Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 | // SPDX-License-Identifier: GPL-2.0-only /* * AMD Memory Encryption Support * * Copyright (C) 2016 Advanced Micro Devices, Inc. * * Author: Tom Lendacky <thomas.lendacky@amd.com> */ #define DISABLE_BRANCH_PROFILING /* * Since we're dealing with identity mappings, physical and virtual * addresses are the same, so override these defines which are ultimately * used by the headers in misc.h. */ #define __pa(x) ((unsigned long)(x)) #define __va(x) ((void *)((unsigned long)(x))) /* * Special hack: we have to be careful, because no indirections are * allowed here, and paravirt_ops is a kind of one. As it will only run in * baremetal anyway, we just keep it from happening. (This list needs to * be extended when new paravirt and debugging variants are added.) */ #undef CONFIG_PARAVIRT #undef CONFIG_PARAVIRT_XXL #undef CONFIG_PARAVIRT_SPINLOCKS /* * This code runs before CPU feature bits are set. By default, the * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5 * is provided to handle this situation and, instead, use a variable that * has been set by the early boot code. */ #define USE_EARLY_PGTABLE_L5 #include <linux/kernel.h> #include <linux/mm.h> #include <linux/mem_encrypt.h> #include <linux/cc_platform.h> #include <asm/setup.h> #include <asm/sections.h> #include <asm/cmdline.h> #include <asm/coco.h> #include <asm/sev.h> #include "mm_internal.h" #define PGD_FLAGS _KERNPG_TABLE_NOENC #define P4D_FLAGS _KERNPG_TABLE_NOENC #define PUD_FLAGS _KERNPG_TABLE_NOENC #define PMD_FLAGS _KERNPG_TABLE_NOENC #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) #define PMD_FLAGS_DEC PMD_FLAGS_LARGE #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ (_PAGE_PAT_LARGE | _PAGE_PWT)) #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) #define PTE_FLAGS_DEC PTE_FLAGS #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ (_PAGE_PAT | _PAGE_PWT)) #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) struct sme_populate_pgd_data { void *pgtable_area; pgd_t *pgd; pmdval_t pmd_flags; pteval_t pte_flags; unsigned long paddr; unsigned long vaddr; unsigned long vaddr_end; }; /* * This work area lives in the .init.scratch section, which lives outside of * the kernel proper. It is sized to hold the intermediate copy buffer and * more than enough pagetable pages. * * By using this section, the kernel can be encrypted in place and it * avoids any possibility of boot parameters or initramfs images being * placed such that the in-place encryption logic overwrites them. This * section is 2MB aligned to allow for simple pagetable setup using only * PMD entries (see vmlinux.lds.S). */ static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch"); static char sme_cmdline_arg[] __initdata = "mem_encrypt"; static char sme_cmdline_on[] __initdata = "on"; static char sme_cmdline_off[] __initdata = "off"; static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) { unsigned long pgd_start, pgd_end, pgd_size; pgd_t *pgd_p; pgd_start = ppd->vaddr & PGDIR_MASK; pgd_end = ppd->vaddr_end & PGDIR_MASK; pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); pgd_p = ppd->pgd + pgd_index(ppd->vaddr); memset(pgd_p, 0, pgd_size); } static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = ppd->pgd + pgd_index(ppd->vaddr); if (pgd_none(*pgd)) { p4d = ppd->pgtable_area; memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); } p4d = p4d_offset(pgd, ppd->vaddr); if (p4d_none(*p4d)) { pud = ppd->pgtable_area; memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); } pud = pud_offset(p4d, ppd->vaddr); if (pud_none(*pud)) { pmd = ppd->pgtable_area; memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); } if (pud_large(*pud)) return NULL; return pud; } static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) { pud_t *pud; pmd_t *pmd; pud = sme_prepare_pgd(ppd); if (!pud) return; pmd = pmd_offset(pud, ppd->vaddr); if (pmd_large(*pmd)) return; set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); } static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) { pud_t *pud; pmd_t *pmd; pte_t *pte; pud = sme_prepare_pgd(ppd); if (!pud) return; pmd = pmd_offset(pud, ppd->vaddr); if (pmd_none(*pmd)) { pte = ppd->pgtable_area; memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); } if (pmd_large(*pmd)) return; pte = pte_offset_map(pmd, ppd->vaddr); if (pte_none(*pte)) set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); } static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) { while (ppd->vaddr < ppd->vaddr_end) { sme_populate_pgd_large(ppd); ppd->vaddr += PMD_PAGE_SIZE; ppd->paddr += PMD_PAGE_SIZE; } } static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) { while (ppd->vaddr < ppd->vaddr_end) { sme_populate_pgd(ppd); ppd->vaddr += PAGE_SIZE; ppd->paddr += PAGE_SIZE; } } static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, pmdval_t pmd_flags, pteval_t pte_flags) { unsigned long vaddr_end; ppd->pmd_flags = pmd_flags; ppd->pte_flags = pte_flags; /* Save original end value since we modify the struct value */ vaddr_end = ppd->vaddr_end; /* If start is not 2MB aligned, create PTE entries */ ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); __sme_map_range_pte(ppd); /* Create PMD entries */ ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; __sme_map_range_pmd(ppd); /* If end is not 2MB aligned, create PTE entries */ ppd->vaddr_end = vaddr_end; __sme_map_range_pte(ppd); } static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); } static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); } static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); } static unsigned long __init sme_pgtable_calc(unsigned long len) { unsigned long entries = 0, tables = 0; /* * Perform a relatively simplistic calculation of the pagetable * entries that are needed. Those mappings will be covered mostly * by 2MB PMD entries so we can conservatively calculate the required * number of P4D, PUD and PMD structures needed to perform the * mappings. For mappings that are not 2MB aligned, PTE mappings * would be needed for the start and end portion of the address range * that fall outside of the 2MB alignment. This results in, at most, * two extra pages to hold PTE entries for each range that is mapped. * Incrementing the count for each covers the case where the addresses * cross entries. */ /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ if (PTRS_PER_P4D > 1) entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; /* * Now calculate the added pagetable structures needed to populate * the new pagetables. */ if (PTRS_PER_P4D > 1) tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; return entries + tables; } void __init sme_encrypt_kernel(struct boot_params *bp) { unsigned long workarea_start, workarea_end, workarea_len; unsigned long execute_start, execute_end, execute_len; unsigned long kernel_start, kernel_end, kernel_len; unsigned long initrd_start, initrd_end, initrd_len; struct sme_populate_pgd_data ppd; unsigned long pgtable_area_len; unsigned long decrypted_base; /* * This is early code, use an open coded check for SME instead of * using cc_platform_has(). This eliminates worries about removing * instrumentation or checking boot_cpu_data in the cc_platform_has() * function. */ if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED) return; /* * Prepare for encrypting the kernel and initrd by building new * pagetables with the necessary attributes needed to encrypt the * kernel in place. * * One range of virtual addresses will map the memory occupied * by the kernel and initrd as encrypted. * * Another range of virtual addresses will map the memory occupied * by the kernel and initrd as decrypted and write-protected. * * The use of write-protect attribute will prevent any of the * memory from being cached. */ /* Physical addresses gives us the identity mapped virtual addresses */ kernel_start = __pa_symbol(_text); kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); kernel_len = kernel_end - kernel_start; initrd_start = 0; initrd_end = 0; initrd_len = 0; #ifdef CONFIG_BLK_DEV_INITRD initrd_len = (unsigned long)bp->hdr.ramdisk_size | ((unsigned long)bp->ext_ramdisk_size << 32); if (initrd_len) { initrd_start = (unsigned long)bp->hdr.ramdisk_image | ((unsigned long)bp->ext_ramdisk_image << 32); initrd_end = PAGE_ALIGN(initrd_start + initrd_len); initrd_len = initrd_end - initrd_start; } #endif /* * We're running identity mapped, so we must obtain the address to the * SME encryption workarea using rip-relative addressing. */ asm ("lea sme_workarea(%%rip), %0" : "=r" (workarea_start) : "p" (sme_workarea)); /* * Calculate required number of workarea bytes needed: * executable encryption area size: * stack page (PAGE_SIZE) * encryption routine page (PAGE_SIZE) * intermediate copy buffer (PMD_PAGE_SIZE) * pagetable structures for the encryption of the kernel * pagetable structures for workarea (in case not currently mapped) */ execute_start = workarea_start; execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; execute_len = execute_end - execute_start; /* * One PGD for both encrypted and decrypted mappings and a set of * PUDs and PMDs for each of the encrypted and decrypted mappings. */ pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; if (initrd_len) pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; /* PUDs and PMDs needed in the current pagetables for the workarea */ pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); /* * The total workarea includes the executable encryption area and * the pagetable area. The start of the workarea is already 2MB * aligned, align the end of the workarea on a 2MB boundary so that * we don't try to create/allocate PTE entries from the workarea * before it is mapped. */ workarea_len = execute_len + pgtable_area_len; workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); /* * Set the address to the start of where newly created pagetable * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable * structures are created when the workarea is added to the current * pagetables and when the new encrypted and decrypted kernel * mappings are populated. */ ppd.pgtable_area = (void *)execute_end; /* * Make sure the current pagetable structure has entries for * addressing the workarea. */ ppd.pgd = (pgd_t *)native_read_cr3_pa(); ppd.paddr = workarea_start; ppd.vaddr = workarea_start; ppd.vaddr_end = workarea_end; sme_map_range_decrypted(&ppd); /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); /* * A new pagetable structure is being built to allow for the kernel * and initrd to be encrypted. It starts with an empty PGD that will * then be populated with new PUDs and PMDs as the encrypted and * decrypted kernel mappings are created. */ ppd.pgd = ppd.pgtable_area; memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; /* * A different PGD index/entry must be used to get different * pagetable entries for the decrypted mapping. Choose the next * PGD index and convert it to a virtual address to be used as * the base of the mapping. */ decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); if (initrd_len) { unsigned long check_base; check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); decrypted_base = max(decrypted_base, check_base); } decrypted_base <<= PGDIR_SHIFT; /* Add encrypted kernel (identity) mappings */ ppd.paddr = kernel_start; ppd.vaddr = kernel_start; ppd.vaddr_end = kernel_end; sme_map_range_encrypted(&ppd); /* Add decrypted, write-protected kernel (non-identity) mappings */ ppd.paddr = kernel_start; ppd.vaddr = kernel_start + decrypted_base; ppd.vaddr_end = kernel_end + decrypted_base; sme_map_range_decrypted_wp(&ppd); if (initrd_len) { /* Add encrypted initrd (identity) mappings */ ppd.paddr = initrd_start; ppd.vaddr = initrd_start; ppd.vaddr_end = initrd_end; sme_map_range_encrypted(&ppd); /* * Add decrypted, write-protected initrd (non-identity) mappings */ ppd.paddr = initrd_start; ppd.vaddr = initrd_start + decrypted_base; ppd.vaddr_end = initrd_end + decrypted_base; sme_map_range_decrypted_wp(&ppd); } /* Add decrypted workarea mappings to both kernel mappings */ ppd.paddr = workarea_start; ppd.vaddr = workarea_start; ppd.vaddr_end = workarea_end; sme_map_range_decrypted(&ppd); ppd.paddr = workarea_start; ppd.vaddr = workarea_start + decrypted_base; ppd.vaddr_end = workarea_end + decrypted_base; sme_map_range_decrypted(&ppd); /* Perform the encryption */ sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, kernel_len, workarea_start, (unsigned long)ppd.pgd); if (initrd_len) sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, initrd_len, workarea_start, (unsigned long)ppd.pgd); /* * At this point we are running encrypted. Remove the mappings for * the decrypted areas - all that is needed for this is to remove * the PGD entry/entries. */ ppd.vaddr = kernel_start + decrypted_base; ppd.vaddr_end = kernel_end + decrypted_base; sme_clear_pgd(&ppd); if (initrd_len) { ppd.vaddr = initrd_start + decrypted_base; ppd.vaddr_end = initrd_end + decrypted_base; sme_clear_pgd(&ppd); } ppd.vaddr = workarea_start + decrypted_base; ppd.vaddr_end = workarea_end + decrypted_base; sme_clear_pgd(&ppd); /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); } void __init sme_enable(struct boot_params *bp) { const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; unsigned int eax, ebx, ecx, edx; unsigned long feature_mask; bool active_by_default; unsigned long me_mask; char buffer[16]; bool snp; u64 msr; snp = snp_init(bp); /* Check for the SME/SEV support leaf */ eax = 0x80000000; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); if (eax < 0x8000001f) return; #define AMD_SME_BIT BIT(0) #define AMD_SEV_BIT BIT(1) /* * Check for the SME/SEV feature: * CPUID Fn8000_001F[EAX] * - Bit 0 - Secure Memory Encryption support * - Bit 1 - Secure Encrypted Virtualization support * CPUID Fn8000_001F[EBX] * - Bits 5:0 - Pagetable bit position used to indicate encryption */ eax = 0x8000001f; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); /* Check whether SEV or SME is supported */ if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) return; me_mask = 1UL << (ebx & 0x3f); /* Check the SEV MSR whether SEV or SME is enabled */ sev_status = __rdmsr(MSR_AMD64_SEV); feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; /* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */ if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) snp_abort(); /* Check if memory encryption is enabled */ if (feature_mask == AMD_SME_BIT) { /* * No SME if Hypervisor bit is set. This check is here to * prevent a guest from trying to enable SME. For running as a * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there * might be other hypervisors which emulate that MSR as non-zero * or even pass it through to the guest. * A malicious hypervisor can still trick a guest into this * path, but there is no way to protect against that. */ eax = 1; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); if (ecx & BIT(31)) return; /* For SME, check the SYSCFG MSR */ msr = __rdmsr(MSR_AMD64_SYSCFG); if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) return; } else { /* SEV state cannot be controlled by a command line option */ sme_me_mask = me_mask; goto out; } /* * Fixups have not been applied to phys_base yet and we're running * identity mapped, so we must obtain the address to the SME command * line argument data using rip-relative addressing. */ asm ("lea sme_cmdline_arg(%%rip), %0" : "=r" (cmdline_arg) : "p" (sme_cmdline_arg)); asm ("lea sme_cmdline_on(%%rip), %0" : "=r" (cmdline_on) : "p" (sme_cmdline_on)); asm ("lea sme_cmdline_off(%%rip), %0" : "=r" (cmdline_off) : "p" (sme_cmdline_off)); if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) active_by_default = true; else active_by_default = false; cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | ((u64)bp->ext_cmd_line_ptr << 32)); cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)); if (!strncmp(buffer, cmdline_on, sizeof(buffer))) sme_me_mask = me_mask; else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) sme_me_mask = 0; else sme_me_mask = active_by_default ? me_mask : 0; out: if (sme_me_mask) { physical_mask &= ~sme_me_mask; cc_set_vendor(CC_VENDOR_AMD); cc_set_mask(sme_me_mask); } } |