Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | /* * Copyright (c) 2008-2011 Atheros Communications Inc. * Copyright (c) 2011 Neratec Solutions AG * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "hw-ops.h" #include "ath9k.h" #include "dfs.h" #include "dfs_debug.h" /* internal struct to pass radar data */ struct ath_radar_data { u8 pulse_bw_info; u8 rssi; u8 ext_rssi; u8 pulse_length_ext; u8 pulse_length_pri; }; /**** begin: CHIRP ************************************************************/ /* min and max gradients for defined FCC chirping pulses, given by * - 20MHz chirp width over a pulse width of 50us * - 5MHz chirp width over a pulse width of 100us */ static const int BIN_DELTA_MIN = 1; static const int BIN_DELTA_MAX = 10; /* we need at least 3 deltas / 4 samples for a reliable chirp detection */ #define NUM_DIFFS 3 #define FFT_NUM_SAMPLES (NUM_DIFFS + 1) /* Threshold for difference of delta peaks */ static const int MAX_DIFF = 2; /* width range to be checked for chirping */ static const int MIN_CHIRP_PULSE_WIDTH = 20; static const int MAX_CHIRP_PULSE_WIDTH = 110; struct ath9k_dfs_fft_20 { u8 bin[28]; u8 lower_bins[3]; } __packed; struct ath9k_dfs_fft_40 { u8 bin[64]; u8 lower_bins[3]; u8 upper_bins[3]; } __packed; static inline int fft_max_index(u8 *bins) { return (bins[2] & 0xfc) >> 2; } static inline int fft_max_magnitude(u8 *bins) { return (bins[0] & 0xc0) >> 6 | bins[1] << 2 | (bins[2] & 0x03) << 10; } static inline u8 fft_bitmap_weight(u8 *bins) { return bins[0] & 0x3f; } static int ath9k_get_max_index_ht40(struct ath9k_dfs_fft_40 *fft, bool is_ctl, bool is_ext) { const int DFS_UPPER_BIN_OFFSET = 64; /* if detected radar on both channels, select the significant one */ if (is_ctl && is_ext) { /* first check wether channels have 'strong' bins */ is_ctl = fft_bitmap_weight(fft->lower_bins) != 0; is_ext = fft_bitmap_weight(fft->upper_bins) != 0; /* if still unclear, take higher magnitude */ if (is_ctl && is_ext) { int mag_lower = fft_max_magnitude(fft->lower_bins); int mag_upper = fft_max_magnitude(fft->upper_bins); if (mag_upper > mag_lower) is_ctl = false; else is_ext = false; } } if (is_ctl) return fft_max_index(fft->lower_bins); return fft_max_index(fft->upper_bins) + DFS_UPPER_BIN_OFFSET; } static bool ath9k_check_chirping(struct ath_softc *sc, u8 *data, int datalen, bool is_ctl, bool is_ext) { int i; int max_bin[FFT_NUM_SAMPLES]; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); int prev_delta; if (IS_CHAN_HT40(ah->curchan)) { struct ath9k_dfs_fft_40 *fft = (struct ath9k_dfs_fft_40 *) data; int num_fft_packets = datalen / sizeof(*fft); if (num_fft_packets == 0) return false; ath_dbg(common, DFS, "HT40: datalen=%d, num_fft_packets=%d\n", datalen, num_fft_packets); if (num_fft_packets < FFT_NUM_SAMPLES) { ath_dbg(common, DFS, "not enough packets for chirp\n"); return false; } /* HW sometimes adds 2 garbage bytes in front of FFT samples */ if ((datalen % sizeof(*fft)) == 2) { fft = (struct ath9k_dfs_fft_40 *) (data + 2); ath_dbg(common, DFS, "fixing datalen by 2\n"); } if (IS_CHAN_HT40MINUS(ah->curchan)) swap(is_ctl, is_ext); for (i = 0; i < FFT_NUM_SAMPLES; i++) max_bin[i] = ath9k_get_max_index_ht40(fft + i, is_ctl, is_ext); } else { struct ath9k_dfs_fft_20 *fft = (struct ath9k_dfs_fft_20 *) data; int num_fft_packets = datalen / sizeof(*fft); if (num_fft_packets == 0) return false; ath_dbg(common, DFS, "HT20: datalen=%d, num_fft_packets=%d\n", datalen, num_fft_packets); if (num_fft_packets < FFT_NUM_SAMPLES) { ath_dbg(common, DFS, "not enough packets for chirp\n"); return false; } /* in ht20, this is a 6-bit signed number => shift it to 0 */ for (i = 0; i < FFT_NUM_SAMPLES; i++) max_bin[i] = fft_max_index(fft[i].lower_bins) ^ 0x20; } ath_dbg(common, DFS, "bin_max = [%d, %d, %d, %d]\n", max_bin[0], max_bin[1], max_bin[2], max_bin[3]); /* Check for chirp attributes within specs * a) delta of adjacent max_bins is within range * b) delta of adjacent deltas are within tolerance */ prev_delta = 0; for (i = 0; i < NUM_DIFFS; i++) { int ddelta = -1; int delta = max_bin[i + 1] - max_bin[i]; /* ensure gradient is within valid range */ if (abs(delta) < BIN_DELTA_MIN || abs(delta) > BIN_DELTA_MAX) { ath_dbg(common, DFS, "CHIRP: invalid delta %d " "in sample %d\n", delta, i); return false; } if (i == 0) goto done; ddelta = delta - prev_delta; if (abs(ddelta) > MAX_DIFF) { ath_dbg(common, DFS, "CHIRP: ddelta %d too high\n", ddelta); return false; } done: ath_dbg(common, DFS, "CHIRP - %d: delta=%d, ddelta=%d\n", i, delta, ddelta); prev_delta = delta; } return true; } /**** end: CHIRP **************************************************************/ /* convert pulse duration to usecs, considering clock mode */ static u32 dur_to_usecs(struct ath_hw *ah, u32 dur) { const u32 AR93X_NSECS_PER_DUR = 800; const u32 AR93X_NSECS_PER_DUR_FAST = (8000 / 11); u32 nsecs; if (IS_CHAN_A_FAST_CLOCK(ah, ah->curchan)) nsecs = dur * AR93X_NSECS_PER_DUR_FAST; else nsecs = dur * AR93X_NSECS_PER_DUR; return (nsecs + 500) / 1000; } #define PRI_CH_RADAR_FOUND 0x01 #define EXT_CH_RADAR_FOUND 0x02 static bool ath9k_postprocess_radar_event(struct ath_softc *sc, struct ath_radar_data *ard, struct pulse_event *pe) { u8 rssi; u16 dur; /* * Only the last 2 bits of the BW info are relevant, they indicate * which channel the radar was detected in. */ ard->pulse_bw_info &= 0x03; switch (ard->pulse_bw_info) { case PRI_CH_RADAR_FOUND: /* radar in ctrl channel */ dur = ard->pulse_length_pri; DFS_STAT_INC(sc, pri_phy_errors); /* * cannot use ctrl channel RSSI * if extension channel is stronger */ rssi = (ard->ext_rssi >= (ard->rssi + 3)) ? 0 : ard->rssi; break; case EXT_CH_RADAR_FOUND: /* radar in extension channel */ dur = ard->pulse_length_ext; DFS_STAT_INC(sc, ext_phy_errors); /* * cannot use extension channel RSSI * if control channel is stronger */ rssi = (ard->rssi >= (ard->ext_rssi + 12)) ? 0 : ard->ext_rssi; break; case (PRI_CH_RADAR_FOUND | EXT_CH_RADAR_FOUND): /* * Conducted testing, when pulse is on DC, both pri and ext * durations are reported to be same * * Radiated testing, when pulse is on DC, different pri and * ext durations are reported, so take the larger of the two */ if (ard->pulse_length_ext >= ard->pulse_length_pri) dur = ard->pulse_length_ext; else dur = ard->pulse_length_pri; DFS_STAT_INC(sc, dc_phy_errors); /* when both are present use stronger one */ rssi = max(ard->rssi, ard->ext_rssi); break; default: /* * Bogus bandwidth info was received in descriptor, * so ignore this PHY error */ DFS_STAT_INC(sc, bwinfo_discards); return false; } if (rssi == 0) { DFS_STAT_INC(sc, rssi_discards); return false; } /* convert duration to usecs */ pe->width = dur_to_usecs(sc->sc_ah, dur); pe->rssi = rssi; DFS_STAT_INC(sc, pulses_detected); return true; } static void ath9k_dfs_process_radar_pulse(struct ath_softc *sc, struct pulse_event *pe) { struct dfs_pattern_detector *pd = sc->dfs_detector; DFS_STAT_INC(sc, pulses_processed); if (pd == NULL) return; if (!pd->add_pulse(pd, pe, NULL)) return; DFS_STAT_INC(sc, radar_detected); ieee80211_radar_detected(sc->hw); } /* * DFS: check PHY-error for radar pulse and feed the detector */ void ath9k_dfs_process_phyerr(struct ath_softc *sc, void *data, struct ath_rx_status *rs, u64 mactime) { struct ath_radar_data ard; u16 datalen; char *vdata_end; struct pulse_event pe; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); DFS_STAT_INC(sc, pulses_total); if ((rs->rs_phyerr != ATH9K_PHYERR_RADAR) && (rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT)) { ath_dbg(common, DFS, "Error: rs_phyer=0x%x not a radar error\n", rs->rs_phyerr); DFS_STAT_INC(sc, pulses_no_dfs); return; } datalen = rs->rs_datalen; if (datalen == 0) { DFS_STAT_INC(sc, datalen_discards); return; } ard.rssi = rs->rs_rssi_ctl[0]; ard.ext_rssi = rs->rs_rssi_ext[0]; /* * hardware stores this as 8 bit signed value. * we will cap it at 0 if it is a negative number */ if (ard.rssi & 0x80) ard.rssi = 0; if (ard.ext_rssi & 0x80) ard.ext_rssi = 0; vdata_end = data + datalen; ard.pulse_bw_info = vdata_end[-1]; ard.pulse_length_ext = vdata_end[-2]; ard.pulse_length_pri = vdata_end[-3]; pe.freq = ah->curchan->channel; pe.ts = mactime; if (!ath9k_postprocess_radar_event(sc, &ard, &pe)) return; if (pe.width > MIN_CHIRP_PULSE_WIDTH && pe.width < MAX_CHIRP_PULSE_WIDTH) { bool is_ctl = !!(ard.pulse_bw_info & PRI_CH_RADAR_FOUND); bool is_ext = !!(ard.pulse_bw_info & EXT_CH_RADAR_FOUND); int clen = datalen - 3; pe.chirp = ath9k_check_chirping(sc, data, clen, is_ctl, is_ext); } else { pe.chirp = false; } ath_dbg(common, DFS, "ath9k_dfs_process_phyerr: type=%d, freq=%d, ts=%llu, " "width=%d, rssi=%d, delta_ts=%llu\n", ard.pulse_bw_info, pe.freq, pe.ts, pe.width, pe.rssi, pe.ts - sc->dfs_prev_pulse_ts); sc->dfs_prev_pulse_ts = pe.ts; if (ard.pulse_bw_info & PRI_CH_RADAR_FOUND) ath9k_dfs_process_radar_pulse(sc, &pe); if (IS_CHAN_HT40(ah->curchan) && ard.pulse_bw_info & EXT_CH_RADAR_FOUND) { pe.freq += IS_CHAN_HT40PLUS(ah->curchan) ? 20 : -20; ath9k_dfs_process_radar_pulse(sc, &pe); } } #undef PRI_CH_RADAR_FOUND #undef EXT_CH_RADAR_FOUND |