Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 | // SPDX-License-Identifier: GPL-2.0 /* * background writeback - scan btree for dirty data and write it to the backing * device * * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> * Copyright 2012 Google, Inc. */ #include "bcache.h" #include "btree.h" #include "debug.h" #include "writeback.h" #include <linux/delay.h> #include <linux/kthread.h> #include <linux/sched/clock.h> #include <trace/events/bcache.h> static void update_gc_after_writeback(struct cache_set *c) { if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) || c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD) return; c->gc_after_writeback |= BCH_DO_AUTO_GC; } /* Rate limiting */ static uint64_t __calc_target_rate(struct cached_dev *dc) { struct cache_set *c = dc->disk.c; /* * This is the size of the cache, minus the amount used for * flash-only devices */ uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size - atomic_long_read(&c->flash_dev_dirty_sectors); /* * Unfortunately there is no control of global dirty data. If the * user states that they want 10% dirty data in the cache, and has, * e.g., 5 backing volumes of equal size, we try and ensure each * backing volume uses about 2% of the cache for dirty data. */ uint32_t bdev_share = div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, c->cached_dev_sectors); uint64_t cache_dirty_target = div_u64(cache_sectors * dc->writeback_percent, 100); /* Ensure each backing dev gets at least one dirty share */ if (bdev_share < 1) bdev_share = 1; return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; } static void __update_writeback_rate(struct cached_dev *dc) { /* * PI controller: * Figures out the amount that should be written per second. * * First, the error (number of sectors that are dirty beyond our * target) is calculated. The error is accumulated (numerically * integrated). * * Then, the proportional value and integral value are scaled * based on configured values. These are stored as inverses to * avoid fixed point math and to make configuration easy-- e.g. * the default value of 40 for writeback_rate_p_term_inverse * attempts to write at a rate that would retire all the dirty * blocks in 40 seconds. * * The writeback_rate_i_inverse value of 10000 means that 1/10000th * of the error is accumulated in the integral term per second. * This acts as a slow, long-term average that is not subject to * variations in usage like the p term. */ int64_t target = __calc_target_rate(dc); int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); int64_t error = dirty - target; int64_t proportional_scaled = div_s64(error, dc->writeback_rate_p_term_inverse); int64_t integral_scaled; uint32_t new_rate; /* * We need to consider the number of dirty buckets as well * when calculating the proportional_scaled, Otherwise we might * have an unreasonable small writeback rate at a highly fragmented situation * when very few dirty sectors consumed a lot dirty buckets, the * worst case is when dirty buckets reached cutoff_writeback_sync and * dirty data is still not even reached to writeback percent, so the rate * still will be at the minimum value, which will cause the write * stuck at a non-writeback mode. */ struct cache_set *c = dc->disk.c; int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets; if (dc->writeback_consider_fragment && c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) { int64_t fragment = div_s64((dirty_buckets * c->cache->sb.bucket_size), dirty); int64_t fp_term; int64_t fps; if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) { fp_term = (int64_t)dc->writeback_rate_fp_term_low * (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW); } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) { fp_term = (int64_t)dc->writeback_rate_fp_term_mid * (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID); } else { fp_term = (int64_t)dc->writeback_rate_fp_term_high * (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH); } fps = div_s64(dirty, dirty_buckets) * fp_term; if (fragment > 3 && fps > proportional_scaled) { /* Only overrite the p when fragment > 3 */ proportional_scaled = fps; } } if ((error < 0 && dc->writeback_rate_integral > 0) || (error > 0 && time_before64(local_clock(), dc->writeback_rate.next + NSEC_PER_MSEC))) { /* * Only decrease the integral term if it's more than * zero. Only increase the integral term if the device * is keeping up. (Don't wind up the integral * ineffectively in either case). * * It's necessary to scale this by * writeback_rate_update_seconds to keep the integral * term dimensioned properly. */ dc->writeback_rate_integral += error * dc->writeback_rate_update_seconds; } integral_scaled = div_s64(dc->writeback_rate_integral, dc->writeback_rate_i_term_inverse); new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), dc->writeback_rate_minimum, NSEC_PER_SEC); dc->writeback_rate_proportional = proportional_scaled; dc->writeback_rate_integral_scaled = integral_scaled; dc->writeback_rate_change = new_rate - atomic_long_read(&dc->writeback_rate.rate); atomic_long_set(&dc->writeback_rate.rate, new_rate); dc->writeback_rate_target = target; } static bool idle_counter_exceeded(struct cache_set *c) { int counter, dev_nr; /* * If c->idle_counter is overflow (idel for really long time), * reset as 0 and not set maximum rate this time for code * simplicity. */ counter = atomic_inc_return(&c->idle_counter); if (counter <= 0) { atomic_set(&c->idle_counter, 0); return false; } dev_nr = atomic_read(&c->attached_dev_nr); if (dev_nr == 0) return false; /* * c->idle_counter is increased by writeback thread of all * attached backing devices, in order to represent a rough * time period, counter should be divided by dev_nr. * Otherwise the idle time cannot be larger with more backing * device attached. * The following calculation equals to checking * (counter / dev_nr) < (dev_nr * 6) */ if (counter < (dev_nr * dev_nr * 6)) return false; return true; } /* * Idle_counter is increased every time when update_writeback_rate() is * called. If all backing devices attached to the same cache set have * identical dc->writeback_rate_update_seconds values, it is about 6 * rounds of update_writeback_rate() on each backing device before * c->at_max_writeback_rate is set to 1, and then max wrteback rate set * to each dc->writeback_rate.rate. * In order to avoid extra locking cost for counting exact dirty cached * devices number, c->attached_dev_nr is used to calculate the idle * throushold. It might be bigger if not all cached device are in write- * back mode, but it still works well with limited extra rounds of * update_writeback_rate(). */ static bool set_at_max_writeback_rate(struct cache_set *c, struct cached_dev *dc) { /* Don't sst max writeback rate if it is disabled */ if (!c->idle_max_writeback_rate_enabled) return false; /* Don't set max writeback rate if gc is running */ if (!c->gc_mark_valid) return false; if (!idle_counter_exceeded(c)) return false; if (atomic_read(&c->at_max_writeback_rate) != 1) atomic_set(&c->at_max_writeback_rate, 1); atomic_long_set(&dc->writeback_rate.rate, INT_MAX); /* keep writeback_rate_target as existing value */ dc->writeback_rate_proportional = 0; dc->writeback_rate_integral_scaled = 0; dc->writeback_rate_change = 0; /* * In case new I/O arrives during before * set_at_max_writeback_rate() returns. */ if (!idle_counter_exceeded(c) || !atomic_read(&c->at_max_writeback_rate)) return false; return true; } static void update_writeback_rate(struct work_struct *work) { struct cached_dev *dc = container_of(to_delayed_work(work), struct cached_dev, writeback_rate_update); struct cache_set *c = dc->disk.c; /* * should check BCACHE_DEV_RATE_DW_RUNNING before calling * cancel_delayed_work_sync(). */ set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ smp_mb__after_atomic(); /* * CACHE_SET_IO_DISABLE might be set via sysfs interface, * check it here too. */ if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ smp_mb__after_atomic(); return; } /* * If the whole cache set is idle, set_at_max_writeback_rate() * will set writeback rate to a max number. Then it is * unncessary to update writeback rate for an idle cache set * in maximum writeback rate number(s). */ if (atomic_read(&dc->has_dirty) && dc->writeback_percent && !set_at_max_writeback_rate(c, dc)) { do { if (!down_read_trylock((&dc->writeback_lock))) { dc->rate_update_retry++; if (dc->rate_update_retry <= BCH_WBRATE_UPDATE_MAX_SKIPS) break; down_read(&dc->writeback_lock); dc->rate_update_retry = 0; } __update_writeback_rate(dc); update_gc_after_writeback(c); up_read(&dc->writeback_lock); } while (0); } /* * CACHE_SET_IO_DISABLE might be set via sysfs interface, * check it here too. */ if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { schedule_delayed_work(&dc->writeback_rate_update, dc->writeback_rate_update_seconds * HZ); } /* * should check BCACHE_DEV_RATE_DW_RUNNING before calling * cancel_delayed_work_sync(). */ clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ smp_mb__after_atomic(); } static unsigned int writeback_delay(struct cached_dev *dc, unsigned int sectors) { if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || !dc->writeback_percent) return 0; return bch_next_delay(&dc->writeback_rate, sectors); } struct dirty_io { struct closure cl; struct cached_dev *dc; uint16_t sequence; struct bio bio; }; static void dirty_init(struct keybuf_key *w) { struct dirty_io *io = w->private; struct bio *bio = &io->bio; bio_init(bio, NULL, bio->bi_inline_vecs, DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0); if (!io->dc->writeback_percent) bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; bio->bi_private = w; bch_bio_map(bio, NULL); } static void dirty_io_destructor(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); kfree(io); } static void write_dirty_finish(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); struct keybuf_key *w = io->bio.bi_private; struct cached_dev *dc = io->dc; bio_free_pages(&io->bio); /* This is kind of a dumb way of signalling errors. */ if (KEY_DIRTY(&w->key)) { int ret; unsigned int i; struct keylist keys; bch_keylist_init(&keys); bkey_copy(keys.top, &w->key); SET_KEY_DIRTY(keys.top, false); bch_keylist_push(&keys); for (i = 0; i < KEY_PTRS(&w->key); i++) atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); if (ret) trace_bcache_writeback_collision(&w->key); atomic_long_inc(ret ? &dc->disk.c->writeback_keys_failed : &dc->disk.c->writeback_keys_done); } bch_keybuf_del(&dc->writeback_keys, w); up(&dc->in_flight); closure_return_with_destructor(cl, dirty_io_destructor); } static void dirty_endio(struct bio *bio) { struct keybuf_key *w = bio->bi_private; struct dirty_io *io = w->private; if (bio->bi_status) { SET_KEY_DIRTY(&w->key, false); bch_count_backing_io_errors(io->dc, bio); } closure_put(&io->cl); } static void write_dirty(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); struct keybuf_key *w = io->bio.bi_private; struct cached_dev *dc = io->dc; uint16_t next_sequence; if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { /* Not our turn to write; wait for a write to complete */ closure_wait(&dc->writeback_ordering_wait, cl); if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { /* * Edge case-- it happened in indeterminate order * relative to when we were added to wait list.. */ closure_wake_up(&dc->writeback_ordering_wait); } continue_at(cl, write_dirty, io->dc->writeback_write_wq); return; } next_sequence = io->sequence + 1; /* * IO errors are signalled using the dirty bit on the key. * If we failed to read, we should not attempt to write to the * backing device. Instead, immediately go to write_dirty_finish * to clean up. */ if (KEY_DIRTY(&w->key)) { dirty_init(w); bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); io->bio.bi_iter.bi_sector = KEY_START(&w->key); bio_set_dev(&io->bio, io->dc->bdev); io->bio.bi_end_io = dirty_endio; /* I/O request sent to backing device */ closure_bio_submit(io->dc->disk.c, &io->bio, cl); } atomic_set(&dc->writeback_sequence_next, next_sequence); closure_wake_up(&dc->writeback_ordering_wait); continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); } static void read_dirty_endio(struct bio *bio) { struct keybuf_key *w = bio->bi_private; struct dirty_io *io = w->private; /* is_read = 1 */ bch_count_io_errors(io->dc->disk.c->cache, bio->bi_status, 1, "reading dirty data from cache"); dirty_endio(bio); } static void read_dirty_submit(struct closure *cl) { struct dirty_io *io = container_of(cl, struct dirty_io, cl); closure_bio_submit(io->dc->disk.c, &io->bio, cl); continue_at(cl, write_dirty, io->dc->writeback_write_wq); } static void read_dirty(struct cached_dev *dc) { unsigned int delay = 0; struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; size_t size; int nk, i; struct dirty_io *io; struct closure cl; uint16_t sequence = 0; BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); atomic_set(&dc->writeback_sequence_next, sequence); closure_init_stack(&cl); /* * XXX: if we error, background writeback just spins. Should use some * mempools. */ next = bch_keybuf_next(&dc->writeback_keys); while (!kthread_should_stop() && !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && next) { size = 0; nk = 0; do { BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); /* * Don't combine too many operations, even if they * are all small. */ if (nk >= MAX_WRITEBACKS_IN_PASS) break; /* * If the current operation is very large, don't * further combine operations. */ if (size >= MAX_WRITESIZE_IN_PASS) break; /* * Operations are only eligible to be combined * if they are contiguous. * * TODO: add a heuristic willing to fire a * certain amount of non-contiguous IO per pass, * so that we can benefit from backing device * command queueing. */ if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, &START_KEY(&next->key))) break; size += KEY_SIZE(&next->key); keys[nk++] = next; } while ((next = bch_keybuf_next(&dc->writeback_keys))); /* Now we have gathered a set of 1..5 keys to write back. */ for (i = 0; i < nk; i++) { w = keys[i]; io = kzalloc(struct_size(io, bio.bi_inline_vecs, DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)), GFP_KERNEL); if (!io) goto err; w->private = io; io->dc = dc; io->sequence = sequence++; dirty_init(w); bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); bio_set_dev(&io->bio, dc->disk.c->cache->bdev); io->bio.bi_end_io = read_dirty_endio; if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) goto err_free; trace_bcache_writeback(&w->key); down(&dc->in_flight); /* * We've acquired a semaphore for the maximum * simultaneous number of writebacks; from here * everything happens asynchronously. */ closure_call(&io->cl, read_dirty_submit, NULL, &cl); } delay = writeback_delay(dc, size); while (!kthread_should_stop() && !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && delay) { schedule_timeout_interruptible(delay); delay = writeback_delay(dc, 0); } } if (0) { err_free: kfree(w->private); err: bch_keybuf_del(&dc->writeback_keys, w); } /* * Wait for outstanding writeback IOs to finish (and keybuf slots to be * freed) before refilling again */ closure_sync(&cl); } /* Scan for dirty data */ void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode, uint64_t offset, int nr_sectors) { struct bcache_device *d = c->devices[inode]; unsigned int stripe_offset, sectors_dirty; int stripe; if (!d) return; stripe = offset_to_stripe(d, offset); if (stripe < 0) return; if (UUID_FLASH_ONLY(&c->uuids[inode])) atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors); stripe_offset = offset & (d->stripe_size - 1); while (nr_sectors) { int s = min_t(unsigned int, abs(nr_sectors), d->stripe_size - stripe_offset); if (nr_sectors < 0) s = -s; if (stripe >= d->nr_stripes) return; sectors_dirty = atomic_add_return(s, d->stripe_sectors_dirty + stripe); if (sectors_dirty == d->stripe_size) { if (!test_bit(stripe, d->full_dirty_stripes)) set_bit(stripe, d->full_dirty_stripes); } else { if (test_bit(stripe, d->full_dirty_stripes)) clear_bit(stripe, d->full_dirty_stripes); } nr_sectors -= s; stripe_offset = 0; stripe++; } } static bool dirty_pred(struct keybuf *buf, struct bkey *k) { struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys); BUG_ON(KEY_INODE(k) != dc->disk.id); return KEY_DIRTY(k); } static void refill_full_stripes(struct cached_dev *dc) { struct keybuf *buf = &dc->writeback_keys; unsigned int start_stripe, next_stripe; int stripe; bool wrapped = false; stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); if (stripe < 0) stripe = 0; start_stripe = stripe; while (1) { stripe = find_next_bit(dc->disk.full_dirty_stripes, dc->disk.nr_stripes, stripe); if (stripe == dc->disk.nr_stripes) goto next; next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, dc->disk.nr_stripes, stripe); buf->last_scanned = KEY(dc->disk.id, stripe * dc->disk.stripe_size, 0); bch_refill_keybuf(dc->disk.c, buf, &KEY(dc->disk.id, next_stripe * dc->disk.stripe_size, 0), dirty_pred); if (array_freelist_empty(&buf->freelist)) return; stripe = next_stripe; next: if (wrapped && stripe > start_stripe) return; if (stripe == dc->disk.nr_stripes) { stripe = 0; wrapped = true; } } } /* * Returns true if we scanned the entire disk */ static bool refill_dirty(struct cached_dev *dc) { struct keybuf *buf = &dc->writeback_keys; struct bkey start = KEY(dc->disk.id, 0, 0); struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); struct bkey start_pos; /* * make sure keybuf pos is inside the range for this disk - at bringup * we might not be attached yet so this disk's inode nr isn't * initialized then */ if (bkey_cmp(&buf->last_scanned, &start) < 0 || bkey_cmp(&buf->last_scanned, &end) > 0) buf->last_scanned = start; if (dc->partial_stripes_expensive) { refill_full_stripes(dc); if (array_freelist_empty(&buf->freelist)) return false; } start_pos = buf->last_scanned; bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); if (bkey_cmp(&buf->last_scanned, &end) < 0) return false; /* * If we get to the end start scanning again from the beginning, and * only scan up to where we initially started scanning from: */ buf->last_scanned = start; bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; } static int bch_writeback_thread(void *arg) { struct cached_dev *dc = arg; struct cache_set *c = dc->disk.c; bool searched_full_index; bch_ratelimit_reset(&dc->writeback_rate); while (!kthread_should_stop() && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { down_write(&dc->writeback_lock); set_current_state(TASK_INTERRUPTIBLE); /* * If the bache device is detaching, skip here and continue * to perform writeback. Otherwise, if no dirty data on cache, * or there is dirty data on cache but writeback is disabled, * the writeback thread should sleep here and wait for others * to wake up it. */ if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { up_write(&dc->writeback_lock); if (kthread_should_stop() || test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { set_current_state(TASK_RUNNING); break; } schedule(); continue; } set_current_state(TASK_RUNNING); searched_full_index = refill_dirty(dc); if (searched_full_index && RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { atomic_set(&dc->has_dirty, 0); SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); bch_write_bdev_super(dc, NULL); /* * If bcache device is detaching via sysfs interface, * writeback thread should stop after there is no dirty * data on cache. BCACHE_DEV_DETACHING flag is set in * bch_cached_dev_detach(). */ if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) { struct closure cl; closure_init_stack(&cl); memset(&dc->sb.set_uuid, 0, 16); SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); bch_write_bdev_super(dc, &cl); closure_sync(&cl); up_write(&dc->writeback_lock); break; } /* * When dirty data rate is high (e.g. 50%+), there might * be heavy buckets fragmentation after writeback * finished, which hurts following write performance. * If users really care about write performance they * may set BCH_ENABLE_AUTO_GC via sysfs, then when * BCH_DO_AUTO_GC is set, garbage collection thread * will be wake up here. After moving gc, the shrunk * btree and discarded free buckets SSD space may be * helpful for following write requests. */ if (c->gc_after_writeback == (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) { c->gc_after_writeback &= ~BCH_DO_AUTO_GC; force_wake_up_gc(c); } } up_write(&dc->writeback_lock); read_dirty(dc); if (searched_full_index) { unsigned int delay = dc->writeback_delay * HZ; while (delay && !kthread_should_stop() && !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) delay = schedule_timeout_interruptible(delay); bch_ratelimit_reset(&dc->writeback_rate); } } if (dc->writeback_write_wq) destroy_workqueue(dc->writeback_write_wq); cached_dev_put(dc); wait_for_kthread_stop(); return 0; } /* Init */ #define INIT_KEYS_EACH_TIME 500000 struct sectors_dirty_init { struct btree_op op; unsigned int inode; size_t count; }; static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, struct bkey *k) { struct sectors_dirty_init *op = container_of(_op, struct sectors_dirty_init, op); if (KEY_INODE(k) > op->inode) return MAP_DONE; if (KEY_DIRTY(k)) bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), KEY_START(k), KEY_SIZE(k)); op->count++; if (!(op->count % INIT_KEYS_EACH_TIME)) cond_resched(); return MAP_CONTINUE; } static int bch_root_node_dirty_init(struct cache_set *c, struct bcache_device *d, struct bkey *k) { struct sectors_dirty_init op; int ret; bch_btree_op_init(&op.op, -1); op.inode = d->id; op.count = 0; ret = bcache_btree(map_keys_recurse, k, c->root, &op.op, &KEY(op.inode, 0, 0), sectors_dirty_init_fn, 0); if (ret < 0) pr_warn("sectors dirty init failed, ret=%d!\n", ret); /* * The op may be added to cache_set's btree_cache_wait * in mca_cannibalize(), must ensure it is removed from * the list and release btree_cache_alloc_lock before * free op memory. * Otherwise, the btree_cache_wait will be damaged. */ bch_cannibalize_unlock(c); finish_wait(&c->btree_cache_wait, &(&op.op)->wait); return ret; } static int bch_dirty_init_thread(void *arg) { struct dirty_init_thrd_info *info = arg; struct bch_dirty_init_state *state = info->state; struct cache_set *c = state->c; struct btree_iter_stack iter; struct bkey *k, *p; int cur_idx, prev_idx, skip_nr; k = p = NULL; prev_idx = 0; bch_btree_iter_stack_init(&c->root->keys, &iter, NULL); k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad); BUG_ON(!k); p = k; while (k) { spin_lock(&state->idx_lock); cur_idx = state->key_idx; state->key_idx++; spin_unlock(&state->idx_lock); skip_nr = cur_idx - prev_idx; while (skip_nr) { k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad); if (k) p = k; else { atomic_set(&state->enough, 1); /* Update state->enough earlier */ smp_mb__after_atomic(); goto out; } skip_nr--; } if (p) { if (bch_root_node_dirty_init(c, state->d, p) < 0) goto out; } p = NULL; prev_idx = cur_idx; } out: /* In order to wake up state->wait in time */ smp_mb__before_atomic(); if (atomic_dec_and_test(&state->started)) wake_up(&state->wait); return 0; } static int bch_btre_dirty_init_thread_nr(void) { int n = num_online_cpus()/2; if (n == 0) n = 1; else if (n > BCH_DIRTY_INIT_THRD_MAX) n = BCH_DIRTY_INIT_THRD_MAX; return n; } void bch_sectors_dirty_init(struct bcache_device *d) { int i; struct btree *b = NULL; struct bkey *k = NULL; struct btree_iter_stack iter; struct sectors_dirty_init op; struct cache_set *c = d->c; struct bch_dirty_init_state state; retry_lock: b = c->root; rw_lock(0, b, b->level); if (b != c->root) { rw_unlock(0, b); goto retry_lock; } /* Just count root keys if no leaf node */ if (c->root->level == 0) { bch_btree_op_init(&op.op, -1); op.inode = d->id; op.count = 0; for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) { if (KEY_INODE(k) != op.inode) continue; sectors_dirty_init_fn(&op.op, c->root, k); } rw_unlock(0, b); return; } memset(&state, 0, sizeof(struct bch_dirty_init_state)); state.c = c; state.d = d; state.total_threads = bch_btre_dirty_init_thread_nr(); state.key_idx = 0; spin_lock_init(&state.idx_lock); atomic_set(&state.started, 0); atomic_set(&state.enough, 0); init_waitqueue_head(&state.wait); for (i = 0; i < state.total_threads; i++) { /* Fetch latest state.enough earlier */ smp_mb__before_atomic(); if (atomic_read(&state.enough)) break; atomic_inc(&state.started); state.infos[i].state = &state; state.infos[i].thread = kthread_run(bch_dirty_init_thread, &state.infos[i], "bch_dirtcnt[%d]", i); if (IS_ERR(state.infos[i].thread)) { pr_err("fails to run thread bch_dirty_init[%d]\n", i); atomic_dec(&state.started); for (--i; i >= 0; i--) kthread_stop(state.infos[i].thread); goto out; } } out: /* Must wait for all threads to stop. */ wait_event(state.wait, atomic_read(&state.started) == 0); rw_unlock(0, b); } void bch_cached_dev_writeback_init(struct cached_dev *dc) { sema_init(&dc->in_flight, 64); init_rwsem(&dc->writeback_lock); bch_keybuf_init(&dc->writeback_keys); dc->writeback_metadata = true; dc->writeback_running = false; dc->writeback_consider_fragment = true; dc->writeback_percent = 10; dc->writeback_delay = 30; atomic_long_set(&dc->writeback_rate.rate, 1024); dc->writeback_rate_minimum = 8; dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; dc->writeback_rate_p_term_inverse = 40; dc->writeback_rate_fp_term_low = 1; dc->writeback_rate_fp_term_mid = 10; dc->writeback_rate_fp_term_high = 1000; dc->writeback_rate_i_term_inverse = 10000; /* For dc->writeback_lock contention in update_writeback_rate() */ dc->rate_update_retry = 0; WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); } int bch_cached_dev_writeback_start(struct cached_dev *dc) { dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", WQ_MEM_RECLAIM, 0); if (!dc->writeback_write_wq) return -ENOMEM; cached_dev_get(dc); dc->writeback_thread = kthread_create(bch_writeback_thread, dc, "bcache_writeback"); if (IS_ERR(dc->writeback_thread)) { cached_dev_put(dc); destroy_workqueue(dc->writeback_write_wq); return PTR_ERR(dc->writeback_thread); } dc->writeback_running = true; WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); schedule_delayed_work(&dc->writeback_rate_update, dc->writeback_rate_update_seconds * HZ); bch_writeback_queue(dc); return 0; } |