trade-off to make, since this case should be * extremely rare; however, even if extremely rare, it could * lead to false positives otherwise. */ if ((hardirq_count() >> HARDIRQ_SHIFT) < 2) --ctx->atomic_next; /* in task, or outer interrupt */ return true; } return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic; } static __always_inline bool should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type) { /* * Never set up watchpoints when memory operations are atomic. * * Need to check this first, before kcsan_skip check below: (1) atomics * should not count towards skipped instructions, and (2) to actually * decrement kcsan_atomic_next for consecutive instruction stream. */ if (is_atomic(ctx, ptr, size, type)) return false; if (this_cpu_dec_return(kcsan_skip) >= 0) return false; /* * NOTE: If we get here, kcsan_skip must always be reset in slow path * via reset_kcsan_skip() to avoid underflow. */ /* this operation should be watched */ return true; } /* * Returns a pseudo-random number in interval [0, ep_ro). Simple linear * congruential generator, using constants from "Numerical Recipes". */ static u32 kcsan_prandom_u32_max(u32 ep_ro) { u32 state = this_cpu_read(kcsan_rand_state); state = 1664525 * state + 1013904223; this_cpu_write(kcsan_rand_state, state); return state % ep_ro; } static inline void reset_kcsan_skip(void) { long skip_count = kcsan_skip_watch - (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ? kcsan_prandom_u32_max(kcsan_skip_watch) : 0); this_cpu_write(kcsan_skip, skip_count); } static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx) { return READ_ONCE(kcsan_enabled) && !ctx->disable_count; } /* Introduce delay depending on context and configuration. */ static void delay_access(int type) { unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt; /* For certain access types, skew the random delay to be longer. */ unsigned int skew_delay_order = (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0; delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ? kcsan_prandom_u32_max(delay >> skew_delay_order) : 0; udelay(delay); } /* * Reads the instrumented memory for value change detection; value change * detection is currently done for accesses up to a size of 8 bytes. */ static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size) { /* * In the below we don't necessarily need the read of the location to * be atomic, and we don't use READ_ONCE(), since all we need for race * detection is to observe 2 different values. * * Furthermore, on certain architectures (such as arm64), READ_ONCE() * may turn into more complex instructions than a plain load that cannot * do unaligned accesses. */ switch (size) { case 1: return *(const volatile u8 *)ptr; case 2: return *(const volatile u16 *)ptr; case 4: return *(const volatile u32 *)ptr; case 8: return *(const volatile u64 *)ptr; default: return 0; /* Ignore; we do not diff the values. */ } } void kcsan_save_irqtrace(struct task_struct *task) { #ifdef CONFIG_TRACE_IRQFLAGS task->kcsan_save_irqtrace = task->irqtrace; #endif } void kcsan_restore_irqtrace(struct task_struct *task) { #ifdef CONFIG_TRACE_IRQFLAGS task->irqtrace = task->kcsan_save_irqtrace; #endif } static __always_inline int get_kcsan_stack_depth(void) { #ifdef CONFIG_KCSAN_WEAK_MEMORY return current->kcsan_stack_depth; #else BUILD_BUG(); return 0; #endif } static __always_inline void add_kcsan_stack_depth(int val) { #ifdef CONFIG_KCSAN_WEAK_MEMORY current->kcsan_stack_depth += val; #else BUILD_BUG(); #endif } static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx) { #ifdef CONFIG_KCSAN_WEAK_MEMORY return ctx->disable_scoped ? NULL : &ctx->reorder_access; #else return NULL; #endif } static __always_inline bool find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type, unsigned long ip) { struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx); if (!reorder_access) return false; /* * Note: If accesses are repeated while reorder_access is identical, * never matches the new access, because !(type & KCSAN_ACCESS_SCOPED). */ return reorder_access->ptr == ptr && reorder_access->size == size && reorder_access->type == type && reorder_access->ip == ip; } static inline void set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type, unsigned long ip) { struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx); if (!reorder_access || !kcsan_weak_memory) return; /* * To avoid nested interrupts or scheduler (which share kcsan_ctx) * reading an inconsistent reorder_access, ensure that the below has * exclusive access to reorder_access by disallowing concurrent use. */ ctx->disable_scoped++; barrier(); reorder_access->ptr = ptr; reorder_access->size = size; reorder_access->type = type | KCSAN_ACCESS_SCOPED; reorder_access->ip = ip; reorder_access->stack_depth = get_kcsan_stack_depth(); barrier(); ctx->disable_scoped--; } /* * Pull everything together: check_access() below contains the performance * critical operations; the fast-path (including check_access) functions should * all be inlinable by the instrumentation functions. * * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can * be filtered from the stacktrace, as well as give them unique names for the * UACCESS whitelist of objtool. Each function uses user_access_save/restore(), * since they do not access any user memory, but instrumentation is still * emitted in UACCESS regions. */ static noinline void kcsan_found_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip, atomic_long_t *watchpoint, long encoded_watchpoint) { const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; struct kcsan_ctx *ctx = get_ctx(); unsigned long flags; bool consumed; /* * We know a watchpoint exists. Let's try to keep the race-window * between here and finally consuming the watchpoint below as small as * possible -- avoid unneccessarily complex code until consumed. */ if (!kcsan_is_enabled(ctx)) return; /* * The access_mask check relies on value-change comparison. To avoid * reporting a race where e.g. the writer set up the watchpoint, but the * reader has access_mask!=0, we have to ignore the found watchpoint. * * reorder_access is never created from an access with access_mask set. */ if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip)) return; /* * If the other thread does not want to ignore the access, and there was * a value change as a result of this thread's operation, we will still * generate a report of unknown origin. * * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter. */ if (!is_assert && kcsan_ignore_address(ptr)) return; /* * Consuming the watchpoint must be guarded by kcsan_is_enabled() to * avoid erroneously triggering reports if the context is disabled. */ consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint); /* keep this after try_consume_watchpoint */ flags = user_access_save(); if (consumed) { kcsan_save_irqtrace(current); kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints); kcsan_restore_irqtrace(current); } else { /* * The other thread may not print any diagnostics, as it has * already removed the watchpoint, or another thread consumed * the watchpoint before this thread. */ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]); } if (is_assert) atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); else atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]); user_access_restore(flags); } static noinline void kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip) { const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; atomic_long_t *watchpoint; u64 old, new, diff; enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE; bool interrupt_watcher = kcsan_interrupt_watcher; unsigned long ua_flags = user_access_save(); struct kcsan_ctx *ctx = get_ctx(); unsigned long access_mask = ctx->access_mask; unsigned long irq_flags = 0; bool is_reorder_access; /* * Always reset kcsan_skip counter in slow-path to avoid underflow; see * should_watch(). */ reset_kcsan_skip(); if (!kcsan_is_enabled(ctx)) goto out; /* * Check to-ignore addresses after kcsan_is_enabled(), as we may access * memory that is not yet initialized during early boot. */ if (!is_assert && kcsan_ignore_address(ptr)) goto out; if (!check_encodable((unsigned long)ptr, size)) { atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]); goto out; } /* * The local CPU cannot observe reordering of its own accesses, and * therefore we need to take care of 2 cases to avoid false positives: * * 1. Races of the reordered access with interrupts. To avoid, if * the current access is reorder_access, disable interrupts. * 2. Avoid races of scoped accesses from nested interrupts (below). */ is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip); if (is_reorder_access) interrupt_watcher = false; /* * Avoid races of scoped accesses from nested interrupts (or scheduler). * Assume setting up a watchpoint for a non-scoped (normal) access that * also conflicts with a current scoped access. In a nested interrupt, * which shares the context, it would check a conflicting scoped access. * To avoid, disable scoped access checking. */ ctx->disable_scoped++; /* * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's * runtime is entered for every memory access, and potentially useful * information is lost if dirtied by KCSAN. */ kcsan_save_irqtrace(current); if (!interrupt_watcher) local_irq_save(irq_flags); watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write); if (watchpoint == NULL) { /* * Out of capacity: the size of 'watchpoints', and the frequency * with which should_watch() returns true should be tweaked so * that this case happens very rarely. */ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]); goto out_unlock; } atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]); atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); /* * Read the current value, to later check and infer a race if the data * was modified via a non-instrumented access, e.g. from a device. */ old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size); /* * Delay this thread, to increase probability of observing a racy * conflicting access. */ delay_access(type); /* * Re-read value, and check if it is as expected; if not, we infer a * racy access. */ if (!is_reorder_access) { new = read_instrumented_memory(ptr, size); } else { /* * Reordered accesses cannot be used for value change detection, * because the memory location may no longer be accessible and * could result in a fault. */ new = 0; access_mask = 0; } diff = old ^ new; if (access_mask) diff &= access_mask; /* * Check if we observed a value change. * * Also check if the data race should be ignored (the rules depend on * non-zero diff); if it is to be ignored, the below rules for * KCSAN_VALUE_CHANGE_MAYBE apply. */ if (diff && !kcsan_ignore_data_race(size, type, old, new, diff)) value_change = KCSAN_VALUE_CHANGE_TRUE; /* Check if this access raced with another. */ if (!consume_watchpoint(watchpoint)) { /* * Depending on the access type, map a value_change of MAYBE to * TRUE (always report) or FALSE (never report). */ if (value_change == KCSAN_VALUE_CHANGE_MAYBE) { if (access_mask != 0) { /* * For access with access_mask, we require a * value-change, as it is likely that races on * ~access_mask bits are expected. */ value_change = KCSAN_VALUE_CHANGE_FALSE; } else if (size > 8 || is_assert) { /* Always assume a value-change. */ value_change = KCSAN_VALUE_CHANGE_TRUE; } } /* * No need to increment 'data_races' counter, as the racing * thread already did. * * Count 'assert_failures' for each failed ASSERT access, * therefore both this thread and the racing thread may * increment this counter. */ if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE) atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); kcsan_report_known_origin(ptr, size, type, ip, value_change, watchpoint - watchpoints, old, new, access_mask); } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) { /* Inferring a race, since the value should not have changed. */ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]); if (is_assert) atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) { kcsan_report_unknown_origin(ptr, size, type, ip, old, new, access_mask); } } /* * Remove watchpoint; must be after reporting, since the slot may be * reused after this point. */ remove_watchpoint(watchpoint); atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); out_unlock: if (!interrupt_watcher) local_irq_restore(irq_flags); kcsan_restore_irqtrace(current); ctx->disable_scoped--; /* * Reordered accesses cannot be used for value change detection, * therefore never consider for reordering if access_mask is set. * ASSERT_EXCLUSIVE are not real accesses, ignore them as well. */ if (!access_mask && !is_assert) set_reorder_access(ctx, ptr, size, type, ip); out: user_access_restore(ua_flags); } static __always_inline void check_access(const volatile void *ptr, size_t size, int type, unsigned long ip) { atomic_long_t *watchpoint; long encoded_watchpoint; /* * Do nothing for 0 sized check; this comparison will be optimized out * for constant sized instrumentation (__tsan_{read,write}N). */ if (unlikely(size == 0)) return; again: /* * Avoid user_access_save in fast-path: find_watchpoint is safe without * user_access_save, as the address that ptr points to is only used to * check if a watchpoint exists; ptr is never dereferenced. */ watchpoint = find_watchpoint((unsigned long)ptr, size, !(type & KCSAN_ACCESS_WRITE), &encoded_watchpoint); /* * It is safe to check kcsan_is_enabled() after find_watchpoint in the * slow-path, as long as no state changes that cause a race to be * detected and reported have occurred until kcsan_is_enabled() is * checked. */ if (unlikely(watchpoint != NULL)) kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint); else { struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */ if (unlikely(should_watch(ctx, ptr, size, type))) { kcsan_setup_watchpoint(ptr, size, type, ip); return; } if (!(type & KCSAN_ACCESS_SCOPED)) { struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx); if (reorder_access) { /* * reorder_access check: simulates reordering of * the access after subsequent operations. */ ptr = reorder_access->ptr; type = reorder_access->type; ip = reorder_access->ip; /* * Upon a nested interrupt, this context's * reorder_access can be modified (shared ctx). * We know that upon return, reorder_access is * always invalidated by setting size to 0 via * __tsan_func_exit(). Therefore we must read * and check size after the other fields. */ barrier(); size = READ_ONCE(reorder_access->size); if (size) goto again; } } /* * Always checked last, right before returning from runtime; * if reorder_access is valid, checked after it was checked. */ if (unlikely(ctx->scoped_accesses.prev)) kcsan_check_scoped_accesses(); } } /* === Public interface ===================================================== */ void __init kcsan_init(void) { int cpu; BUG_ON(!in_task()); for_each_possible_cpu(cpu) per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles(); /* * We are in the init task, and no other tasks should be running; * WRITE_ONCE without memory barrier is sufficient. */ if (kcsan_early_enable) { pr_info("enabled early\n"); WRITE_ONCE(kcsan_enabled, true); } if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) || IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) || IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) || IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n"); } else { pr_info("strict mode configured\n"); } } /* === Exported interface =================================================== */ void kcsan_disable_current(void) { ++get_ctx()->disable_count; } EXPORT_SYMBOL(kcsan_disable_current); void kcsan_enable_current(void) { if (get_ctx()->disable_count-- == 0) { /* * Warn if kcsan_enable_current() calls are unbalanced with * kcsan_disable_current() calls, which causes disable_count to * become negative and should not happen. */ kcsan_disable_current(); /* restore to 0, KCSAN still enabled */ kcsan_disable_current(); /* disable to generate warning */ WARN(1, "Unbalanced %s()", __func__); kcsan_enable_current(); } } EXPORT_SYMBOL(kcsan_enable_current); void kcsan_enable_current_nowarn(void) { if (get_ctx()->disable_count-- == 0) kcsan_disable_current(); } EXPORT_SYMBOL(kcsan_enable_current_nowarn); void kcsan_nestable_atomic_begin(void) { /* * Do *not* check and warn if we are in a flat atomic region: nestable * and flat atomic regions are independent from each other. * See include/linux/kcsan.h: struct kcsan_ctx comments for more * comments. */ ++get_ctx()->atomic_nest_count; } EXPORT_SYMBOL(kcsan_nestable_atomic_begin); void kcsan_nestable_atomic_end(void) { if (get_ctx()->atomic_nest_count-- == 0) { /* * Warn if kcsan_nestable_atomic_end() calls are unbalanced with * kcsan_nestable_atomic_begin() calls, which causes * atomic_nest_count to become negative and should not happen. */ kcsan_nestable_atomic_begin(); /* restore to 0 */ kcsan_disable_current(); /* disable to generate warning */ WARN(1, "Unbalanced %s()", __func__); kcsan_enable_current(); } } EXPORT_SYMBOL(kcsan_nestable_atomic_end); void kcsan_flat_atomic_begin(void) { get_ctx()->in_flat_atomic = true; } EXPORT_SYMBOL(kcsan_flat_atomic_begin); void kcsan_flat_atomic_end(void) { get_ctx()->in_flat_atomic = false; } EXPORT_SYMBOL(kcsan_flat_atomic_end); void kcsan_atomic_next(int n) { get_ctx()->atomic_next = n; } EXPORT_SYMBOL(kcsan_atomic_next); void kcsan_set_access_mask(unsigned long mask) { get_ctx()->access_mask = mask; } EXPORT_SYMBOL(kcsan_set_access_mask); struct kcsan_scoped_access * kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type, struct kcsan_scoped_access *sa) { struct kcsan_ctx *ctx = get_ctx(); check_access(ptr, size, type, _RET_IP_); ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ INIT_LIST_HEAD(&sa->list); sa->ptr = ptr; sa->size = size; sa->type = type; sa->ip = _RET_IP_; if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */ INIT_LIST_HEAD(&ctx->scoped_accesses); list_add(&sa->list, &ctx->scoped_accesses); ctx->disable_count--; return sa; } EXPORT_SYMBOL(kcsan_begin_scoped_access); void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { struct kcsan_ctx *ctx = get_ctx(); if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__)) return; ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ list_del(&sa->list); if (list_empty(&ctx->scoped_accesses)) /* * Ensure we do not enter kcsan_check_scoped_accesses() * slow-path if unnecessary, and avoids requiring list_empty() * in the fast-path (to avoid a READ_ONCE() and potential * uaccess warning). */ ctx->scoped_accesses.prev = NULL; ctx->disable_count--; check_access(sa->ptr, sa->size, sa->type, sa->ip); } EXPORT_SYMBOL(kcsan_end_scoped_access); void __kcsan_check_access(const volatile void *ptr, size_t size, int type) { check_access(ptr, size, type, _RET_IP_); } EXPORT_SYMBOL(__kcsan_check_access); #define DEFINE_MEMORY_BARRIER(name, order_before_cond) \ void __kcsan_##name(void) \ { \ struct kcsan_scoped_access *sa = get_reorder_access(get_ctx()); \ if (!sa) \ return; \ if (order_before_cond) \ sa->size = 0; \ } \ EXPORT_SYMBOL(__kcsan_##name) DEFINE_MEMORY_BARRIER(mb, true); DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)); DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND)); DEFINE_MEMORY_BARRIER(release, true); /* * KCSAN uses the same instrumentation that is emitted by supported compilers * for ThreadSanitizer (TSAN). * * When enabled, the compiler emits instrumentation calls (the functions * prefixed with "__tsan" below) for all loads and stores that it generated; * inline asm is not instrumented. * * Note that, not all supported compiler versions distinguish aligned/unaligned * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned * version to the generic version, which can handle both. */ #define DEFINE_TSAN_READ_WRITE(size) \ void __tsan_read##size(void *ptr); \ void __tsan_read##size(void *ptr) \ { \ check_access(ptr, size, 0, _RET_IP_); \ } \ EXPORT_SYMBOL(__tsan_read##size); \ void __tsan_unaligned_read##size(void *ptr) \ __alias(__tsan_read##size); \ EXPORT_SYMBOL(__tsan_unaligned_read##size); \ void __tsan_write##size(void *ptr); \ void __tsan_write##size(void *ptr) \ { \ check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_); \ } \ EXPORT_SYMBOL(__tsan_write##size); \ void __tsan_unaligned_write##size(void *ptr) \ __alias(__tsan_write##size); \ EXPORT_SYMBOL(__tsan_unaligned_write##size); \ void __tsan_read_write##size(void *ptr); \ void __tsan_read_write##size(void *ptr) \ { \ check_access(ptr, size, \ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE, \ _RET_IP_); \ } \ EXPORT_SYMBOL(__tsan_read_write##size); \ void __tsan_unaligned_read_write##size(void *ptr) \ __alias(__tsan_read_write##size); \ EXPORT_SYMBOL(__tsan_unaligned_read_write##size) DEFINE_TSAN_READ_WRITE(1); DEFINE_TSAN_READ_WRITE(2); DEFINE_TSAN_READ_WRITE(4); DEFINE_TSAN_READ_WRITE(8); DEFINE_TSAN_READ_WRITE(16); void __tsan_read_range(void *ptr, size_t size); void __tsan_read_range(void *ptr, size_t size) { check_access(ptr, size, 0, _RET_IP_); } EXPORT_SYMBOL(__tsan_read_range); void __tsan_write_range(void *ptr, size_t size); void __tsan_write_range(void *ptr, size_t size) { check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_); } EXPORT_SYMBOL(__tsan_write_range); /* * Use of explicit volatile is generally disallowed [1], however, volatile is * still used in various concurrent context, whether in low-level * synchronization primitives or for legacy reasons. * [1] https://lwn.net/Articles/233479/ * * We only consider volatile accesses atomic if they are aligned and would pass * the size-check of compiletime_assert_rwonce_type(). */ #define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \ void __tsan_volatile_read##size(void *ptr); \ void __tsan_volatile_read##size(void *ptr) \ { \ const bool is_atomic = size <= sizeof(long long) && \ IS_ALIGNED((unsigned long)ptr, size); \ if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ return; \ check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0, \ _RET_IP_); \ } \ EXPORT_SYMBOL(__tsan_volatile_read##size); \ void __tsan_unaligned_volatile_read##size(void *ptr) \ __alias(__tsan_volatile_read##size); \ EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \ void __tsan_volatile_write##size(void *ptr); \ void __tsan_volatile_write##size(void *ptr) \ { \ const bool is_atomic = size <= sizeof(long long) && \ IS_ALIGNED((unsigned long)ptr, size); \ if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ return; \ check_access(ptr, size, \ KCSAN_ACCESS_WRITE | \ (is_atomic ? KCSAN_ACCESS_ATOMIC : 0), \ _RET_IP_); \ } \ EXPORT_SYMBOL(__tsan_volatile_write##size); \ void __tsan_unaligned_volatile_write##size(void *ptr) \ __alias(__tsan_volatile_write##size); \ EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size) DEFINE_TSAN_VOLATILE_READ_WRITE(1); DEFINE_TSAN_VOLATILE_READ_WRITE(2); DEFINE_TSAN_VOLATILE_READ_WRITE(4); DEFINE_TSAN_VOLATILE_READ_WRITE(8); DEFINE_TSAN_VOLATILE_READ_WRITE(16); /* * Function entry and exit are used to determine the validty of reorder_access. * Reordering of the access ends at the end of the function scope where the * access happened. This is done for two reasons: * * 1. Artificially limits the scope where missing barriers are detected. * This minimizes false positives due to uninstrumented functions that * contain the required barriers but were missed. * * 2. Simplifies generating the stack trace of the access. */ void __tsan_func_entry(void *call_pc); noinline void __tsan_func_entry(void *call_pc) { if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY)) return; add_kcsan_stack_depth(1); } EXPORT_SYMBOL(__tsan_func_entry); void __tsan_func_exit(void); noinline void __tsan_func_exit(void) { struct kcsan_scoped_access *reorder_access; if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY)) return; reorder_access = get_reorder_access(get_ctx()); if (!reorder_access) goto out; if (get_kcsan_stack_depth() <= reorder_access->stack_depth) { /* * Access check to catch cases where write without a barrier * (supposed release) was last access in function: because * instrumentation is inserted before the real access, a data * race due to the write giving up a c-s would only be caught if * we do the conflicting access after. */ check_access(reorder_access->ptr, reorder_access->size, reorder_access->type, reorder_access->ip); reorder_access->size = 0; reorder_access->stack_depth = INT_MIN; } out: add_kcsan_stack_depth(-1); } EXPORT_SYMBOL(__tsan_func_exit); void __tsan_init(void); void __tsan_init(void) { } EXPORT_SYMBOL(__tsan_init); /* * Instrumentation for atomic builtins (__atomic_*, __sync_*). * * Normal kernel code _should not_ be using them directly, but some * architectures may implement some or all atomics using the compilers' * builtins. * * Note: If an architecture decides to fully implement atomics using the * builtins, because they are implicitly instrumented by KCSAN (and KASAN, * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via * atomic-instrumented) is no longer necessary. * * TSAN instrumentation replaces atomic accesses with calls to any of the below * functions, whose job is to also execute the operation itself. */ static __always_inline void kcsan_atomic_builtin_memorder(int memorder) { if (memorder == __ATOMIC_RELEASE || memorder == __ATOMIC_SEQ_CST || memorder == __ATOMIC_ACQ_REL) __kcsan_release(); } #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits) \ u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder); \ u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder) \ { \ kcsan_atomic_builtin_memorder(memorder); \ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_); \ } \ return __atomic_load_n(ptr, memorder); \ } \ EXPORT_SYMBOL(__tsan_atomic##bits##_load); \ void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder); \ void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder) \ { \ kcsan_atomic_builtin_memorder(memorder); \ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ check_access(ptr, bits / BITS_PER_BYTE, \ KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_); \ } \ __atomic_store_n(ptr, v, memorder); \ } \ EXPORT_SYMBOL(__tsan_atomic##bits##_store) #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix) \ u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder); \ u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder) \ { \ kcsan_atomic_builtin_memorder(memorder); \ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ check_access(ptr, bits / BITS_PER_BYTE, \ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ KCSAN_ACCESS_ATOMIC, _RET_IP_); \ } \ return __atomic_##op##suffix(ptr, v, memorder); \ } \ EXPORT_SYMBOL(__tsan_atomic##bits##_##op) /* * Note: CAS operations are always classified as write, even in case they * fail. We cannot perform check_access() after a write, as it might lead to * false positives, in cases such as: * * T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...) * * T1: if (__atomic_load_n(&p->flag, ...)) { * modify *p; * p->flag = 0; * } * * The only downside is that, if there are 3 threads, with one CAS that * succeeds, another CAS that fails, and an unmarked racing operation, we may * point at the wrong CAS as the source of the race. However, if we assume that * all CAS can succeed in some other execution, the data race is still valid. */ #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak) \ int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ u##bits val, int mo, int fail_mo); \ int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ u##bits val, int mo, int fail_mo) \ { \ kcsan_atomic_builtin_memorder(mo); \ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ check_access(ptr, bits / BITS_PER_BYTE, \ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ KCSAN_ACCESS_ATOMIC, _RET_IP_); \ } \ return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo); \ } \ EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength) #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) \ u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ int mo, int fail_mo); \ u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ int mo, int fail_mo) \ { \ kcsan_atomic_builtin_memorder(mo); \ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ check_access(ptr, bits / BITS_PER_BYTE, \ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ KCSAN_ACCESS_ATOMIC, _RET_IP_); \ } \ __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo); \ return exp; \ } \ EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val) #define DEFINE_TSAN_ATOMIC_OPS(bits) \ DEFINE_TSAN_ATOMIC_LOAD_STORE(bits); \ DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n); \ DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, ); \ DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, ); \ DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, ); \ DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, ); \ DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, ); \ DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, ); \ DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0); \ DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1); \ DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) DEFINE_TSAN_ATOMIC_OPS(8); DEFINE_TSAN_ATOMIC_OPS(16); DEFINE_TSAN_ATOMIC_OPS(32); #ifdef CONFIG_64BIT DEFINE_TSAN_ATOMIC_OPS(64); #endif void __tsan_atomic_thread_fence(int memorder); void __tsan_atomic_thread_fence(int memorder) { kcsan_atomic_builtin_memorder(memorder); __atomic_thread_fence(memorder); } EXPORT_SYMBOL(__tsan_atomic_thread_fence); /* * In instrumented files, we emit instrumentation for barriers by mapping the * kernel barriers to an __atomic_signal_fence(), which is interpreted specially * and otherwise has no relation to a real __atomic_signal_fence(). No known * kernel code uses __atomic_signal_fence(). * * Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which * are turned into calls to __tsan_atomic_signal_fence(), such instrumentation * can be disabled via the __no_kcsan function attribute (vs. an explicit call * which could not). When __no_kcsan is requested, __atomic_signal_fence() * generates no code. * * Note: The result of using __atomic_signal_fence() with KCSAN enabled is * potentially limiting the compiler's ability to reorder operations; however, * if barriers were instrumented with explicit calls (without LTO), the compiler * couldn't optimize much anyway. The result of a hypothetical architecture * using __atomic_signal_fence() in normal code would be KCSAN false negatives. */ void __tsan_atomic_signal_fence(int memorder); noinline void __tsan_atomic_signal_fence(int memorder) { switch (memorder) { case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb: __kcsan_mb(); break; case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb: __kcsan_wmb(); break; case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb: __kcsan_rmb(); break; case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release: __kcsan_release(); break; default: break; } } EXPORT_SYMBOL(__tsan_atomic_signal_fence); #ifdef __HAVE_ARCH_MEMSET void *__tsan_memset(void *s, int c, size_t count); noinline void *__tsan_memset(void *s, int c, size_t count) { /* * Instead of not setting up watchpoints where accessed size is greater * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE. */ size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE); check_access(s, check_len, KCSAN_ACCESS_WRITE, _RET_IP_); return memset(s, c, count); } #else void *__tsan_memset(void *s, int c, size_t count) __alias(memset); #endif EXPORT_SYMBOL(__tsan_memset); #ifdef __HAVE_ARCH_MEMMOVE void *__tsan_memmove(void *dst, const void *src, size_t len); noinline void *__tsan_memmove(void *dst, const void *src, size_t len) { size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE); check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_); check_access(src, check_len, 0, _RET_IP_); return memmove(dst, src, len); } #else void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove); #endif EXPORT_SYMBOL(__tsan_memmove); #ifdef __HAVE_ARCH_MEMCPY void *__tsan_memcpy(void *dst, const void *src, size_t len); noinline void *__tsan_memcpy(void *dst, const void *src, size_t len) { size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE); check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_); check_access(src, check_len, 0, _RET_IP_); return memcpy(dst, src, len); } #else void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy); #endif EXPORT_SYMBOL(__tsan_memcpy); |