Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | // SPDX-License-Identifier: GPL-2.0-only /* * OMAP4+ CPU idle Routines * * Copyright (C) 2011-2013 Texas Instruments, Inc. * Santosh Shilimkar <santosh.shilimkar@ti.com> * Rajendra Nayak <rnayak@ti.com> */ #include <linux/sched.h> #include <linux/cpuidle.h> #include <linux/cpu_pm.h> #include <linux/export.h> #include <linux/tick.h> #include <asm/cpuidle.h> #include "common.h" #include "pm.h" #include "prm.h" #include "soc.h" #include "clockdomain.h" #define MAX_CPUS 2 /* Machine specific information */ struct idle_statedata { u32 cpu_state; u32 mpu_logic_state; u32 mpu_state; u32 mpu_state_vote; }; static struct idle_statedata omap4_idle_data[] = { { .cpu_state = PWRDM_POWER_ON, .mpu_state = PWRDM_POWER_ON, .mpu_logic_state = PWRDM_POWER_RET, }, { .cpu_state = PWRDM_POWER_OFF, .mpu_state = PWRDM_POWER_RET, .mpu_logic_state = PWRDM_POWER_RET, }, { .cpu_state = PWRDM_POWER_OFF, .mpu_state = PWRDM_POWER_RET, .mpu_logic_state = PWRDM_POWER_OFF, }, }; static struct idle_statedata omap5_idle_data[] = { { .cpu_state = PWRDM_POWER_ON, .mpu_state = PWRDM_POWER_ON, .mpu_logic_state = PWRDM_POWER_ON, }, { .cpu_state = PWRDM_POWER_RET, .mpu_state = PWRDM_POWER_RET, .mpu_logic_state = PWRDM_POWER_RET, }, }; static struct powerdomain *mpu_pd, *cpu_pd[MAX_CPUS]; static struct clockdomain *cpu_clkdm[MAX_CPUS]; static atomic_t abort_barrier; static bool cpu_done[MAX_CPUS]; static struct idle_statedata *state_ptr = &omap4_idle_data[0]; static DEFINE_RAW_SPINLOCK(mpu_lock); /* Private functions */ /** * omap_enter_idle_[simple/coupled] - OMAP4PLUS cpuidle entry functions * @dev: cpuidle device * @drv: cpuidle driver * @index: the index of state to be entered * * Called from the CPUidle framework to program the device to the * specified low power state selected by the governor. * Returns the amount of time spent in the low power state. */ static int omap_enter_idle_simple(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { omap_do_wfi(); return index; } static int omap_enter_idle_smp(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { struct idle_statedata *cx = state_ptr + index; unsigned long flag; raw_spin_lock_irqsave(&mpu_lock, flag); cx->mpu_state_vote++; if (cx->mpu_state_vote == num_online_cpus()) { pwrdm_set_logic_retst(mpu_pd, cx->mpu_logic_state); omap_set_pwrdm_state(mpu_pd, cx->mpu_state); } raw_spin_unlock_irqrestore(&mpu_lock, flag); omap4_enter_lowpower(dev->cpu, cx->cpu_state); raw_spin_lock_irqsave(&mpu_lock, flag); if (cx->mpu_state_vote == num_online_cpus()) omap_set_pwrdm_state(mpu_pd, PWRDM_POWER_ON); cx->mpu_state_vote--; raw_spin_unlock_irqrestore(&mpu_lock, flag); return index; } static int omap_enter_idle_coupled(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { struct idle_statedata *cx = state_ptr + index; u32 mpuss_can_lose_context = 0; int error; /* * CPU0 has to wait and stay ON until CPU1 is OFF state. * This is necessary to honour hardware recommondation * of triggeing all the possible low power modes once CPU1 is * out of coherency and in OFF mode. */ if (dev->cpu == 0 && cpumask_test_cpu(1, cpu_online_mask)) { while (pwrdm_read_pwrst(cpu_pd[1]) != PWRDM_POWER_OFF) { cpu_relax(); /* * CPU1 could have already entered & exited idle * without hitting off because of a wakeup * or a failed attempt to hit off mode. Check for * that here, otherwise we could spin forever * waiting for CPU1 off. */ if (cpu_done[1]) goto fail; } } mpuss_can_lose_context = (cx->mpu_state == PWRDM_POWER_RET) && (cx->mpu_logic_state == PWRDM_POWER_OFF); /* Enter broadcast mode for periodic timers */ RCU_NONIDLE(tick_broadcast_enable()); /* Enter broadcast mode for one-shot timers */ RCU_NONIDLE(tick_broadcast_enter()); /* * Call idle CPU PM enter notifier chain so that * VFP and per CPU interrupt context is saved. */ error = cpu_pm_enter(); if (error) goto cpu_pm_out; if (dev->cpu == 0) { pwrdm_set_logic_retst(mpu_pd, cx->mpu_logic_state); RCU_NONIDLE(omap_set_pwrdm_state(mpu_pd, cx->mpu_state)); /* * Call idle CPU cluster PM enter notifier chain * to save GIC and wakeupgen context. */ if (mpuss_can_lose_context) { error = cpu_cluster_pm_enter(); if (error) { index = 0; cx = state_ptr + index; pwrdm_set_logic_retst(mpu_pd, cx->mpu_logic_state); RCU_NONIDLE(omap_set_pwrdm_state(mpu_pd, cx->mpu_state)); mpuss_can_lose_context = 0; } } } omap4_enter_lowpower(dev->cpu, cx->cpu_state); cpu_done[dev->cpu] = true; /* Wakeup CPU1 only if it is not offlined */ if (dev->cpu == 0 && cpumask_test_cpu(1, cpu_online_mask)) { if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && mpuss_can_lose_context) gic_dist_disable(); RCU_NONIDLE(clkdm_deny_idle(cpu_clkdm[1])); RCU_NONIDLE(omap_set_pwrdm_state(cpu_pd[1], PWRDM_POWER_ON)); RCU_NONIDLE(clkdm_allow_idle(cpu_clkdm[1])); if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && mpuss_can_lose_context) { while (gic_dist_disabled()) { udelay(1); cpu_relax(); } gic_timer_retrigger(); } } /* * Call idle CPU cluster PM exit notifier chain * to restore GIC and wakeupgen context. */ if (dev->cpu == 0 && mpuss_can_lose_context) cpu_cluster_pm_exit(); /* * Call idle CPU PM exit notifier chain to restore * VFP and per CPU IRQ context. */ cpu_pm_exit(); cpu_pm_out: RCU_NONIDLE(tick_broadcast_exit()); fail: cpuidle_coupled_parallel_barrier(dev, &abort_barrier); cpu_done[dev->cpu] = false; return index; } static struct cpuidle_driver omap4_idle_driver = { .name = "omap4_idle", .owner = THIS_MODULE, .states = { { /* C1 - CPU0 ON + CPU1 ON + MPU ON */ .exit_latency = 2 + 2, .target_residency = 5, .enter = omap_enter_idle_simple, .name = "C1", .desc = "CPUx ON, MPUSS ON" }, { /* C2 - CPU0 OFF + CPU1 OFF + MPU CSWR */ .exit_latency = 328 + 440, .target_residency = 960, .flags = CPUIDLE_FLAG_COUPLED, .enter = omap_enter_idle_coupled, .name = "C2", .desc = "CPUx OFF, MPUSS CSWR", }, { /* C3 - CPU0 OFF + CPU1 OFF + MPU OSWR */ .exit_latency = 460 + 518, .target_residency = 1100, .flags = CPUIDLE_FLAG_COUPLED, .enter = omap_enter_idle_coupled, .name = "C3", .desc = "CPUx OFF, MPUSS OSWR", }, }, .state_count = ARRAY_SIZE(omap4_idle_data), .safe_state_index = 0, }; static struct cpuidle_driver omap5_idle_driver = { .name = "omap5_idle", .owner = THIS_MODULE, .states = { { /* C1 - CPU0 ON + CPU1 ON + MPU ON */ .exit_latency = 2 + 2, .target_residency = 5, .enter = omap_enter_idle_simple, .name = "C1", .desc = "CPUx WFI, MPUSS ON" }, { /* C2 - CPU0 RET + CPU1 RET + MPU CSWR */ .exit_latency = 48 + 60, .target_residency = 100, .flags = CPUIDLE_FLAG_TIMER_STOP, .enter = omap_enter_idle_smp, .name = "C2", .desc = "CPUx CSWR, MPUSS CSWR", }, }, .state_count = ARRAY_SIZE(omap5_idle_data), .safe_state_index = 0, }; /* Public functions */ /** * omap4_idle_init - Init routine for OMAP4+ idle * * Registers the OMAP4+ specific cpuidle driver to the cpuidle * framework with the valid set of states. */ int __init omap4_idle_init(void) { struct cpuidle_driver *idle_driver; if (soc_is_omap54xx()) { state_ptr = &omap5_idle_data[0]; idle_driver = &omap5_idle_driver; } else { state_ptr = &omap4_idle_data[0]; idle_driver = &omap4_idle_driver; } mpu_pd = pwrdm_lookup("mpu_pwrdm"); cpu_pd[0] = pwrdm_lookup("cpu0_pwrdm"); cpu_pd[1] = pwrdm_lookup("cpu1_pwrdm"); if ((!mpu_pd) || (!cpu_pd[0]) || (!cpu_pd[1])) return -ENODEV; cpu_clkdm[0] = clkdm_lookup("mpu0_clkdm"); cpu_clkdm[1] = clkdm_lookup("mpu1_clkdm"); if (!cpu_clkdm[0] || !cpu_clkdm[1]) return -ENODEV; return cpuidle_register(idle_driver, cpu_online_mask); } |