Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/*
 * Broadcom NetXtreme-E RoCE driver.
 *
 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
 * Broadcom refers to Broadcom Limited and/or its subsidiaries.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * BSD license below:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Description: QPLib resource manager
 */

#define dev_fmt(fmt) "QPLIB: " fmt

#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/inetdevice.h>
#include <linux/dma-mapping.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_umem.h>

#include "roce_hsi.h"
#include "qplib_res.h"
#include "qplib_sp.h"
#include "qplib_rcfw.h"

static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
				      struct bnxt_qplib_stats *stats);
static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
				      struct bnxt_qplib_chip_ctx *cctx,
				      struct bnxt_qplib_stats *stats);

/* PBL */
static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
		       bool is_umem)
{
	struct pci_dev *pdev = res->pdev;
	int i;

	if (!is_umem) {
		for (i = 0; i < pbl->pg_count; i++) {
			if (pbl->pg_arr[i])
				dma_free_coherent(&pdev->dev, pbl->pg_size,
						  (void *)((unsigned long)
						   pbl->pg_arr[i] &
						  PAGE_MASK),
						  pbl->pg_map_arr[i]);
			else
				dev_warn(&pdev->dev,
					 "PBL free pg_arr[%d] empty?!\n", i);
			pbl->pg_arr[i] = NULL;
		}
	}
	vfree(pbl->pg_arr);
	pbl->pg_arr = NULL;
	vfree(pbl->pg_map_arr);
	pbl->pg_map_arr = NULL;
	pbl->pg_count = 0;
	pbl->pg_size = 0;
}

static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
					   struct bnxt_qplib_sg_info *sginfo)
{
	struct ib_block_iter biter;
	int i = 0;

	rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
		pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
		pbl->pg_arr[i] = NULL;
		pbl->pg_count++;
		i++;
	}
}

static int __alloc_pbl(struct bnxt_qplib_res *res,
		       struct bnxt_qplib_pbl *pbl,
		       struct bnxt_qplib_sg_info *sginfo)
{
	struct pci_dev *pdev = res->pdev;
	bool is_umem = false;
	u32 pages;
	int i;

	if (sginfo->nopte)
		return 0;
	if (sginfo->umem)
		pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
	else
		pages = sginfo->npages;
	/* page ptr arrays */
	pbl->pg_arr = vmalloc(pages * sizeof(void *));
	if (!pbl->pg_arr)
		return -ENOMEM;

	pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t));
	if (!pbl->pg_map_arr) {
		vfree(pbl->pg_arr);
		pbl->pg_arr = NULL;
		return -ENOMEM;
	}
	pbl->pg_count = 0;
	pbl->pg_size = sginfo->pgsize;

	if (!sginfo->umem) {
		for (i = 0; i < pages; i++) {
			pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
							    pbl->pg_size,
							    &pbl->pg_map_arr[i],
							    GFP_KERNEL);
			if (!pbl->pg_arr[i])
				goto fail;
			pbl->pg_count++;
		}
	} else {
		is_umem = true;
		bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
	}

	return 0;
fail:
	__free_pbl(res, pbl, is_umem);
	return -ENOMEM;
}

/* HWQ */
void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
			 struct bnxt_qplib_hwq *hwq)
{
	int i;

	if (!hwq->max_elements)
		return;
	if (hwq->level >= PBL_LVL_MAX)
		return;

	for (i = 0; i < hwq->level + 1; i++) {
		if (i == hwq->level)
			__free_pbl(res, &hwq->pbl[i], hwq->is_user);
		else
			__free_pbl(res, &hwq->pbl[i], false);
	}

	hwq->level = PBL_LVL_MAX;
	hwq->max_elements = 0;
	hwq->element_size = 0;
	hwq->prod = 0;
	hwq->cons = 0;
	hwq->cp_bit = 0;
}

/* All HWQs are power of 2 in size */

int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
			      struct bnxt_qplib_hwq_attr *hwq_attr)
{
	u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
	struct bnxt_qplib_sg_info sginfo = {};
	u32 depth, stride, npbl, npde;
	dma_addr_t *src_phys_ptr, **dst_virt_ptr;
	struct bnxt_qplib_res *res;
	struct pci_dev *pdev;
	int i, rc, lvl;

	res = hwq_attr->res;
	pdev = res->pdev;
	pg_size = hwq_attr->sginfo->pgsize;
	hwq->level = PBL_LVL_MAX;

	depth = roundup_pow_of_two(hwq_attr->depth);
	stride = roundup_pow_of_two(hwq_attr->stride);
	if (hwq_attr->aux_depth) {
		aux_slots = hwq_attr->aux_depth;
		aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
		aux_pages = (aux_slots * aux_size) / pg_size;
		if ((aux_slots * aux_size) % pg_size)
			aux_pages++;
	}

	if (!hwq_attr->sginfo->umem) {
		hwq->is_user = false;
		npages = (depth * stride) / pg_size + aux_pages;
		if ((depth * stride) % pg_size)
			npages++;
		if (!npages)
			return -EINVAL;
		hwq_attr->sginfo->npages = npages;
	} else {
		npages = ib_umem_num_dma_blocks(hwq_attr->sginfo->umem,
						hwq_attr->sginfo->pgsize);
		hwq->is_user = true;
	}

	if (npages == MAX_PBL_LVL_0_PGS && !hwq_attr->sginfo->nopte) {
		/* This request is Level 0, map PTE */
		rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
		if (rc)
			goto fail;
		hwq->level = PBL_LVL_0;
		goto done;
	}

	if (npages >= MAX_PBL_LVL_0_PGS) {
		if (npages > MAX_PBL_LVL_1_PGS) {
			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
				    0 : PTU_PTE_VALID;
			/* 2 levels of indirection */
			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
				npbl++;
			npde = npbl >> MAX_PDL_LVL_SHIFT;
			if (npbl % BIT(MAX_PDL_LVL_SHIFT))
				npde++;
			/* Alloc PDE pages */
			sginfo.pgsize = npde * pg_size;
			sginfo.npages = 1;
			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);

			/* Alloc PBL pages */
			sginfo.npages = npbl;
			sginfo.pgsize = PAGE_SIZE;
			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
			if (rc)
				goto fail;
			/* Fill PDL with PBL page pointers */
			dst_virt_ptr =
				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
			if (hwq_attr->type == HWQ_TYPE_MR) {
			/* For MR it is expected that we supply only 1 contigous
			 * page i.e only 1 entry in the PDL that will contain
			 * all the PBLs for the user supplied memory region
			 */
				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
				     i++)
					dst_virt_ptr[0][i] = src_phys_ptr[i] |
						flag;
			} else {
				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
				     i++)
					dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
						src_phys_ptr[i] |
						PTU_PDE_VALID;
			}
			/* Alloc or init PTEs */
			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
					 hwq_attr->sginfo);
			if (rc)
				goto fail;
			hwq->level = PBL_LVL_2;
			if (hwq_attr->sginfo->nopte)
				goto done;
			/* Fill PBLs with PTE pointers */
			dst_virt_ptr =
				(dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
			src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
			for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
					src_phys_ptr[i] | PTU_PTE_VALID;
			}
			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
				/* Find the last pg of the size */
				i = hwq->pbl[PBL_LVL_2].pg_count;
				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
								  PTU_PTE_LAST;
				if (i > 1)
					dst_virt_ptr[PTR_PG(i - 2)]
						    [PTR_IDX(i - 2)] |=
						    PTU_PTE_NEXT_TO_LAST;
			}
		} else { /* pages < 512 npbl = 1, npde = 0 */
			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
				    0 : PTU_PTE_VALID;

			/* 1 level of indirection */
			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
				npbl++;
			sginfo.npages = npbl;
			sginfo.pgsize = PAGE_SIZE;
			/* Alloc PBL page */
			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
			if (rc)
				goto fail;
			/* Alloc or init  PTEs */
			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
					 hwq_attr->sginfo);
			if (rc)
				goto fail;
			hwq->level = PBL_LVL_1;
			if (hwq_attr->sginfo->nopte)
				goto done;
			/* Fill PBL with PTE pointers */
			dst_virt_ptr =
				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
			for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
					src_phys_ptr[i] | flag;
			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
				/* Find the last pg of the size */
				i = hwq->pbl[PBL_LVL_1].pg_count;
				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
								  PTU_PTE_LAST;
				if (i > 1)
					dst_virt_ptr[PTR_PG(i - 2)]
						    [PTR_IDX(i - 2)] |=
						    PTU_PTE_NEXT_TO_LAST;
			}
		}
	}
done:
	hwq->prod = 0;
	hwq->cons = 0;
	hwq->pdev = pdev;
	hwq->depth = hwq_attr->depth;
	hwq->max_elements = depth;
	hwq->element_size = stride;
	hwq->qe_ppg = pg_size / stride;
	/* For direct access to the elements */
	lvl = hwq->level;
	if (hwq_attr->sginfo->nopte && hwq->level)
		lvl = hwq->level - 1;
	hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
	hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
	spin_lock_init(&hwq->lock);

	return 0;
fail:
	bnxt_qplib_free_hwq(res, hwq);
	return -ENOMEM;
}

/* Context Tables */
void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
			 struct bnxt_qplib_ctx *ctx)
{
	int i;

	bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
	bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
	bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
	bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
	bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
		bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
	/* restore original pde level before destroy */
	ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
	bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
	bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
}

static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
				      struct bnxt_qplib_ctx *ctx)
{
	struct bnxt_qplib_hwq_attr hwq_attr = {};
	struct bnxt_qplib_sg_info sginfo = {};
	struct bnxt_qplib_tqm_ctx *tqmctx;
	int rc = 0;
	int i;

	tqmctx = &ctx->tqm_ctx;

	sginfo.pgsize = PAGE_SIZE;
	sginfo.pgshft = PAGE_SHIFT;
	hwq_attr.sginfo = &sginfo;
	hwq_attr.res = res;
	hwq_attr.type = HWQ_TYPE_CTX;
	hwq_attr.depth = 512;
	hwq_attr.stride = sizeof(u64);
	/* Alloc pdl buffer */
	rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
	if (rc)
		goto out;
	/* Save original pdl level */
	tqmctx->pde_level = tqmctx->pde.level;

	hwq_attr.stride = 1;
	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
		if (!tqmctx->qcount[i])
			continue;
		hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
		rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
		if (rc)
			goto out;
	}
out:
	return rc;
}

static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
{
	struct bnxt_qplib_hwq *tbl;
	dma_addr_t *dma_ptr;
	__le64 **pbl_ptr, *ptr;
	int i, j, k;
	int fnz_idx = -1;
	int pg_count;

	pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;

	for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
	     i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
		tbl = &ctx->qtbl[i];
		if (!tbl->max_elements)
			continue;
		if (fnz_idx == -1)
			fnz_idx = i; /* first non-zero index */
		switch (tbl->level) {
		case PBL_LVL_2:
			pg_count = tbl->pbl[PBL_LVL_1].pg_count;
			for (k = 0; k < pg_count; k++) {
				ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
				dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
				*ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
			}
			break;
		case PBL_LVL_1:
		case PBL_LVL_0:
		default:
			ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
			*ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
					   PTU_PTE_VALID);
			break;
		}
	}
	if (fnz_idx == -1)
		fnz_idx = 0;
	/* update pde level as per page table programming */
	ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
			  ctx->qtbl[fnz_idx].level + 1;
}

static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
				      struct bnxt_qplib_ctx *ctx)
{
	int rc = 0;

	rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
	if (rc)
		goto fail;

	bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
fail:
	return rc;
}

/*
 * Routine: bnxt_qplib_alloc_ctx
 * Description:
 *     Context tables are memories which are used by the chip fw.
 *     The 6 tables defined are:
 *             QPC ctx - holds QP states
 *             MRW ctx - holds memory region and window
 *             SRQ ctx - holds shared RQ states
 *             CQ ctx - holds completion queue states
 *             TQM ctx - holds Tx Queue Manager context
 *             TIM ctx - holds timer context
 *     Depending on the size of the tbl requested, either a 1 Page Buffer List
 *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
 *     instead.
 *     Table might be employed as follows:
 *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
 *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
 *             For 512    < ctx size <= MAX, 2 levels of ind is used
 * Returns:
 *     0 if success, else -ERRORS
 */
int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
			 struct bnxt_qplib_ctx *ctx,
			 bool virt_fn, bool is_p5)
{
	struct bnxt_qplib_hwq_attr hwq_attr = {};
	struct bnxt_qplib_sg_info sginfo = {};
	int rc = 0;

	if (virt_fn || is_p5)
		goto stats_alloc;

	/* QPC Tables */
	sginfo.pgsize = PAGE_SIZE;
	sginfo.pgshft = PAGE_SHIFT;
	hwq_attr.sginfo = &sginfo;

	hwq_attr.res = res;
	hwq_attr.depth = ctx->qpc_count;
	hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
	hwq_attr.type = HWQ_TYPE_CTX;
	rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
	if (rc)
		goto fail;

	/* MRW Tables */
	hwq_attr.depth = ctx->mrw_count;
	hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
	rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
	if (rc)
		goto fail;

	/* SRQ Tables */
	hwq_attr.depth = ctx->srqc_count;
	hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
	rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
	if (rc)
		goto fail;

	/* CQ Tables */
	hwq_attr.depth = ctx->cq_count;
	hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
	rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
	if (rc)
		goto fail;

	/* TQM Buffer */
	rc = bnxt_qplib_setup_tqm_rings(res, ctx);
	if (rc)
		goto fail;
	/* TIM Buffer */
	ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
	hwq_attr.depth = ctx->qpc_count * 16;
	hwq_attr.stride = 1;
	rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
	if (rc)
		goto fail;
stats_alloc:
	/* Stats */
	rc = bnxt_qplib_alloc_stats_ctx(res->pdev, res->cctx, &ctx->stats);
	if (rc)
		goto fail;

	return 0;

fail:
	bnxt_qplib_free_ctx(res, ctx);
	return rc;
}

static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
				     struct bnxt_qplib_sgid_tbl *sgid_tbl)
{
	kfree(sgid_tbl->tbl);
	kfree(sgid_tbl->hw_id);
	kfree(sgid_tbl->ctx);
	kfree(sgid_tbl->vlan);
	sgid_tbl->tbl = NULL;
	sgid_tbl->hw_id = NULL;
	sgid_tbl->ctx = NULL;
	sgid_tbl->vlan = NULL;
	sgid_tbl->max = 0;
	sgid_tbl->active = 0;
}

static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
				     struct bnxt_qplib_sgid_tbl *sgid_tbl,
				     u16 max)
{
	sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
	if (!sgid_tbl->tbl)
		return -ENOMEM;

	sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
	if (!sgid_tbl->hw_id)
		goto out_free1;

	sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
	if (!sgid_tbl->ctx)
		goto out_free2;

	sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
	if (!sgid_tbl->vlan)
		goto out_free3;

	sgid_tbl->max = max;
	return 0;
out_free3:
	kfree(sgid_tbl->ctx);
	sgid_tbl->ctx = NULL;
out_free2:
	kfree(sgid_tbl->hw_id);
	sgid_tbl->hw_id = NULL;
out_free1:
	kfree(sgid_tbl->tbl);
	sgid_tbl->tbl = NULL;
	return -ENOMEM;
};

static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
					struct bnxt_qplib_sgid_tbl *sgid_tbl)
{
	int i;

	for (i = 0; i < sgid_tbl->max; i++) {
		if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
			   sizeof(bnxt_qplib_gid_zero)))
			bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
					    sgid_tbl->tbl[i].vlan_id, true);
	}
	memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
	memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
	sgid_tbl->active = 0;
}

static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
				     struct net_device *netdev)
{
	u32 i;

	for (i = 0; i < sgid_tbl->max; i++)
		sgid_tbl->tbl[i].vlan_id = 0xffff;

	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
}

/* PDs */
int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
{
	u32 bit_num;

	bit_num = find_first_bit(pdt->tbl, pdt->max);
	if (bit_num == pdt->max)
		return -ENOMEM;

	/* Found unused PD */
	clear_bit(bit_num, pdt->tbl);
	pd->id = bit_num;
	return 0;
}

int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
			  struct bnxt_qplib_pd_tbl *pdt,
			  struct bnxt_qplib_pd *pd)
{
	if (test_and_set_bit(pd->id, pdt->tbl)) {
		dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
			 pd->id);
		return -EINVAL;
	}
	pd->id = 0;
	return 0;
}

static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
{
	kfree(pdt->tbl);
	pdt->tbl = NULL;
	pdt->max = 0;
}

static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
				   struct bnxt_qplib_pd_tbl *pdt,
				   u32 max)
{
	u32 bytes;

	bytes = max >> 3;
	if (!bytes)
		bytes = 1;
	pdt->tbl = kmalloc(bytes, GFP_KERNEL);
	if (!pdt->tbl)
		return -ENOMEM;

	pdt->max = max;
	memset((u8 *)pdt->tbl, 0xFF, bytes);

	return 0;
}

/* DPIs */
int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
			 struct bnxt_qplib_dpi     *dpi,
			 void                      *app)
{
	u32 bit_num;

	bit_num = find_first_bit(dpit->tbl, dpit->max);
	if (bit_num == dpit->max)
		return -ENOMEM;

	/* Found unused DPI */
	clear_bit(bit_num, dpit->tbl);
	dpit->app_tbl[bit_num] = app;

	dpi->dpi = bit_num;
	dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
	dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);

	return 0;
}

int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
			   struct bnxt_qplib_dpi_tbl *dpit,
			   struct bnxt_qplib_dpi     *dpi)
{
	if (dpi->dpi >= dpit->max) {
		dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
		return -EINVAL;
	}
	if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
		dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
			 dpi->dpi);
		return -EINVAL;
	}
	if (dpit->app_tbl)
		dpit->app_tbl[dpi->dpi] = NULL;
	memset(dpi, 0, sizeof(*dpi));

	return 0;
}

static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
				    struct bnxt_qplib_dpi_tbl *dpit)
{
	kfree(dpit->tbl);
	kfree(dpit->app_tbl);
	if (dpit->dbr_bar_reg_iomem)
		pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
	memset(dpit, 0, sizeof(*dpit));
}

static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res     *res,
				    struct bnxt_qplib_dpi_tbl *dpit,
				    u32                       dbr_offset)
{
	u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
	resource_size_t bar_reg_base;
	u32 dbr_len, bytes;

	if (dpit->dbr_bar_reg_iomem) {
		dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
			dbr_bar_reg);
		return -EALREADY;
	}

	bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
	if (!bar_reg_base) {
		dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
			dbr_bar_reg);
		return -ENOMEM;
	}

	dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
	if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
		dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
		return -ENOMEM;
	}

	dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset,
						  dbr_len);
	if (!dpit->dbr_bar_reg_iomem) {
		dev_err(&res->pdev->dev,
			"FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
		return -ENOMEM;
	}

	dpit->unmapped_dbr = bar_reg_base + dbr_offset;
	dpit->max = dbr_len / PAGE_SIZE;

	dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
	if (!dpit->app_tbl)
		goto unmap_io;

	bytes = dpit->max >> 3;
	if (!bytes)
		bytes = 1;

	dpit->tbl = kmalloc(bytes, GFP_KERNEL);
	if (!dpit->tbl) {
		kfree(dpit->app_tbl);
		dpit->app_tbl = NULL;
		goto unmap_io;
	}

	memset((u8 *)dpit->tbl, 0xFF, bytes);

	return 0;

unmap_io:
	pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
	dpit->dbr_bar_reg_iomem = NULL;
	return -ENOMEM;
}

/* Stats */
static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
				      struct bnxt_qplib_stats *stats)
{
	if (stats->dma) {
		dma_free_coherent(&pdev->dev, stats->size,
				  stats->dma, stats->dma_map);
	}
	memset(stats, 0, sizeof(*stats));
	stats->fw_id = -1;
}

static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
				      struct bnxt_qplib_chip_ctx *cctx,
				      struct bnxt_qplib_stats *stats)
{
	memset(stats, 0, sizeof(*stats));
	stats->fw_id = -1;
	stats->size = cctx->hw_stats_size;
	stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
					&stats->dma_map, GFP_KERNEL);
	if (!stats->dma) {
		dev_err(&pdev->dev, "Stats DMA allocation failed\n");
		return -ENOMEM;
	}
	return 0;
}

void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
{
	bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
}

int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
{
	bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);

	return 0;
}

void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
{
	bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
	bnxt_qplib_free_pd_tbl(&res->pd_tbl);
	bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
}

int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
			 struct net_device *netdev,
			 struct bnxt_qplib_dev_attr *dev_attr)
{
	int rc = 0;

	res->pdev = pdev;
	res->netdev = netdev;

	rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
	if (rc)
		goto fail;

	rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
	if (rc)
		goto fail;

	rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
	if (rc)
		goto fail;

	return 0;
fail:
	bnxt_qplib_free_res(res);
	return rc;
}

int bnxt_qplib_determine_atomics(struct pci_dev *dev)
{
	int comp;
	u16 ctl2;

	comp = pci_enable_atomic_ops_to_root(dev,
					     PCI_EXP_DEVCAP2_ATOMIC_COMP32);
	if (comp)
		return -EOPNOTSUPP;
	comp = pci_enable_atomic_ops_to_root(dev,
					     PCI_EXP_DEVCAP2_ATOMIC_COMP64);
	if (comp)
		return -EOPNOTSUPP;
	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2);
	return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
}