Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | // SPDX-License-Identifier: GPL-2.0-only /* * SHA-256 routines supporting the Power 7+ Nest Accelerators driver * * Copyright (C) 2011-2012 International Business Machines Inc. * * Author: Kent Yoder <yoder1@us.ibm.com> */ #include <crypto/internal/hash.h> #include <crypto/sha2.h> #include <linux/module.h> #include <asm/vio.h> #include <asm/byteorder.h> #include "nx_csbcpb.h" #include "nx.h" struct sha256_state_be { __be32 state[SHA256_DIGEST_SIZE / 4]; u64 count; u8 buf[SHA256_BLOCK_SIZE]; }; static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); int err; err = nx_crypto_ctx_sha_init(tfm); if (err) return err; nx_ctx_init(nx_ctx, HCOP_FC_SHA); nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); return 0; } static int nx_sha256_init(struct shash_desc *desc) { struct sha256_state_be *sctx = shash_desc_ctx(desc); memset(sctx, 0, sizeof *sctx); sctx->state[0] = __cpu_to_be32(SHA256_H0); sctx->state[1] = __cpu_to_be32(SHA256_H1); sctx->state[2] = __cpu_to_be32(SHA256_H2); sctx->state[3] = __cpu_to_be32(SHA256_H3); sctx->state[4] = __cpu_to_be32(SHA256_H4); sctx->state[5] = __cpu_to_be32(SHA256_H5); sctx->state[6] = __cpu_to_be32(SHA256_H6); sctx->state[7] = __cpu_to_be32(SHA256_H7); sctx->count = 0; return 0; } static int nx_sha256_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha256_state_be *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_sg *out_sg; u64 to_process = 0, leftover, total; unsigned long irq_flags; int rc = 0; int data_len; u32 max_sg_len; u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE); spin_lock_irqsave(&nx_ctx->lock, irq_flags); /* 2 cases for total data len: * 1: < SHA256_BLOCK_SIZE: copy into state, return 0 * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover */ total = (sctx->count % SHA256_BLOCK_SIZE) + len; if (total < SHA256_BLOCK_SIZE) { memcpy(sctx->buf + buf_len, data, len); sctx->count += len; goto out; } memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE); NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; max_sg_len = min_t(u64, nx_ctx->ap->sglen, nx_driver.of.max_sg_len/sizeof(struct nx_sg)); max_sg_len = min_t(u64, max_sg_len, nx_ctx->ap->databytelen/NX_PAGE_SIZE); data_len = SHA256_DIGEST_SIZE; out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, &data_len, max_sg_len); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); if (data_len != SHA256_DIGEST_SIZE) { rc = -EINVAL; goto out; } do { int used_sgs = 0; struct nx_sg *in_sg = nx_ctx->in_sg; if (buf_len) { data_len = buf_len; in_sg = nx_build_sg_list(in_sg, (u8 *) sctx->buf, &data_len, max_sg_len); if (data_len != buf_len) { rc = -EINVAL; goto out; } used_sgs = in_sg - nx_ctx->in_sg; } /* to_process: SHA256_BLOCK_SIZE aligned chunk to be * processed in this iteration. This value is restricted * by sg list limits and number of sgs we already used * for leftover data. (see above) * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len, * but because data may not be aligned, we need to account * for that too. */ to_process = min_t(u64, total, (max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE); to_process = to_process & ~(SHA256_BLOCK_SIZE - 1); data_len = to_process - buf_len; in_sg = nx_build_sg_list(in_sg, (u8 *) data, &data_len, max_sg_len); nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); to_process = data_len + buf_len; leftover = total - to_process; /* * we've hit the nx chip previously and we're updating * again, so copy over the partial digest. */ memcpy(csbcpb->cpb.sha256.input_partial_digest, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); if (rc) goto out; atomic_inc(&(nx_ctx->stats->sha256_ops)); total -= to_process; data += to_process - buf_len; buf_len = 0; } while (leftover >= SHA256_BLOCK_SIZE); /* copy the leftover back into the state struct */ if (leftover) memcpy(sctx->buf, data, leftover); sctx->count += len; memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; } static int nx_sha256_final(struct shash_desc *desc, u8 *out) { struct sha256_state_be *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_sg *in_sg, *out_sg; unsigned long irq_flags; u32 max_sg_len; int rc = 0; int len; spin_lock_irqsave(&nx_ctx->lock, irq_flags); max_sg_len = min_t(u64, nx_ctx->ap->sglen, nx_driver.of.max_sg_len/sizeof(struct nx_sg)); max_sg_len = min_t(u64, max_sg_len, nx_ctx->ap->databytelen/NX_PAGE_SIZE); /* final is represented by continuing the operation and indicating that * this is not an intermediate operation */ if (sctx->count >= SHA256_BLOCK_SIZE) { /* we've hit the nx chip previously, now we're finalizing, * so copy over the partial digest */ memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE); NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; } else { NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION; } csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8); len = sctx->count & (SHA256_BLOCK_SIZE - 1); in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf, &len, max_sg_len); if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) { rc = -EINVAL; goto out; } len = SHA256_DIGEST_SIZE; out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len); if (len != SHA256_DIGEST_SIZE) { rc = -EINVAL; goto out; } nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); if (!nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); if (rc) goto out; atomic_inc(&(nx_ctx->stats->sha256_ops)); atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes)); memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; } static int nx_sha256_export(struct shash_desc *desc, void *out) { struct sha256_state_be *sctx = shash_desc_ctx(desc); memcpy(out, sctx, sizeof(*sctx)); return 0; } static int nx_sha256_import(struct shash_desc *desc, const void *in) { struct sha256_state_be *sctx = shash_desc_ctx(desc); memcpy(sctx, in, sizeof(*sctx)); return 0; } struct shash_alg nx_shash_sha256_alg = { .digestsize = SHA256_DIGEST_SIZE, .init = nx_sha256_init, .update = nx_sha256_update, .final = nx_sha256_final, .export = nx_sha256_export, .import = nx_sha256_import, .descsize = sizeof(struct sha256_state_be), .statesize = sizeof(struct sha256_state_be), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-nx", .cra_priority = 300, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct nx_crypto_ctx), .cra_init = nx_crypto_ctx_sha256_init, .cra_exit = nx_crypto_ctx_exit, } }; |