Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 Unisoc Inc. */ #include <asm/div64.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/regmap.h> #include <linux/string.h> #include "sprd_dsi.h" #define L 0 #define H 1 #define CLK 0 #define DATA 1 #define INFINITY 0xffffffff #define MIN_OUTPUT_FREQ (100) #define AVERAGE(a, b) (min(a, b) + abs((b) - (a)) / 2) /* sharkle */ #define VCO_BAND_LOW 750 #define VCO_BAND_MID 1100 #define VCO_BAND_HIGH 1500 #define PHY_REF_CLK 26000 static int dphy_calc_pll_param(struct dphy_pll *pll) { const u32 khz = 1000; const u32 mhz = 1000000; const unsigned long long factor = 100; unsigned long long tmp; int i; pll->potential_fvco = pll->freq / khz; pll->ref_clk = PHY_REF_CLK / khz; for (i = 0; i < 4; ++i) { if (pll->potential_fvco >= VCO_BAND_LOW && pll->potential_fvco <= VCO_BAND_HIGH) { pll->fvco = pll->potential_fvco; pll->out_sel = BIT(i); break; } pll->potential_fvco <<= 1; } if (pll->fvco == 0) return -EINVAL; if (pll->fvco >= VCO_BAND_LOW && pll->fvco <= VCO_BAND_MID) { /* vco band control */ pll->vco_band = 0x0; /* low pass filter control */ pll->lpf_sel = 1; } else if (pll->fvco > VCO_BAND_MID && pll->fvco <= VCO_BAND_HIGH) { pll->vco_band = 0x1; pll->lpf_sel = 0; } else { return -EINVAL; } pll->nint = pll->fvco / pll->ref_clk; tmp = pll->fvco * factor * mhz; do_div(tmp, pll->ref_clk); tmp = tmp - pll->nint * factor * mhz; tmp *= BIT(20); do_div(tmp, 100000000); pll->kint = (u32)tmp; pll->refin = 3; /* pre-divider bypass */ pll->sdm_en = true; /* use fraction N PLL */ pll->fdk_s = 0x1; /* fraction */ pll->cp_s = 0x0; pll->det_delay = 0x1; return 0; } static void dphy_set_pll_reg(struct dphy_pll *pll, struct regmap *regmap) { u8 reg_val[9] = {0}; int i; u8 reg_addr[] = { 0x03, 0x04, 0x06, 0x08, 0x09, 0x0a, 0x0b, 0x0e, 0x0f }; reg_val[0] = 1 | (1 << 1) | (pll->lpf_sel << 2); reg_val[1] = pll->div | (1 << 3) | (pll->cp_s << 5) | (pll->fdk_s << 7); reg_val[2] = pll->nint; reg_val[3] = pll->vco_band | (pll->sdm_en << 1) | (pll->refin << 2); reg_val[4] = pll->kint >> 12; reg_val[5] = pll->kint >> 4; reg_val[6] = pll->out_sel | ((pll->kint << 4) & 0xf); reg_val[7] = 1 << 4; reg_val[8] = pll->det_delay; for (i = 0; i < sizeof(reg_addr); ++i) { regmap_write(regmap, reg_addr[i], reg_val[i]); DRM_DEBUG("%02x: %02x\n", reg_addr[i], reg_val[i]); } } int dphy_pll_config(struct dsi_context *ctx) { struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx); struct regmap *regmap = ctx->regmap; struct dphy_pll *pll = &ctx->pll; int ret; pll->freq = dsi->slave->hs_rate; /* FREQ = 26M * (NINT + KINT / 2^20) / out_sel */ ret = dphy_calc_pll_param(pll); if (ret) { drm_err(dsi->drm, "failed to calculate dphy pll parameters\n"); return ret; } dphy_set_pll_reg(pll, regmap); return 0; } static void dphy_set_timing_reg(struct regmap *regmap, int type, u8 val[]) { switch (type) { case REQUEST_TIME: regmap_write(regmap, 0x31, val[CLK]); regmap_write(regmap, 0x41, val[DATA]); regmap_write(regmap, 0x51, val[DATA]); regmap_write(regmap, 0x61, val[DATA]); regmap_write(regmap, 0x71, val[DATA]); regmap_write(regmap, 0x90, val[CLK]); regmap_write(regmap, 0xa0, val[DATA]); regmap_write(regmap, 0xb0, val[DATA]); regmap_write(regmap, 0xc0, val[DATA]); regmap_write(regmap, 0xd0, val[DATA]); break; case PREPARE_TIME: regmap_write(regmap, 0x32, val[CLK]); regmap_write(regmap, 0x42, val[DATA]); regmap_write(regmap, 0x52, val[DATA]); regmap_write(regmap, 0x62, val[DATA]); regmap_write(regmap, 0x72, val[DATA]); regmap_write(regmap, 0x91, val[CLK]); regmap_write(regmap, 0xa1, val[DATA]); regmap_write(regmap, 0xb1, val[DATA]); regmap_write(regmap, 0xc1, val[DATA]); regmap_write(regmap, 0xd1, val[DATA]); break; case ZERO_TIME: regmap_write(regmap, 0x33, val[CLK]); regmap_write(regmap, 0x43, val[DATA]); regmap_write(regmap, 0x53, val[DATA]); regmap_write(regmap, 0x63, val[DATA]); regmap_write(regmap, 0x73, val[DATA]); regmap_write(regmap, 0x92, val[CLK]); regmap_write(regmap, 0xa2, val[DATA]); regmap_write(regmap, 0xb2, val[DATA]); regmap_write(regmap, 0xc2, val[DATA]); regmap_write(regmap, 0xd2, val[DATA]); break; case TRAIL_TIME: regmap_write(regmap, 0x34, val[CLK]); regmap_write(regmap, 0x44, val[DATA]); regmap_write(regmap, 0x54, val[DATA]); regmap_write(regmap, 0x64, val[DATA]); regmap_write(regmap, 0x74, val[DATA]); regmap_write(regmap, 0x93, val[CLK]); regmap_write(regmap, 0xa3, val[DATA]); regmap_write(regmap, 0xb3, val[DATA]); regmap_write(regmap, 0xc3, val[DATA]); regmap_write(regmap, 0xd3, val[DATA]); break; case EXIT_TIME: regmap_write(regmap, 0x36, val[CLK]); regmap_write(regmap, 0x46, val[DATA]); regmap_write(regmap, 0x56, val[DATA]); regmap_write(regmap, 0x66, val[DATA]); regmap_write(regmap, 0x76, val[DATA]); regmap_write(regmap, 0x95, val[CLK]); regmap_write(regmap, 0xA5, val[DATA]); regmap_write(regmap, 0xB5, val[DATA]); regmap_write(regmap, 0xc5, val[DATA]); regmap_write(regmap, 0xd5, val[DATA]); break; case CLKPOST_TIME: regmap_write(regmap, 0x35, val[CLK]); regmap_write(regmap, 0x94, val[CLK]); break; /* the following just use default value */ case SETTLE_TIME: fallthrough; case TA_GET: fallthrough; case TA_GO: fallthrough; case TA_SURE: fallthrough; default: break; } } void dphy_timing_config(struct dsi_context *ctx) { struct regmap *regmap = ctx->regmap; struct dphy_pll *pll = &ctx->pll; const u32 factor = 2; const u32 scale = 100; u32 t_ui, t_byteck, t_half_byteck; u32 range[2], constant; u8 val[2]; u32 tmp = 0; /* t_ui: 1 ui, byteck: 8 ui, half byteck: 4 ui */ t_ui = 1000 * scale / (pll->freq / 1000); t_byteck = t_ui << 3; t_half_byteck = t_ui << 2; constant = t_ui << 1; /* REQUEST_TIME: HS T-LPX: LP-01 * For T-LPX, mipi spec defined min value is 50ns, * but maybe it shouldn't be too small, because BTA, * LP-10, LP-00, LP-01, all of this is related to T-LPX. */ range[L] = 50 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * (factor << 1), t_byteck) - 2; val[DATA] = val[CLK]; dphy_set_timing_reg(regmap, REQUEST_TIME, val); /* PREPARE_TIME: HS sequence: LP-00 */ range[L] = 38 * scale; range[H] = 95 * scale; tmp = AVERAGE(range[L], range[H]); val[CLK] = DIV_ROUND_UP(AVERAGE(range[L], range[H]), t_half_byteck) - 1; range[L] = 40 * scale + 4 * t_ui; range[H] = 85 * scale + 6 * t_ui; tmp |= AVERAGE(range[L], range[H]) << 16; val[DATA] = DIV_ROUND_UP(AVERAGE(range[L], range[H]), t_half_byteck) - 1; dphy_set_timing_reg(regmap, PREPARE_TIME, val); /* ZERO_TIME: HS-ZERO */ range[L] = 300 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor + (tmp & 0xffff) - 525 * t_byteck / 100, t_byteck) - 2; range[L] = 145 * scale + 10 * t_ui; val[DATA] = DIV_ROUND_UP(range[L] * factor + ((tmp >> 16) & 0xffff) - 525 * t_byteck / 100, t_byteck) - 2; dphy_set_timing_reg(regmap, ZERO_TIME, val); /* TRAIL_TIME: HS-TRAIL */ range[L] = 60 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor - constant, t_half_byteck); range[L] = max(8 * t_ui, 60 * scale + 4 * t_ui); val[DATA] = DIV_ROUND_UP(range[L] * 3 / 2 - constant, t_half_byteck) - 2; dphy_set_timing_reg(regmap, TRAIL_TIME, val); /* EXIT_TIME: */ range[L] = 100 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor, t_byteck) - 2; val[DATA] = val[CLK]; dphy_set_timing_reg(regmap, EXIT_TIME, val); /* CLKPOST_TIME: */ range[L] = 60 * scale + 52 * t_ui; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor, t_byteck) - 2; val[DATA] = val[CLK]; dphy_set_timing_reg(regmap, CLKPOST_TIME, val); /* SETTLE_TIME: * This time is used for receiver. So for transmitter, * it can be ignored. */ /* TA_GO: * transmitter drives bridge state(LP-00) before releasing control, * reg 0x1f default value: 0x04, which is good. */ /* TA_SURE: * After LP-10 state and before bridge state(LP-00), * reg 0x20 default value: 0x01, which is good. */ /* TA_GET: * receiver drives Bridge state(LP-00) before releasing control * reg 0x21 default value: 0x03, which is good. */ } |