Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 | // SPDX-License-Identifier: GPL-2.0-only #undef DEBUG /* * ARM performance counter support. * * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> * * This code is based on the sparc64 perf event code, which is in turn based * on the x86 code. */ #define pr_fmt(fmt) "hw perfevents: " fmt #include <linux/bitmap.h> #include <linux/cpumask.h> #include <linux/cpu_pm.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/perf/arm_pmu.h> #include <linux/slab.h> #include <linux/sched/clock.h> #include <linux/spinlock.h> #include <linux/irq.h> #include <linux/irqdesc.h> #include <asm/irq_regs.h> static int armpmu_count_irq_users(const int irq); struct pmu_irq_ops { void (*enable_pmuirq)(unsigned int irq); void (*disable_pmuirq)(unsigned int irq); void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); }; static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) { free_irq(irq, per_cpu_ptr(devid, cpu)); } static const struct pmu_irq_ops pmuirq_ops = { .enable_pmuirq = enable_irq, .disable_pmuirq = disable_irq_nosync, .free_pmuirq = armpmu_free_pmuirq }; static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) { free_nmi(irq, per_cpu_ptr(devid, cpu)); } static const struct pmu_irq_ops pmunmi_ops = { .enable_pmuirq = enable_nmi, .disable_pmuirq = disable_nmi_nosync, .free_pmuirq = armpmu_free_pmunmi }; static void armpmu_enable_percpu_pmuirq(unsigned int irq) { enable_percpu_irq(irq, IRQ_TYPE_NONE); } static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, void __percpu *devid) { if (armpmu_count_irq_users(irq) == 1) free_percpu_irq(irq, devid); } static const struct pmu_irq_ops percpu_pmuirq_ops = { .enable_pmuirq = armpmu_enable_percpu_pmuirq, .disable_pmuirq = disable_percpu_irq, .free_pmuirq = armpmu_free_percpu_pmuirq }; static void armpmu_enable_percpu_pmunmi(unsigned int irq) { if (!prepare_percpu_nmi(irq)) enable_percpu_nmi(irq, IRQ_TYPE_NONE); } static void armpmu_disable_percpu_pmunmi(unsigned int irq) { disable_percpu_nmi(irq); teardown_percpu_nmi(irq); } static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, void __percpu *devid) { if (armpmu_count_irq_users(irq) == 1) free_percpu_nmi(irq, devid); } static const struct pmu_irq_ops percpu_pmunmi_ops = { .enable_pmuirq = armpmu_enable_percpu_pmunmi, .disable_pmuirq = armpmu_disable_percpu_pmunmi, .free_pmuirq = armpmu_free_percpu_pmunmi }; static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); static DEFINE_PER_CPU(int, cpu_irq); static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); static bool has_nmi; static inline u64 arm_pmu_event_max_period(struct perf_event *event) { if (event->hw.flags & ARMPMU_EVT_64BIT) return GENMASK_ULL(63, 0); else if (event->hw.flags & ARMPMU_EVT_47BIT) return GENMASK_ULL(46, 0); else return GENMASK_ULL(31, 0); } static int armpmu_map_cache_event(const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u64 config) { unsigned int cache_type, cache_op, cache_result, ret; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return -EINVAL; cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return -EINVAL; cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; if (!cache_map) return -ENOENT; ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; if (ret == CACHE_OP_UNSUPPORTED) return -ENOENT; return ret; } static int armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) { int mapping; if (config >= PERF_COUNT_HW_MAX) return -EINVAL; if (!event_map) return -ENOENT; mapping = (*event_map)[config]; return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; } static int armpmu_map_raw_event(u32 raw_event_mask, u64 config) { return (int)(config & raw_event_mask); } int armpmu_map_event(struct perf_event *event, const unsigned (*event_map)[PERF_COUNT_HW_MAX], const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u32 raw_event_mask) { u64 config = event->attr.config; int type = event->attr.type; if (type == event->pmu->type) return armpmu_map_raw_event(raw_event_mask, config); switch (type) { case PERF_TYPE_HARDWARE: return armpmu_map_hw_event(event_map, config); case PERF_TYPE_HW_CACHE: return armpmu_map_cache_event(cache_map, config); case PERF_TYPE_RAW: return armpmu_map_raw_event(raw_event_mask, config); } return -ENOENT; } int armpmu_event_set_period(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; u64 max_period; int ret = 0; max_period = arm_pmu_event_max_period(event); if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } /* * Limit the maximum period to prevent the counter value * from overtaking the one we are about to program. In * effect we are reducing max_period to account for * interrupt latency (and we are being very conservative). */ if (left > (max_period >> 1)) left = (max_period >> 1); local64_set(&hwc->prev_count, (u64)-left); armpmu->write_counter(event, (u64)(-left) & max_period); perf_event_update_userpage(event); return ret; } u64 armpmu_event_update(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 delta, prev_raw_count, new_raw_count; u64 max_period = arm_pmu_event_max_period(event); again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = armpmu->read_counter(event); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = (new_raw_count - prev_raw_count) & max_period; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return new_raw_count; } static void armpmu_read(struct perf_event *event) { armpmu_event_update(event); } static void armpmu_stop(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to update the counter, so ignore * PERF_EF_UPDATE, see comments in armpmu_start(). */ if (!(hwc->state & PERF_HES_STOPPED)) { armpmu->disable(event); armpmu_event_update(event); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static void armpmu_start(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to reprogram the period, so ignore * PERF_EF_RELOAD, see the comment below. */ if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* * Set the period again. Some counters can't be stopped, so when we * were stopped we simply disabled the IRQ source and the counter * may have been left counting. If we don't do this step then we may * get an interrupt too soon or *way* too late if the overflow has * happened since disabling. */ armpmu_event_set_period(event); armpmu->enable(event); } static void armpmu_del(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; armpmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; armpmu->clear_event_idx(hw_events, event); perf_event_update_userpage(event); /* Clear the allocated counter */ hwc->idx = -1; } static int armpmu_add(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); struct hw_perf_event *hwc = &event->hw; int idx; /* An event following a process won't be stopped earlier */ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return -ENOENT; /* If we don't have a space for the counter then finish early. */ idx = armpmu->get_event_idx(hw_events, event); if (idx < 0) return idx; /* * If there is an event in the counter we are going to use then make * sure it is disabled. */ event->hw.idx = idx; armpmu->disable(event); hw_events->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) armpmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); return 0; } static int validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, struct perf_event *event) { struct arm_pmu *armpmu; if (is_software_event(event)) return 1; /* * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The * core perf code won't check that the pmu->ctx == leader->ctx * until after pmu->event_init(event). */ if (event->pmu != pmu) return 0; if (event->state < PERF_EVENT_STATE_OFF) return 1; if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) return 1; armpmu = to_arm_pmu(event->pmu); return armpmu->get_event_idx(hw_events, event) >= 0; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct pmu_hw_events fake_pmu; /* * Initialise the fake PMU. We only need to populate the * used_mask for the purposes of validation. */ memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); if (!validate_event(event->pmu, &fake_pmu, leader)) return -EINVAL; if (event == leader) return 0; for_each_sibling_event(sibling, leader) { if (!validate_event(event->pmu, &fake_pmu, sibling)) return -EINVAL; } if (!validate_event(event->pmu, &fake_pmu, event)) return -EINVAL; return 0; } static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) { struct arm_pmu *armpmu; int ret; u64 start_clock, finish_clock; /* * we request the IRQ with a (possibly percpu) struct arm_pmu**, but * the handlers expect a struct arm_pmu*. The percpu_irq framework will * do any necessary shifting, we just need to perform the first * dereference. */ armpmu = *(void **)dev; if (WARN_ON_ONCE(!armpmu)) return IRQ_NONE; start_clock = sched_clock(); ret = armpmu->handle_irq(armpmu); finish_clock = sched_clock(); perf_sample_event_took(finish_clock - start_clock); return ret; } static int __hw_perf_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int mapping; hwc->flags = 0; mapping = armpmu->map_event(event); if (mapping < 0) { pr_debug("event %x:%llx not supported\n", event->attr.type, event->attr.config); return mapping; } /* * We don't assign an index until we actually place the event onto * hardware. Use -1 to signify that we haven't decided where to put it * yet. For SMP systems, each core has it's own PMU so we can't do any * clever allocation or constraints checking at this point. */ hwc->idx = -1; hwc->config_base = 0; hwc->config = 0; hwc->event_base = 0; /* * Check whether we need to exclude the counter from certain modes. */ if (armpmu->set_event_filter && armpmu->set_event_filter(hwc, &event->attr)) { pr_debug("ARM performance counters do not support " "mode exclusion\n"); return -EOPNOTSUPP; } /* * Store the event encoding into the config_base field. */ hwc->config_base |= (unsigned long)mapping; if (!is_sampling_event(event)) { /* * For non-sampling runs, limit the sample_period to half * of the counter width. That way, the new counter value * is far less likely to overtake the previous one unless * you have some serious IRQ latency issues. */ hwc->sample_period = arm_pmu_event_max_period(event) >> 1; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } return validate_group(event); } static int armpmu_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); /* * Reject CPU-affine events for CPUs that are of a different class to * that which this PMU handles. Process-following events (where * event->cpu == -1) can be migrated between CPUs, and thus we have to * reject them later (in armpmu_add) if they're scheduled on a * different class of CPU. */ if (event->cpu != -1 && !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) return -ENOENT; /* does not support taken branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; if (armpmu->map_event(event) == -ENOENT) return -ENOENT; return __hw_perf_event_init(event); } static void armpmu_enable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events); /* For task-bound events we may be called on other CPUs */ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return; if (enabled) armpmu->start(armpmu); } static void armpmu_disable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); /* For task-bound events we may be called on other CPUs */ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return; armpmu->stop(armpmu); } /* * In heterogeneous systems, events are specific to a particular * microarchitecture, and aren't suitable for another. Thus, only match CPUs of * the same microarchitecture. */ static int armpmu_filter_match(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); unsigned int cpu = smp_processor_id(); int ret; ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); if (ret && armpmu->filter_match) return armpmu->filter_match(event); return ret; } static ssize_t cpus_show(struct device *dev, struct device_attribute *attr, char *buf) { struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); } static DEVICE_ATTR_RO(cpus); static struct attribute *armpmu_common_attrs[] = { &dev_attr_cpus.attr, NULL, }; static const struct attribute_group armpmu_common_attr_group = { .attrs = armpmu_common_attrs, }; static int armpmu_count_irq_users(const int irq) { int cpu, count = 0; for_each_possible_cpu(cpu) { if (per_cpu(cpu_irq, cpu) == irq) count++; } return count; } static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq) { const struct pmu_irq_ops *ops = NULL; int cpu; for_each_possible_cpu(cpu) { if (per_cpu(cpu_irq, cpu) != irq) continue; ops = per_cpu(cpu_irq_ops, cpu); if (ops) break; } return ops; } void armpmu_free_irq(int irq, int cpu) { if (per_cpu(cpu_irq, cpu) == 0) return; if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) return; per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu); per_cpu(cpu_irq, cpu) = 0; per_cpu(cpu_irq_ops, cpu) = NULL; } int armpmu_request_irq(int irq, int cpu) { int err = 0; const irq_handler_t handler = armpmu_dispatch_irq; const struct pmu_irq_ops *irq_ops; if (!irq) return 0; if (!irq_is_percpu_devid(irq)) { unsigned long irq_flags; err = irq_force_affinity(irq, cpumask_of(cpu)); if (err && num_possible_cpus() > 1) { pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", irq, cpu); goto err_out; } irq_flags = IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_AUTOEN | IRQF_NO_THREAD; err = request_nmi(irq, handler, irq_flags, "arm-pmu", per_cpu_ptr(&cpu_armpmu, cpu)); /* If cannot get an NMI, get a normal interrupt */ if (err) { err = request_irq(irq, handler, irq_flags, "arm-pmu", per_cpu_ptr(&cpu_armpmu, cpu)); irq_ops = &pmuirq_ops; } else { has_nmi = true; irq_ops = &pmunmi_ops; } } else if (armpmu_count_irq_users(irq) == 0) { err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu); /* If cannot get an NMI, get a normal interrupt */ if (err) { err = request_percpu_irq(irq, handler, "arm-pmu", &cpu_armpmu); irq_ops = &percpu_pmuirq_ops; } else { has_nmi = true; irq_ops = &percpu_pmunmi_ops; } } else { /* Per cpudevid irq was already requested by another CPU */ irq_ops = armpmu_find_irq_ops(irq); if (WARN_ON(!irq_ops)) err = -EINVAL; } if (err) goto err_out; per_cpu(cpu_irq, cpu) = irq; per_cpu(cpu_irq_ops, cpu) = irq_ops; return 0; err_out: pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); return err; } static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) { struct pmu_hw_events __percpu *hw_events = pmu->hw_events; return per_cpu(hw_events->irq, cpu); } /* * PMU hardware loses all context when a CPU goes offline. * When a CPU is hotplugged back in, since some hardware registers are * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading * junk values out of them. */ static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) { struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); int irq; if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) return 0; if (pmu->reset) pmu->reset(pmu); per_cpu(cpu_armpmu, cpu) = pmu; irq = armpmu_get_cpu_irq(pmu, cpu); if (irq) per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); return 0; } static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) { struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); int irq; if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) return 0; irq = armpmu_get_cpu_irq(pmu, cpu); if (irq) per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); per_cpu(cpu_armpmu, cpu) = NULL; return 0; } #ifdef CONFIG_CPU_PM static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) { struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); struct perf_event *event; int idx; for (idx = 0; idx < armpmu->num_events; idx++) { event = hw_events->events[idx]; if (!event) continue; switch (cmd) { case CPU_PM_ENTER: /* * Stop and update the counter */ armpmu_stop(event, PERF_EF_UPDATE); break; case CPU_PM_EXIT: case CPU_PM_ENTER_FAILED: /* * Restore and enable the counter. * armpmu_start() indirectly calls * * perf_event_update_userpage() * * that requires RCU read locking to be functional, * wrap the call within RCU_NONIDLE to make the * RCU subsystem aware this cpu is not idle from * an RCU perspective for the armpmu_start() call * duration. */ RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); break; default: break; } } } static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, void *v) { struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events); if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) return NOTIFY_DONE; /* * Always reset the PMU registers on power-up even if * there are no events running. */ if (cmd == CPU_PM_EXIT && armpmu->reset) armpmu->reset(armpmu); if (!enabled) return NOTIFY_OK; switch (cmd) { case CPU_PM_ENTER: armpmu->stop(armpmu); cpu_pm_pmu_setup(armpmu, cmd); break; case CPU_PM_EXIT: case CPU_PM_ENTER_FAILED: cpu_pm_pmu_setup(armpmu, cmd); armpmu->start(armpmu); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); } static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); } #else static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } #endif static int cpu_pmu_init(struct arm_pmu *cpu_pmu) { int err; err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, &cpu_pmu->node); if (err) goto out; err = cpu_pm_pmu_register(cpu_pmu); if (err) goto out_unregister; return 0; out_unregister: cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, &cpu_pmu->node); out: return err; } static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) { cpu_pm_pmu_unregister(cpu_pmu); cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, &cpu_pmu->node); } static struct arm_pmu *__armpmu_alloc(gfp_t flags) { struct arm_pmu *pmu; int cpu; pmu = kzalloc(sizeof(*pmu), flags); if (!pmu) goto out; pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); if (!pmu->hw_events) { pr_info("failed to allocate per-cpu PMU data.\n"); goto out_free_pmu; } pmu->pmu = (struct pmu) { .pmu_enable = armpmu_enable, .pmu_disable = armpmu_disable, .event_init = armpmu_event_init, .add = armpmu_add, .del = armpmu_del, .start = armpmu_start, .stop = armpmu_stop, .read = armpmu_read, .filter_match = armpmu_filter_match, .attr_groups = pmu->attr_groups, /* * This is a CPU PMU potentially in a heterogeneous * configuration (e.g. big.LITTLE). This is not an uncore PMU, * and we have taken ctx sharing into account (e.g. with our * pmu::filter_match callback and pmu::event_init group * validation). */ .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS, }; pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = &armpmu_common_attr_group; for_each_possible_cpu(cpu) { struct pmu_hw_events *events; events = per_cpu_ptr(pmu->hw_events, cpu); raw_spin_lock_init(&events->pmu_lock); events->percpu_pmu = pmu; } return pmu; out_free_pmu: kfree(pmu); out: return NULL; } struct arm_pmu *armpmu_alloc(void) { return __armpmu_alloc(GFP_KERNEL); } struct arm_pmu *armpmu_alloc_atomic(void) { return __armpmu_alloc(GFP_ATOMIC); } void armpmu_free(struct arm_pmu *pmu) { free_percpu(pmu->hw_events); kfree(pmu); } int armpmu_register(struct arm_pmu *pmu) { int ret; ret = cpu_pmu_init(pmu); if (ret) return ret; if (!pmu->set_event_filter) pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); if (ret) goto out_destroy; pr_info("enabled with %s PMU driver, %d counters available%s\n", pmu->name, pmu->num_events, has_nmi ? ", using NMIs" : ""); kvm_host_pmu_init(pmu); return 0; out_destroy: cpu_pmu_destroy(pmu); return ret; } static int arm_pmu_hp_init(void) { int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, "perf/arm/pmu:starting", arm_perf_starting_cpu, arm_perf_teardown_cpu); if (ret) pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", ret); return ret; } subsys_initcall(arm_pmu_hp_init); |