Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 | // SPDX-License-Identifier: GPL-2.0 #include "tree-mod-log.h" #include "disk-io.h" struct tree_mod_root { u64 logical; u8 level; }; struct tree_mod_elem { struct rb_node node; u64 logical; u64 seq; enum btrfs_mod_log_op op; /* * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS * operations. */ int slot; /* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */ u64 generation; /* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */ struct btrfs_disk_key key; u64 blockptr; /* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */ struct { int dst_slot; int nr_items; } move; /* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */ struct tree_mod_root old_root; }; /* * Pull a new tree mod seq number for our operation. */ static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) { return atomic64_inc_return(&fs_info->tree_mod_seq); } /* * This adds a new blocker to the tree mod log's blocker list if the @elem * passed does not already have a sequence number set. So when a caller expects * to record tree modifications, it should ensure to set elem->seq to zero * before calling btrfs_get_tree_mod_seq. * Returns a fresh, unused tree log modification sequence number, even if no new * blocker was added. */ u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct btrfs_seq_list *elem) { write_lock(&fs_info->tree_mod_log_lock); if (!elem->seq) { elem->seq = btrfs_inc_tree_mod_seq(fs_info); list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); } write_unlock(&fs_info->tree_mod_log_lock); return elem->seq; } void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, struct btrfs_seq_list *elem) { struct rb_root *tm_root; struct rb_node *node; struct rb_node *next; struct tree_mod_elem *tm; u64 min_seq = BTRFS_SEQ_LAST; u64 seq_putting = elem->seq; if (!seq_putting) return; write_lock(&fs_info->tree_mod_log_lock); list_del(&elem->list); elem->seq = 0; if (list_empty(&fs_info->tree_mod_seq_list)) { clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); } else { struct btrfs_seq_list *first; first = list_first_entry(&fs_info->tree_mod_seq_list, struct btrfs_seq_list, list); if (seq_putting > first->seq) { /* * Blocker with lower sequence number exists, we cannot * remove anything from the log. */ write_unlock(&fs_info->tree_mod_log_lock); return; } min_seq = first->seq; } /* * Anything that's lower than the lowest existing (read: blocked) * sequence number can be removed from the tree. */ tm_root = &fs_info->tree_mod_log; for (node = rb_first(tm_root); node; node = next) { next = rb_next(node); tm = rb_entry(node, struct tree_mod_elem, node); if (tm->seq >= min_seq) continue; rb_erase(node, tm_root); kfree(tm); } write_unlock(&fs_info->tree_mod_log_lock); } /* * Key order of the log: * node/leaf start address -> sequence * * The 'start address' is the logical address of the *new* root node for root * replace operations, or the logical address of the affected block for all * other operations. */ static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) { struct rb_root *tm_root; struct rb_node **new; struct rb_node *parent = NULL; struct tree_mod_elem *cur; lockdep_assert_held_write(&fs_info->tree_mod_log_lock); tm->seq = btrfs_inc_tree_mod_seq(fs_info); tm_root = &fs_info->tree_mod_log; new = &tm_root->rb_node; while (*new) { cur = rb_entry(*new, struct tree_mod_elem, node); parent = *new; if (cur->logical < tm->logical) new = &((*new)->rb_left); else if (cur->logical > tm->logical) new = &((*new)->rb_right); else if (cur->seq < tm->seq) new = &((*new)->rb_left); else if (cur->seq > tm->seq) new = &((*new)->rb_right); else return -EEXIST; } rb_link_node(&tm->node, parent, new); rb_insert_color(&tm->node, tm_root); return 0; } /* * Determines if logging can be omitted. Returns true if it can. Otherwise, it * returns false with the tree_mod_log_lock acquired. The caller must hold * this until all tree mod log insertions are recorded in the rb tree and then * write unlock fs_info::tree_mod_log_lock. */ static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) { if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) return true; if (eb && btrfs_header_level(eb) == 0) return true; write_lock(&fs_info->tree_mod_log_lock); if (list_empty(&(fs_info)->tree_mod_seq_list)) { write_unlock(&fs_info->tree_mod_log_lock); return true; } return false; } /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info, struct extent_buffer *eb) { if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) return false; if (eb && btrfs_header_level(eb) == 0) return false; return true; } static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb, int slot, enum btrfs_mod_log_op op, gfp_t flags) { struct tree_mod_elem *tm; tm = kzalloc(sizeof(*tm), flags); if (!tm) return NULL; tm->logical = eb->start; if (op != BTRFS_MOD_LOG_KEY_ADD) { btrfs_node_key(eb, &tm->key, slot); tm->blockptr = btrfs_node_blockptr(eb, slot); } tm->op = op; tm->slot = slot; tm->generation = btrfs_node_ptr_generation(eb, slot); RB_CLEAR_NODE(&tm->node); return tm; } int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot, enum btrfs_mod_log_op op, gfp_t flags) { struct tree_mod_elem *tm; int ret; if (!tree_mod_need_log(eb->fs_info, eb)) return 0; tm = alloc_tree_mod_elem(eb, slot, op, flags); if (!tm) return -ENOMEM; if (tree_mod_dont_log(eb->fs_info, eb)) { kfree(tm); return 0; } ret = tree_mod_log_insert(eb->fs_info, tm); write_unlock(&eb->fs_info->tree_mod_log_lock); if (ret) kfree(tm); return ret; } int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb, int dst_slot, int src_slot, int nr_items) { struct tree_mod_elem *tm = NULL; struct tree_mod_elem **tm_list = NULL; int ret = 0; int i; bool locked = false; if (!tree_mod_need_log(eb->fs_info, eb)) return 0; tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) return -ENOMEM; tm = kzalloc(sizeof(*tm), GFP_NOFS); if (!tm) { ret = -ENOMEM; goto free_tms; } tm->logical = eb->start; tm->slot = src_slot; tm->move.dst_slot = dst_slot; tm->move.nr_items = nr_items; tm->op = BTRFS_MOD_LOG_MOVE_KEYS; for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); if (!tm_list[i]) { ret = -ENOMEM; goto free_tms; } } if (tree_mod_dont_log(eb->fs_info, eb)) goto free_tms; locked = true; /* * When we override something during the move, we log these removals. * This can only happen when we move towards the beginning of the * buffer, i.e. dst_slot < src_slot. */ for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { ret = tree_mod_log_insert(eb->fs_info, tm_list[i]); if (ret) goto free_tms; } ret = tree_mod_log_insert(eb->fs_info, tm); if (ret) goto free_tms; write_unlock(&eb->fs_info->tree_mod_log_lock); kfree(tm_list); return 0; free_tms: for (i = 0; i < nr_items; i++) { if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); kfree(tm_list[i]); } if (locked) write_unlock(&eb->fs_info->tree_mod_log_lock); kfree(tm_list); kfree(tm); return ret; } static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct tree_mod_elem **tm_list, int nritems) { int i, j; int ret; for (i = nritems - 1; i >= 0; i--) { ret = tree_mod_log_insert(fs_info, tm_list[i]); if (ret) { for (j = nritems - 1; j > i; j--) rb_erase(&tm_list[j]->node, &fs_info->tree_mod_log); return ret; } } return 0; } int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root, struct extent_buffer *new_root, bool log_removal) { struct btrfs_fs_info *fs_info = old_root->fs_info; struct tree_mod_elem *tm = NULL; struct tree_mod_elem **tm_list = NULL; int nritems = 0; int ret = 0; int i; if (!tree_mod_need_log(fs_info, NULL)) return 0; if (log_removal && btrfs_header_level(old_root) > 0) { nritems = btrfs_header_nritems(old_root); tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) { ret = -ENOMEM; goto free_tms; } for (i = 0; i < nritems; i++) { tm_list[i] = alloc_tree_mod_elem(old_root, i, BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); if (!tm_list[i]) { ret = -ENOMEM; goto free_tms; } } } tm = kzalloc(sizeof(*tm), GFP_NOFS); if (!tm) { ret = -ENOMEM; goto free_tms; } tm->logical = new_root->start; tm->old_root.logical = old_root->start; tm->old_root.level = btrfs_header_level(old_root); tm->generation = btrfs_header_generation(old_root); tm->op = BTRFS_MOD_LOG_ROOT_REPLACE; if (tree_mod_dont_log(fs_info, NULL)) goto free_tms; if (tm_list) ret = tree_mod_log_free_eb(fs_info, tm_list, nritems); if (!ret) ret = tree_mod_log_insert(fs_info, tm); write_unlock(&fs_info->tree_mod_log_lock); if (ret) goto free_tms; kfree(tm_list); return ret; free_tms: if (tm_list) { for (i = 0; i < nritems; i++) kfree(tm_list[i]); kfree(tm_list); } kfree(tm); return ret; } static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, bool smallest) { struct rb_root *tm_root; struct rb_node *node; struct tree_mod_elem *cur = NULL; struct tree_mod_elem *found = NULL; read_lock(&fs_info->tree_mod_log_lock); tm_root = &fs_info->tree_mod_log; node = tm_root->rb_node; while (node) { cur = rb_entry(node, struct tree_mod_elem, node); if (cur->logical < start) { node = node->rb_left; } else if (cur->logical > start) { node = node->rb_right; } else if (cur->seq < min_seq) { node = node->rb_left; } else if (!smallest) { /* We want the node with the highest seq */ if (found) BUG_ON(found->seq > cur->seq); found = cur; node = node->rb_left; } else if (cur->seq > min_seq) { /* We want the node with the smallest seq */ if (found) BUG_ON(found->seq < cur->seq); found = cur; node = node->rb_right; } else { found = cur; break; } } read_unlock(&fs_info->tree_mod_log_lock); return found; } /* * This returns the element from the log with the smallest time sequence * value that's in the log (the oldest log item). Any element with a time * sequence lower than min_seq will be ignored. */ static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) { return __tree_mod_log_search(fs_info, start, min_seq, true); } /* * This returns the element from the log with the largest time sequence * value that's in the log (the most recent log item). Any element with * a time sequence lower than min_seq will be ignored. */ static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) { return __tree_mod_log_search(fs_info, start, min_seq, false); } int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst, struct extent_buffer *src, unsigned long dst_offset, unsigned long src_offset, int nr_items) { struct btrfs_fs_info *fs_info = dst->fs_info; int ret = 0; struct tree_mod_elem **tm_list = NULL; struct tree_mod_elem **tm_list_add, **tm_list_rem; int i; bool locked = false; if (!tree_mod_need_log(fs_info, NULL)) return 0; if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) return 0; tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) return -ENOMEM; tm_list_add = tm_list; tm_list_rem = tm_list + nr_items; for (i = 0; i < nr_items; i++) { tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS); if (!tm_list_rem[i]) { ret = -ENOMEM; goto free_tms; } tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS); if (!tm_list_add[i]) { ret = -ENOMEM; goto free_tms; } } if (tree_mod_dont_log(fs_info, NULL)) goto free_tms; locked = true; for (i = 0; i < nr_items; i++) { ret = tree_mod_log_insert(fs_info, tm_list_rem[i]); if (ret) goto free_tms; ret = tree_mod_log_insert(fs_info, tm_list_add[i]); if (ret) goto free_tms; } write_unlock(&fs_info->tree_mod_log_lock); kfree(tm_list); return 0; free_tms: for (i = 0; i < nr_items * 2; i++) { if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); kfree(tm_list[i]); } if (locked) write_unlock(&fs_info->tree_mod_log_lock); kfree(tm_list); return ret; } int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb) { struct tree_mod_elem **tm_list = NULL; int nritems = 0; int i; int ret = 0; if (!tree_mod_need_log(eb->fs_info, eb)) return 0; nritems = btrfs_header_nritems(eb); tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) return -ENOMEM; for (i = 0; i < nritems; i++) { tm_list[i] = alloc_tree_mod_elem(eb, i, BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); if (!tm_list[i]) { ret = -ENOMEM; goto free_tms; } } if (tree_mod_dont_log(eb->fs_info, eb)) goto free_tms; ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); write_unlock(&eb->fs_info->tree_mod_log_lock); if (ret) goto free_tms; kfree(tm_list); return 0; free_tms: for (i = 0; i < nritems; i++) kfree(tm_list[i]); kfree(tm_list); return ret; } /* * Returns the logical address of the oldest predecessor of the given root. * Entries older than time_seq are ignored. */ static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root, u64 time_seq) { struct tree_mod_elem *tm; struct tree_mod_elem *found = NULL; u64 root_logical = eb_root->start; bool looped = false; if (!time_seq) return NULL; /* * The very last operation that's logged for a root is the replacement * operation (if it is replaced at all). This has the logical address * of the *new* root, making it the very first operation that's logged * for this root. */ while (1) { tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, time_seq); if (!looped && !tm) return NULL; /* * If there are no tree operation for the oldest root, we simply * return it. This should only happen if that (old) root is at * level 0. */ if (!tm) break; /* * If there's an operation that's not a root replacement, we * found the oldest version of our root. Normally, we'll find a * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. */ if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE) break; found = tm; root_logical = tm->old_root.logical; looped = true; } /* If there's no old root to return, return what we found instead */ if (!found) found = tm; return found; } /* * tm is a pointer to the first operation to rewind within eb. Then, all * previous operations will be rewound (until we reach something older than * time_seq). */ static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, u64 time_seq, struct tree_mod_elem *first_tm) { u32 n; struct rb_node *next; struct tree_mod_elem *tm = first_tm; unsigned long o_dst; unsigned long o_src; unsigned long p_size = sizeof(struct btrfs_key_ptr); n = btrfs_header_nritems(eb); read_lock(&fs_info->tree_mod_log_lock); while (tm && tm->seq >= time_seq) { /* * All the operations are recorded with the operator used for * the modification. As we're going backwards, we do the * opposite of each operation here. */ switch (tm->op) { case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: BUG_ON(tm->slot < n); fallthrough; case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING: case BTRFS_MOD_LOG_KEY_REMOVE: btrfs_set_node_key(eb, &tm->key, tm->slot); btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); btrfs_set_node_ptr_generation(eb, tm->slot, tm->generation); n++; break; case BTRFS_MOD_LOG_KEY_REPLACE: BUG_ON(tm->slot >= n); btrfs_set_node_key(eb, &tm->key, tm->slot); btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); btrfs_set_node_ptr_generation(eb, tm->slot, tm->generation); break; case BTRFS_MOD_LOG_KEY_ADD: /* if a move operation is needed it's in the log */ n--; break; case BTRFS_MOD_LOG_MOVE_KEYS: o_dst = btrfs_node_key_ptr_offset(tm->slot); o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); memmove_extent_buffer(eb, o_dst, o_src, tm->move.nr_items * p_size); break; case BTRFS_MOD_LOG_ROOT_REPLACE: /* * This operation is special. For roots, this must be * handled explicitly before rewinding. * For non-roots, this operation may exist if the node * was a root: root A -> child B; then A gets empty and * B is promoted to the new root. In the mod log, we'll * have a root-replace operation for B, a tree block * that is no root. We simply ignore that operation. */ break; } next = rb_next(&tm->node); if (!next) break; tm = rb_entry(next, struct tree_mod_elem, node); if (tm->logical != first_tm->logical) break; } read_unlock(&fs_info->tree_mod_log_lock); btrfs_set_header_nritems(eb, n); } /* * Called with eb read locked. If the buffer cannot be rewound, the same buffer * is returned. If rewind operations happen, a fresh buffer is returned. The * returned buffer is always read-locked. If the returned buffer is not the * input buffer, the lock on the input buffer is released and the input buffer * is freed (its refcount is decremented). */ struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct extent_buffer *eb, u64 time_seq) { struct extent_buffer *eb_rewin; struct tree_mod_elem *tm; if (!time_seq) return eb; if (btrfs_header_level(eb) == 0) return eb; tm = tree_mod_log_search(fs_info, eb->start, time_seq); if (!tm) return eb; if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { BUG_ON(tm->slot != 0); eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); if (!eb_rewin) { btrfs_tree_read_unlock(eb); free_extent_buffer(eb); return NULL; } btrfs_set_header_bytenr(eb_rewin, eb->start); btrfs_set_header_backref_rev(eb_rewin, btrfs_header_backref_rev(eb)); btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); } else { eb_rewin = btrfs_clone_extent_buffer(eb); if (!eb_rewin) { btrfs_tree_read_unlock(eb); free_extent_buffer(eb); return NULL; } } btrfs_tree_read_unlock(eb); free_extent_buffer(eb); btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), eb_rewin, btrfs_header_level(eb_rewin)); btrfs_tree_read_lock(eb_rewin); tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); WARN_ON(btrfs_header_nritems(eb_rewin) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); return eb_rewin; } /* * Rewind the state of @root's root node to the given @time_seq value. * If there are no changes, the current root->root_node is returned. If anything * changed in between, there's a fresh buffer allocated on which the rewind * operations are done. In any case, the returned buffer is read locked. * Returns NULL on error (with no locks held). */ struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq) { struct btrfs_fs_info *fs_info = root->fs_info; struct tree_mod_elem *tm; struct extent_buffer *eb = NULL; struct extent_buffer *eb_root; u64 eb_root_owner = 0; struct extent_buffer *old; struct tree_mod_root *old_root = NULL; u64 old_generation = 0; u64 logical; int level; eb_root = btrfs_read_lock_root_node(root); tm = tree_mod_log_oldest_root(eb_root, time_seq); if (!tm) return eb_root; if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) { old_root = &tm->old_root; old_generation = tm->generation; logical = old_root->logical; level = old_root->level; } else { logical = eb_root->start; level = btrfs_header_level(eb_root); } tm = tree_mod_log_search(fs_info, logical, time_seq); if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); old = read_tree_block(fs_info, logical, root->root_key.objectid, 0, level, NULL); if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { if (!IS_ERR(old)) free_extent_buffer(old); btrfs_warn(fs_info, "failed to read tree block %llu from get_old_root", logical); } else { struct tree_mod_elem *tm2; btrfs_tree_read_lock(old); eb = btrfs_clone_extent_buffer(old); /* * After the lookup for the most recent tree mod operation * above and before we locked and cloned the extent buffer * 'old', a new tree mod log operation may have been added. * So lookup for a more recent one to make sure the number * of mod log operations we replay is consistent with the * number of items we have in the cloned extent buffer, * otherwise we can hit a BUG_ON when rewinding the extent * buffer. */ tm2 = tree_mod_log_search(fs_info, logical, time_seq); btrfs_tree_read_unlock(old); free_extent_buffer(old); ASSERT(tm2); ASSERT(tm2 == tm || tm2->seq > tm->seq); if (!tm2 || tm2->seq < tm->seq) { free_extent_buffer(eb); return NULL; } tm = tm2; } } else if (old_root) { eb_root_owner = btrfs_header_owner(eb_root); btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); eb = alloc_dummy_extent_buffer(fs_info, logical); } else { eb = btrfs_clone_extent_buffer(eb_root); btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); } if (!eb) return NULL; if (old_root) { btrfs_set_header_bytenr(eb, eb->start); btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(eb, eb_root_owner); btrfs_set_header_level(eb, old_root->level); btrfs_set_header_generation(eb, old_generation); } btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, btrfs_header_level(eb)); btrfs_tree_read_lock(eb); if (tm) tree_mod_log_rewind(fs_info, eb, time_seq, tm); else WARN_ON(btrfs_header_level(eb) != 0); WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); return eb; } int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) { struct tree_mod_elem *tm; int level; struct extent_buffer *eb_root = btrfs_root_node(root); tm = tree_mod_log_oldest_root(eb_root, time_seq); if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) level = tm->old_root.level; else level = btrfs_header_level(eb_root); free_extent_buffer(eb_root); return level; } /* * Return the lowest sequence number in the tree modification log. * * Return the sequence number of the oldest tree modification log user, which * corresponds to the lowest sequence number of all existing users. If there are * no users it returns 0. */ u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info) { u64 ret = 0; read_lock(&fs_info->tree_mod_log_lock); if (!list_empty(&fs_info->tree_mod_seq_list)) { struct btrfs_seq_list *elem; elem = list_first_entry(&fs_info->tree_mod_seq_list, struct btrfs_seq_list, list); ret = elem->seq; } read_unlock(&fs_info->tree_mod_log_lock); return ret; } |