Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | // SPDX-License-Identifier: GPL-2.0-or-later /* * faulty.c : Multiple Devices driver for Linux * * Copyright (C) 2004 Neil Brown * * fautly-device-simulator personality for md */ /* * The "faulty" personality causes some requests to fail. * * Possible failure modes are: * reads fail "randomly" but succeed on retry * writes fail "randomly" but succeed on retry * reads for some address fail and then persist until a write * reads for some address fail and then persist irrespective of write * writes for some address fail and persist * all writes fail * * Different modes can be active at a time, but only * one can be set at array creation. Others can be added later. * A mode can be one-shot or recurrent with the recurrence being * once in every N requests. * The bottom 5 bits of the "layout" indicate the mode. The * remainder indicate a period, or 0 for one-shot. * * There is an implementation limit on the number of concurrently * persisting-faulty blocks. When a new fault is requested that would * exceed the limit, it is ignored. * All current faults can be clear using a layout of "0". * * Requests are always sent to the device. If they are to fail, * we clone the bio and insert a new b_end_io into the chain. */ #define WriteTransient 0 #define ReadTransient 1 #define WritePersistent 2 #define ReadPersistent 3 #define WriteAll 4 /* doesn't go to device */ #define ReadFixable 5 #define Modes 6 #define ClearErrors 31 #define ClearFaults 30 #define AllPersist 100 /* internal use only */ #define NoPersist 101 #define ModeMask 0x1f #define ModeShift 5 #define MaxFault 50 #include <linux/blkdev.h> #include <linux/module.h> #include <linux/raid/md_u.h> #include <linux/slab.h> #include "md.h" #include <linux/seq_file.h> static void faulty_fail(struct bio *bio) { struct bio *b = bio->bi_private; b->bi_iter.bi_size = bio->bi_iter.bi_size; b->bi_iter.bi_sector = bio->bi_iter.bi_sector; bio_put(bio); bio_io_error(b); } struct faulty_conf { int period[Modes]; atomic_t counters[Modes]; sector_t faults[MaxFault]; int modes[MaxFault]; int nfaults; struct md_rdev *rdev; }; static int check_mode(struct faulty_conf *conf, int mode) { if (conf->period[mode] == 0 && atomic_read(&conf->counters[mode]) <= 0) return 0; /* no failure, no decrement */ if (atomic_dec_and_test(&conf->counters[mode])) { if (conf->period[mode]) atomic_set(&conf->counters[mode], conf->period[mode]); return 1; } return 0; } static int check_sector(struct faulty_conf *conf, sector_t start, sector_t end, int dir) { /* If we find a ReadFixable sector, we fix it ... */ int i; for (i=0; i<conf->nfaults; i++) if (conf->faults[i] >= start && conf->faults[i] < end) { /* found it ... */ switch (conf->modes[i] * 2 + dir) { case WritePersistent*2+WRITE: return 1; case ReadPersistent*2+READ: return 1; case ReadFixable*2+READ: return 1; case ReadFixable*2+WRITE: conf->modes[i] = NoPersist; return 0; case AllPersist*2+READ: case AllPersist*2+WRITE: return 1; default: return 0; } } return 0; } static void add_sector(struct faulty_conf *conf, sector_t start, int mode) { int i; int n = conf->nfaults; for (i=0; i<conf->nfaults; i++) if (conf->faults[i] == start) { switch(mode) { case NoPersist: conf->modes[i] = mode; return; case WritePersistent: if (conf->modes[i] == ReadPersistent || conf->modes[i] == ReadFixable) conf->modes[i] = AllPersist; else conf->modes[i] = WritePersistent; return; case ReadPersistent: if (conf->modes[i] == WritePersistent) conf->modes[i] = AllPersist; else conf->modes[i] = ReadPersistent; return; case ReadFixable: if (conf->modes[i] == WritePersistent || conf->modes[i] == ReadPersistent) conf->modes[i] = AllPersist; else conf->modes[i] = ReadFixable; return; } } else if (conf->modes[i] == NoPersist) n = i; if (n >= MaxFault) return; conf->faults[n] = start; conf->modes[n] = mode; if (conf->nfaults == n) conf->nfaults = n+1; } static bool faulty_make_request(struct mddev *mddev, struct bio *bio) { struct faulty_conf *conf = mddev->private; int failit = 0; if (bio_data_dir(bio) == WRITE) { /* write request */ if (atomic_read(&conf->counters[WriteAll])) { /* special case - don't decrement, don't submit_bio_noacct, * just fail immediately */ bio_io_error(bio); return true; } if (check_sector(conf, bio->bi_iter.bi_sector, bio_end_sector(bio), WRITE)) failit = 1; if (check_mode(conf, WritePersistent)) { add_sector(conf, bio->bi_iter.bi_sector, WritePersistent); failit = 1; } if (check_mode(conf, WriteTransient)) failit = 1; } else { /* read request */ if (check_sector(conf, bio->bi_iter.bi_sector, bio_end_sector(bio), READ)) failit = 1; if (check_mode(conf, ReadTransient)) failit = 1; if (check_mode(conf, ReadPersistent)) { add_sector(conf, bio->bi_iter.bi_sector, ReadPersistent); failit = 1; } if (check_mode(conf, ReadFixable)) { add_sector(conf, bio->bi_iter.bi_sector, ReadFixable); failit = 1; } } if (failit) { struct bio *b = bio_alloc_clone(conf->rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); b->bi_private = bio; b->bi_end_io = faulty_fail; bio = b; } else bio_set_dev(bio, conf->rdev->bdev); submit_bio_noacct(bio); return true; } static void faulty_status(struct seq_file *seq, struct mddev *mddev) { struct faulty_conf *conf = mddev->private; int n; if ((n=atomic_read(&conf->counters[WriteTransient])) != 0) seq_printf(seq, " WriteTransient=%d(%d)", n, conf->period[WriteTransient]); if ((n=atomic_read(&conf->counters[ReadTransient])) != 0) seq_printf(seq, " ReadTransient=%d(%d)", n, conf->period[ReadTransient]); if ((n=atomic_read(&conf->counters[WritePersistent])) != 0) seq_printf(seq, " WritePersistent=%d(%d)", n, conf->period[WritePersistent]); if ((n=atomic_read(&conf->counters[ReadPersistent])) != 0) seq_printf(seq, " ReadPersistent=%d(%d)", n, conf->period[ReadPersistent]); if ((n=atomic_read(&conf->counters[ReadFixable])) != 0) seq_printf(seq, " ReadFixable=%d(%d)", n, conf->period[ReadFixable]); if ((n=atomic_read(&conf->counters[WriteAll])) != 0) seq_printf(seq, " WriteAll"); seq_printf(seq, " nfaults=%d", conf->nfaults); } static int faulty_reshape(struct mddev *mddev) { int mode = mddev->new_layout & ModeMask; int count = mddev->new_layout >> ModeShift; struct faulty_conf *conf = mddev->private; if (mddev->new_layout < 0) return 0; /* new layout */ if (mode == ClearFaults) conf->nfaults = 0; else if (mode == ClearErrors) { int i; for (i=0 ; i < Modes ; i++) { conf->period[i] = 0; atomic_set(&conf->counters[i], 0); } } else if (mode < Modes) { conf->period[mode] = count; if (!count) count++; atomic_set(&conf->counters[mode], count); } else return -EINVAL; mddev->new_layout = -1; mddev->layout = -1; /* makes sure further changes come through */ return 0; } static sector_t faulty_size(struct mddev *mddev, sector_t sectors, int raid_disks) { WARN_ONCE(raid_disks, "%s does not support generic reshape\n", __func__); if (sectors == 0) return mddev->dev_sectors; return sectors; } static int faulty_run(struct mddev *mddev) { struct md_rdev *rdev; int i; struct faulty_conf *conf; if (md_check_no_bitmap(mddev)) return -EINVAL; conf = kmalloc(sizeof(*conf), GFP_KERNEL); if (!conf) return -ENOMEM; for (i=0; i<Modes; i++) { atomic_set(&conf->counters[i], 0); conf->period[i] = 0; } conf->nfaults = 0; rdev_for_each(rdev, mddev) { conf->rdev = rdev; disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); } md_set_array_sectors(mddev, faulty_size(mddev, 0, 0)); mddev->private = conf; faulty_reshape(mddev); return 0; } static void faulty_free(struct mddev *mddev, void *priv) { struct faulty_conf *conf = priv; kfree(conf); } static struct md_personality faulty_personality = { .name = "faulty", .level = LEVEL_FAULTY, .owner = THIS_MODULE, .make_request = faulty_make_request, .run = faulty_run, .free = faulty_free, .status = faulty_status, .check_reshape = faulty_reshape, .size = faulty_size, }; static int __init raid_init(void) { return register_md_personality(&faulty_personality); } static void raid_exit(void) { unregister_md_personality(&faulty_personality); } module_init(raid_init); module_exit(raid_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Fault injection personality for MD (deprecated)"); MODULE_ALIAS("md-personality-10"); /* faulty */ MODULE_ALIAS("md-faulty"); MODULE_ALIAS("md-level--5"); |