Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 | // SPDX-License-Identifier: GPL-2.0 /* * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst) * * There are examples in here of: * * how to set protection keys on memory * * how to set/clear bits in pkey registers (the rights register) * * how to handle SEGV_PKUERR signals and extract pkey-relevant * information from the siginfo * * Things to add: * make sure KSM and KSM COW breaking works * prefault pages in at malloc, or not * protect MPX bounds tables with protection keys? * make sure VMA splitting/merging is working correctly * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks * * Compile like this: * gcc -mxsave -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm * gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm */ #define _GNU_SOURCE #define __SANE_USERSPACE_TYPES__ #include <errno.h> #include <linux/elf.h> #include <linux/futex.h> #include <time.h> #include <sys/time.h> #include <sys/syscall.h> #include <string.h> #include <stdio.h> #include <stdint.h> #include <stdbool.h> #include <signal.h> #include <assert.h> #include <stdlib.h> #include <ucontext.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <sys/ptrace.h> #include <setjmp.h> #include "pkey-helpers.h" int iteration_nr = 1; int test_nr; u64 shadow_pkey_reg; int dprint_in_signal; char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE]; void cat_into_file(char *str, char *file) { int fd = open(file, O_RDWR); int ret; dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file); /* * these need to be raw because they are called under * pkey_assert() */ if (fd < 0) { fprintf(stderr, "error opening '%s'\n", str); perror("error: "); exit(__LINE__); } ret = write(fd, str, strlen(str)); if (ret != strlen(str)) { perror("write to file failed"); fprintf(stderr, "filename: '%s' str: '%s'\n", file, str); exit(__LINE__); } close(fd); } #if CONTROL_TRACING > 0 static int warned_tracing; int tracing_root_ok(void) { if (geteuid() != 0) { if (!warned_tracing) fprintf(stderr, "WARNING: not run as root, " "can not do tracing control\n"); warned_tracing = 1; return 0; } return 1; } #endif void tracing_on(void) { #if CONTROL_TRACING > 0 #define TRACEDIR "/sys/kernel/debug/tracing" char pidstr[32]; if (!tracing_root_ok()) return; sprintf(pidstr, "%d", getpid()); cat_into_file("0", TRACEDIR "/tracing_on"); cat_into_file("\n", TRACEDIR "/trace"); if (1) { cat_into_file("function_graph", TRACEDIR "/current_tracer"); cat_into_file("1", TRACEDIR "/options/funcgraph-proc"); } else { cat_into_file("nop", TRACEDIR "/current_tracer"); } cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid"); cat_into_file("1", TRACEDIR "/tracing_on"); dprintf1("enabled tracing\n"); #endif } void tracing_off(void) { #if CONTROL_TRACING > 0 if (!tracing_root_ok()) return; cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on"); #endif } void abort_hooks(void) { fprintf(stderr, "running %s()...\n", __func__); tracing_off(); #ifdef SLEEP_ON_ABORT sleep(SLEEP_ON_ABORT); #endif } /* * This attempts to have roughly a page of instructions followed by a few * instructions that do a write, and another page of instructions. That * way, we are pretty sure that the write is in the second page of * instructions and has at least a page of padding behind it. * * *That* lets us be sure to madvise() away the write instruction, which * will then fault, which makes sure that the fault code handles * execute-only memory properly. */ #ifdef __powerpc64__ /* This way, both 4K and 64K alignment are maintained */ __attribute__((__aligned__(65536))) #else __attribute__((__aligned__(PAGE_SIZE))) #endif void lots_o_noops_around_write(int *write_to_me) { dprintf3("running %s()\n", __func__); __page_o_noops(); /* Assume this happens in the second page of instructions: */ *write_to_me = __LINE__; /* pad out by another page: */ __page_o_noops(); dprintf3("%s() done\n", __func__); } void dump_mem(void *dumpme, int len_bytes) { char *c = (void *)dumpme; int i; for (i = 0; i < len_bytes; i += sizeof(u64)) { u64 *ptr = (u64 *)(c + i); dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr); } } static u32 hw_pkey_get(int pkey, unsigned long flags) { u64 pkey_reg = __read_pkey_reg(); dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n", __func__, pkey, flags, 0, 0); dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg); return (u32) get_pkey_bits(pkey_reg, pkey); } static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags) { u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE); u64 old_pkey_reg = __read_pkey_reg(); u64 new_pkey_reg; /* make sure that 'rights' only contains the bits we expect: */ assert(!(rights & ~mask)); /* modify bits accordingly in old pkey_reg and assign it */ new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights); __write_pkey_reg(new_pkey_reg); dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x" " pkey_reg now: %016llx old_pkey_reg: %016llx\n", __func__, pkey, rights, flags, 0, __read_pkey_reg(), old_pkey_reg); return 0; } void pkey_disable_set(int pkey, int flags) { unsigned long syscall_flags = 0; int ret; int pkey_rights; u64 orig_pkey_reg = read_pkey_reg(); dprintf1("START->%s(%d, 0x%x)\n", __func__, pkey, flags); pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); pkey_rights = hw_pkey_get(pkey, syscall_flags); dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); pkey_assert(pkey_rights >= 0); pkey_rights |= flags; ret = hw_pkey_set(pkey, pkey_rights, syscall_flags); assert(!ret); /* pkey_reg and flags have the same format */ shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights); dprintf1("%s(%d) shadow: 0x%016llx\n", __func__, pkey, shadow_pkey_reg); pkey_assert(ret >= 0); pkey_rights = hw_pkey_get(pkey, syscall_flags); dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__, pkey, read_pkey_reg()); if (flags) pkey_assert(read_pkey_reg() >= orig_pkey_reg); dprintf1("END<---%s(%d, 0x%x)\n", __func__, pkey, flags); } void pkey_disable_clear(int pkey, int flags) { unsigned long syscall_flags = 0; int ret; int pkey_rights = hw_pkey_get(pkey, syscall_flags); u64 orig_pkey_reg = read_pkey_reg(); pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); pkey_assert(pkey_rights >= 0); pkey_rights &= ~flags; ret = hw_pkey_set(pkey, pkey_rights, 0); shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights); pkey_assert(ret >= 0); pkey_rights = hw_pkey_get(pkey, syscall_flags); dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__, pkey, read_pkey_reg()); if (flags) assert(read_pkey_reg() <= orig_pkey_reg); } void pkey_write_allow(int pkey) { pkey_disable_clear(pkey, PKEY_DISABLE_WRITE); } void pkey_write_deny(int pkey) { pkey_disable_set(pkey, PKEY_DISABLE_WRITE); } void pkey_access_allow(int pkey) { pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS); } void pkey_access_deny(int pkey) { pkey_disable_set(pkey, PKEY_DISABLE_ACCESS); } /* Failed address bound checks: */ #ifndef SEGV_BNDERR # define SEGV_BNDERR 3 #endif #ifndef SEGV_PKUERR # define SEGV_PKUERR 4 #endif static char *si_code_str(int si_code) { if (si_code == SEGV_MAPERR) return "SEGV_MAPERR"; if (si_code == SEGV_ACCERR) return "SEGV_ACCERR"; if (si_code == SEGV_BNDERR) return "SEGV_BNDERR"; if (si_code == SEGV_PKUERR) return "SEGV_PKUERR"; return "UNKNOWN"; } int pkey_faults; int last_si_pkey = -1; void signal_handler(int signum, siginfo_t *si, void *vucontext) { ucontext_t *uctxt = vucontext; int trapno; unsigned long ip; char *fpregs; #if defined(__i386__) || defined(__x86_64__) /* arch */ u32 *pkey_reg_ptr; int pkey_reg_offset; #endif /* arch */ u64 siginfo_pkey; u32 *si_pkey_ptr; dprint_in_signal = 1; dprintf1(">>>>===============SIGSEGV============================\n"); dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n", __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg); trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO]; ip = uctxt->uc_mcontext.gregs[REG_IP_IDX]; fpregs = (char *) uctxt->uc_mcontext.fpregs; dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n", __func__, trapno, ip, si_code_str(si->si_code), si->si_code); #if defined(__i386__) || defined(__x86_64__) /* arch */ #ifdef __i386__ /* * 32-bit has some extra padding so that userspace can tell whether * the XSTATE header is present in addition to the "legacy" FPU * state. We just assume that it is here. */ fpregs += 0x70; #endif /* i386 */ pkey_reg_offset = pkey_reg_xstate_offset(); pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]); /* * If we got a PKEY fault, we *HAVE* to have at least one bit set in * here. */ dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset()); if (DEBUG_LEVEL > 4) dump_mem(pkey_reg_ptr - 128, 256); pkey_assert(*pkey_reg_ptr); #endif /* arch */ dprintf1("siginfo: %p\n", si); dprintf1(" fpregs: %p\n", fpregs); if ((si->si_code == SEGV_MAPERR) || (si->si_code == SEGV_ACCERR) || (si->si_code == SEGV_BNDERR)) { printf("non-PK si_code, exiting...\n"); exit(4); } si_pkey_ptr = siginfo_get_pkey_ptr(si); dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr); dump_mem((u8 *)si_pkey_ptr - 8, 24); siginfo_pkey = *si_pkey_ptr; pkey_assert(siginfo_pkey < NR_PKEYS); last_si_pkey = siginfo_pkey; /* * need __read_pkey_reg() version so we do not do shadow_pkey_reg * checking */ dprintf1("signal pkey_reg from pkey_reg: %016llx\n", __read_pkey_reg()); dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey); #if defined(__i386__) || defined(__x86_64__) /* arch */ dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr); *(u64 *)pkey_reg_ptr = 0x00000000; dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n"); #elif defined(__powerpc64__) /* arch */ /* restore access and let the faulting instruction continue */ pkey_access_allow(siginfo_pkey); #endif /* arch */ pkey_faults++; dprintf1("<<<<==================================================\n"); dprint_in_signal = 0; } int wait_all_children(void) { int status; return waitpid(-1, &status, 0); } void sig_chld(int x) { dprint_in_signal = 1; dprintf2("[%d] SIGCHLD: %d\n", getpid(), x); dprint_in_signal = 0; } void setup_sigsegv_handler(void) { int r, rs; struct sigaction newact; struct sigaction oldact; /* #PF is mapped to sigsegv */ int signum = SIGSEGV; newact.sa_handler = 0; newact.sa_sigaction = signal_handler; /*sigset_t - signals to block while in the handler */ /* get the old signal mask. */ rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask); pkey_assert(rs == 0); /* call sa_sigaction, not sa_handler*/ newact.sa_flags = SA_SIGINFO; newact.sa_restorer = 0; /* void(*)(), obsolete */ r = sigaction(signum, &newact, &oldact); r = sigaction(SIGALRM, &newact, &oldact); pkey_assert(r == 0); } void setup_handlers(void) { signal(SIGCHLD, &sig_chld); setup_sigsegv_handler(); } pid_t fork_lazy_child(void) { pid_t forkret; forkret = fork(); pkey_assert(forkret >= 0); dprintf3("[%d] fork() ret: %d\n", getpid(), forkret); if (!forkret) { /* in the child */ while (1) { dprintf1("child sleeping...\n"); sleep(30); } } return forkret; } int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot, unsigned long pkey) { int sret; dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__, ptr, size, orig_prot, pkey); errno = 0; sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey); if (errno) { dprintf2("SYS_mprotect_key sret: %d\n", sret); dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot); dprintf2("SYS_mprotect_key failed, errno: %d\n", errno); if (DEBUG_LEVEL >= 2) perror("SYS_mprotect_pkey"); } return sret; } int sys_pkey_alloc(unsigned long flags, unsigned long init_val) { int ret = syscall(SYS_pkey_alloc, flags, init_val); dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n", __func__, flags, init_val, ret, errno); return ret; } int alloc_pkey(void) { int ret; unsigned long init_val = 0x0; dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n", __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg); ret = sys_pkey_alloc(0, init_val); /* * pkey_alloc() sets PKEY register, so we need to reflect it in * shadow_pkey_reg: */ dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); if (ret > 0) { /* clear both the bits: */ shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret, ~PKEY_MASK); dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); /* * move the new state in from init_val * (remember, we cheated and init_val == pkey_reg format) */ shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret, init_val); } dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno); /* for shadow checking: */ read_pkey_reg(); dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); return ret; } int sys_pkey_free(unsigned long pkey) { int ret = syscall(SYS_pkey_free, pkey); dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret); return ret; } /* * I had a bug where pkey bits could be set by mprotect() but * not cleared. This ensures we get lots of random bit sets * and clears on the vma and pte pkey bits. */ int alloc_random_pkey(void) { int max_nr_pkey_allocs; int ret; int i; int alloced_pkeys[NR_PKEYS]; int nr_alloced = 0; int random_index; memset(alloced_pkeys, 0, sizeof(alloced_pkeys)); /* allocate every possible key and make a note of which ones we got */ max_nr_pkey_allocs = NR_PKEYS; for (i = 0; i < max_nr_pkey_allocs; i++) { int new_pkey = alloc_pkey(); if (new_pkey < 0) break; alloced_pkeys[nr_alloced++] = new_pkey; } pkey_assert(nr_alloced > 0); /* select a random one out of the allocated ones */ random_index = rand() % nr_alloced; ret = alloced_pkeys[random_index]; /* now zero it out so we don't free it next */ alloced_pkeys[random_index] = 0; /* go through the allocated ones that we did not want and free them */ for (i = 0; i < nr_alloced; i++) { int free_ret; if (!alloced_pkeys[i]) continue; free_ret = sys_pkey_free(alloced_pkeys[i]); pkey_assert(!free_ret); } dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); return ret; } int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot, unsigned long pkey) { int nr_iterations = random() % 100; int ret; while (0) { int rpkey = alloc_random_pkey(); ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey); dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n", ptr, size, orig_prot, pkey, ret); if (nr_iterations-- < 0) break; dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); sys_pkey_free(rpkey); dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); } pkey_assert(pkey < NR_PKEYS); ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey); dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n", ptr, size, orig_prot, pkey, ret); pkey_assert(!ret); dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg); return ret; } struct pkey_malloc_record { void *ptr; long size; int prot; }; struct pkey_malloc_record *pkey_malloc_records; struct pkey_malloc_record *pkey_last_malloc_record; long nr_pkey_malloc_records; void record_pkey_malloc(void *ptr, long size, int prot) { long i; struct pkey_malloc_record *rec = NULL; for (i = 0; i < nr_pkey_malloc_records; i++) { rec = &pkey_malloc_records[i]; /* find a free record */ if (rec) break; } if (!rec) { /* every record is full */ size_t old_nr_records = nr_pkey_malloc_records; size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1); size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record); dprintf2("new_nr_records: %zd\n", new_nr_records); dprintf2("new_size: %zd\n", new_size); pkey_malloc_records = realloc(pkey_malloc_records, new_size); pkey_assert(pkey_malloc_records != NULL); rec = &pkey_malloc_records[nr_pkey_malloc_records]; /* * realloc() does not initialize memory, so zero it from * the first new record all the way to the end. */ for (i = 0; i < new_nr_records - old_nr_records; i++) memset(rec + i, 0, sizeof(*rec)); } dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n", (int)(rec - pkey_malloc_records), rec, ptr, size); rec->ptr = ptr; rec->size = size; rec->prot = prot; pkey_last_malloc_record = rec; nr_pkey_malloc_records++; } void free_pkey_malloc(void *ptr) { long i; int ret; dprintf3("%s(%p)\n", __func__, ptr); for (i = 0; i < nr_pkey_malloc_records; i++) { struct pkey_malloc_record *rec = &pkey_malloc_records[i]; dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n", ptr, i, rec, rec->ptr, rec->size); if ((ptr < rec->ptr) || (ptr >= rec->ptr + rec->size)) continue; dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n", ptr, i, rec, rec->ptr, rec->size); nr_pkey_malloc_records--; ret = munmap(rec->ptr, rec->size); dprintf3("munmap ret: %d\n", ret); pkey_assert(!ret); dprintf3("clearing rec->ptr, rec: %p\n", rec); rec->ptr = NULL; dprintf3("done clearing rec->ptr, rec: %p\n", rec); return; } pkey_assert(false); } void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey) { void *ptr; int ret; read_pkey_reg(); dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, size, prot, pkey); pkey_assert(pkey < NR_PKEYS); ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); pkey_assert(ptr != (void *)-1); ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey); pkey_assert(!ret); record_pkey_malloc(ptr, size, prot); read_pkey_reg(); dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr); return ptr; } void *malloc_pkey_anon_huge(long size, int prot, u16 pkey) { int ret; void *ptr; dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, size, prot, pkey); /* * Guarantee we can fit at least one huge page in the resulting * allocation by allocating space for 2: */ size = ALIGN_UP(size, HPAGE_SIZE * 2); ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); pkey_assert(ptr != (void *)-1); record_pkey_malloc(ptr, size, prot); mprotect_pkey(ptr, size, prot, pkey); dprintf1("unaligned ptr: %p\n", ptr); ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE); dprintf1(" aligned ptr: %p\n", ptr); ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE); dprintf1("MADV_HUGEPAGE ret: %d\n", ret); ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED); dprintf1("MADV_WILLNEED ret: %d\n", ret); memset(ptr, 0, HPAGE_SIZE); dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr); return ptr; } int hugetlb_setup_ok; #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages" #define GET_NR_HUGE_PAGES 10 void setup_hugetlbfs(void) { int err; int fd; char buf[256]; long hpagesz_kb; long hpagesz_mb; if (geteuid() != 0) { fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n"); return; } cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages"); /* * Now go make sure that we got the pages and that they * are PMD-level pages. Someone might have made PUD-level * pages the default. */ hpagesz_kb = HPAGE_SIZE / 1024; hpagesz_mb = hpagesz_kb / 1024; sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb); fd = open(buf, O_RDONLY); if (fd < 0) { fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n", hpagesz_mb, strerror(errno)); return; } /* -1 to guarantee leaving the trailing \0 */ err = read(fd, buf, sizeof(buf)-1); close(fd); if (err <= 0) { fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n", hpagesz_mb, strerror(errno)); return; } if (atoi(buf) != GET_NR_HUGE_PAGES) { fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n", hpagesz_mb, buf, GET_NR_HUGE_PAGES); return; } hugetlb_setup_ok = 1; } void *malloc_pkey_hugetlb(long size, int prot, u16 pkey) { void *ptr; int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB; if (!hugetlb_setup_ok) return PTR_ERR_ENOTSUP; dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey); size = ALIGN_UP(size, HPAGE_SIZE * 2); pkey_assert(pkey < NR_PKEYS); ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0); pkey_assert(ptr != (void *)-1); mprotect_pkey(ptr, size, prot, pkey); record_pkey_malloc(ptr, size, prot); dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr); return ptr; } void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey) { void *ptr; int fd; dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, size, prot, pkey); pkey_assert(pkey < NR_PKEYS); fd = open("/dax/foo", O_RDWR); pkey_assert(fd >= 0); ptr = mmap(0, size, prot, MAP_SHARED, fd, 0); pkey_assert(ptr != (void *)-1); mprotect_pkey(ptr, size, prot, pkey); record_pkey_malloc(ptr, size, prot); dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr); close(fd); return ptr; } void *(*pkey_malloc[])(long size, int prot, u16 pkey) = { malloc_pkey_with_mprotect, malloc_pkey_with_mprotect_subpage, malloc_pkey_anon_huge, malloc_pkey_hugetlb /* can not do direct with the pkey_mprotect() API: malloc_pkey_mmap_direct, malloc_pkey_mmap_dax, */ }; void *malloc_pkey(long size, int prot, u16 pkey) { void *ret; static int malloc_type; int nr_malloc_types = ARRAY_SIZE(pkey_malloc); pkey_assert(pkey < NR_PKEYS); while (1) { pkey_assert(malloc_type < nr_malloc_types); ret = pkey_malloc[malloc_type](size, prot, pkey); pkey_assert(ret != (void *)-1); malloc_type++; if (malloc_type >= nr_malloc_types) malloc_type = (random()%nr_malloc_types); /* try again if the malloc_type we tried is unsupported */ if (ret == PTR_ERR_ENOTSUP) continue; break; } dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__, size, prot, pkey, ret); return ret; } int last_pkey_faults; #define UNKNOWN_PKEY -2 void expected_pkey_fault(int pkey) { dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n", __func__, last_pkey_faults, pkey_faults); dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey); pkey_assert(last_pkey_faults + 1 == pkey_faults); /* * For exec-only memory, we do not know the pkey in * advance, so skip this check. */ if (pkey != UNKNOWN_PKEY) pkey_assert(last_si_pkey == pkey); #if defined(__i386__) || defined(__x86_64__) /* arch */ /* * The signal handler shold have cleared out PKEY register to let the * test program continue. We now have to restore it. */ if (__read_pkey_reg() != 0) #else /* arch */ if (__read_pkey_reg() != shadow_pkey_reg) #endif /* arch */ pkey_assert(0); __write_pkey_reg(shadow_pkey_reg); dprintf1("%s() set pkey_reg=%016llx to restore state after signal " "nuked it\n", __func__, shadow_pkey_reg); last_pkey_faults = pkey_faults; last_si_pkey = -1; } #define do_not_expect_pkey_fault(msg) do { \ if (last_pkey_faults != pkey_faults) \ dprintf0("unexpected PKey fault: %s\n", msg); \ pkey_assert(last_pkey_faults == pkey_faults); \ } while (0) int test_fds[10] = { -1 }; int nr_test_fds; void __save_test_fd(int fd) { pkey_assert(fd >= 0); pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds)); test_fds[nr_test_fds] = fd; nr_test_fds++; } int get_test_read_fd(void) { int test_fd = open("/etc/passwd", O_RDONLY); __save_test_fd(test_fd); return test_fd; } void close_test_fds(void) { int i; for (i = 0; i < nr_test_fds; i++) { if (test_fds[i] < 0) continue; close(test_fds[i]); test_fds[i] = -1; } nr_test_fds = 0; } #define barrier() __asm__ __volatile__("": : :"memory") __attribute__((noinline)) int read_ptr(int *ptr) { /* * Keep GCC from optimizing this away somehow */ barrier(); return *ptr; } void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey) { int i, err; int max_nr_pkey_allocs; int alloced_pkeys[NR_PKEYS]; int nr_alloced = 0; long size; pkey_assert(pkey_last_malloc_record); size = pkey_last_malloc_record->size; /* * This is a bit of a hack. But mprotect() requires * huge-page-aligned sizes when operating on hugetlbfs. * So, make sure that we use something that's a multiple * of a huge page when we can. */ if (size >= HPAGE_SIZE) size = HPAGE_SIZE; /* allocate every possible key and make sure key-0 never got allocated */ max_nr_pkey_allocs = NR_PKEYS; for (i = 0; i < max_nr_pkey_allocs; i++) { int new_pkey = alloc_pkey(); pkey_assert(new_pkey != 0); if (new_pkey < 0) break; alloced_pkeys[nr_alloced++] = new_pkey; } /* free all the allocated keys */ for (i = 0; i < nr_alloced; i++) { int free_ret; if (!alloced_pkeys[i]) continue; free_ret = sys_pkey_free(alloced_pkeys[i]); pkey_assert(!free_ret); } /* attach key-0 in various modes */ err = sys_mprotect_pkey(ptr, size, PROT_READ, 0); pkey_assert(!err); err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0); pkey_assert(!err); err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0); pkey_assert(!err); err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0); pkey_assert(!err); err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0); pkey_assert(!err); } void test_read_of_write_disabled_region(int *ptr, u16 pkey) { int ptr_contents; dprintf1("disabling write access to PKEY[1], doing read\n"); pkey_write_deny(pkey); ptr_contents = read_ptr(ptr); dprintf1("*ptr: %d\n", ptr_contents); dprintf1("\n"); } void test_read_of_access_disabled_region(int *ptr, u16 pkey) { int ptr_contents; dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr); read_pkey_reg(); pkey_access_deny(pkey); ptr_contents = read_ptr(ptr); dprintf1("*ptr: %d\n", ptr_contents); expected_pkey_fault(pkey); } void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr, u16 pkey) { int ptr_contents; dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr); ptr_contents = read_ptr(ptr); dprintf1("reading ptr before disabling the read : %d\n", ptr_contents); read_pkey_reg(); pkey_access_deny(pkey); ptr_contents = read_ptr(ptr); dprintf1("*ptr: %d\n", ptr_contents); expected_pkey_fault(pkey); } void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr, u16 pkey) { *ptr = __LINE__; dprintf1("disabling write access; after accessing the page, " "to PKEY[%02d], doing write\n", pkey); pkey_write_deny(pkey); *ptr = __LINE__; expected_pkey_fault(pkey); } void test_write_of_write_disabled_region(int *ptr, u16 pkey) { dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey); pkey_write_deny(pkey); *ptr = __LINE__; expected_pkey_fault(pkey); } void test_write_of_access_disabled_region(int *ptr, u16 pkey) { dprintf1("disabling access to PKEY[%02d], doing write\n", pkey); pkey_access_deny(pkey); *ptr = __LINE__; expected_pkey_fault(pkey); } void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr, u16 pkey) { *ptr = __LINE__; dprintf1("disabling access; after accessing the page, " " to PKEY[%02d], doing write\n", pkey); pkey_access_deny(pkey); *ptr = __LINE__; expected_pkey_fault(pkey); } void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey) { int ret; int test_fd = get_test_read_fd(); dprintf1("disabling access to PKEY[%02d], " "having kernel read() to buffer\n", pkey); pkey_access_deny(pkey); ret = read(test_fd, ptr, 1); dprintf1("read ret: %d\n", ret); pkey_assert(ret); } void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey) { int ret; int test_fd = get_test_read_fd(); pkey_write_deny(pkey); ret = read(test_fd, ptr, 100); dprintf1("read ret: %d\n", ret); if (ret < 0 && (DEBUG_LEVEL > 0)) perror("verbose read result (OK for this to be bad)"); pkey_assert(ret); } void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey) { int pipe_ret, vmsplice_ret; struct iovec iov; int pipe_fds[2]; pipe_ret = pipe(pipe_fds); pkey_assert(pipe_ret == 0); dprintf1("disabling access to PKEY[%02d], " "having kernel vmsplice from buffer\n", pkey); pkey_access_deny(pkey); iov.iov_base = ptr; iov.iov_len = PAGE_SIZE; vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT); dprintf1("vmsplice() ret: %d\n", vmsplice_ret); pkey_assert(vmsplice_ret == -1); close(pipe_fds[0]); close(pipe_fds[1]); } void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey) { int ignored = 0xdada; int futex_ret; int some_int = __LINE__; dprintf1("disabling write to PKEY[%02d], " "doing futex gunk in buffer\n", pkey); *ptr = some_int; pkey_write_deny(pkey); futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL, &ignored, ignored); if (DEBUG_LEVEL > 0) perror("futex"); dprintf1("futex() ret: %d\n", futex_ret); } /* Assumes that all pkeys other than 'pkey' are unallocated */ void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey) { int err; int i; /* Note: 0 is the default pkey, so don't mess with it */ for (i = 1; i < NR_PKEYS; i++) { if (pkey == i) continue; dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i); err = sys_pkey_free(i); pkey_assert(err); err = sys_pkey_free(i); pkey_assert(err); err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i); pkey_assert(err); } } /* Assumes that all pkeys other than 'pkey' are unallocated */ void test_pkey_syscalls_bad_args(int *ptr, u16 pkey) { int err; int bad_pkey = NR_PKEYS+99; /* pass a known-invalid pkey in: */ err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey); pkey_assert(err); } void become_child(void) { pid_t forkret; forkret = fork(); pkey_assert(forkret >= 0); dprintf3("[%d] fork() ret: %d\n", getpid(), forkret); if (!forkret) { /* in the child */ return; } exit(0); } /* Assumes that all pkeys other than 'pkey' are unallocated */ void test_pkey_alloc_exhaust(int *ptr, u16 pkey) { int err; int allocated_pkeys[NR_PKEYS] = {0}; int nr_allocated_pkeys = 0; int i; for (i = 0; i < NR_PKEYS*3; i++) { int new_pkey; dprintf1("%s() alloc loop: %d\n", __func__, i); new_pkey = alloc_pkey(); dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx" " shadow: 0x%016llx\n", __func__, __LINE__, err, __read_pkey_reg(), shadow_pkey_reg); read_pkey_reg(); /* for shadow checking */ dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC); if ((new_pkey == -1) && (errno == ENOSPC)) { dprintf2("%s() failed to allocate pkey after %d tries\n", __func__, nr_allocated_pkeys); } else { /* * Ensure the number of successes never * exceeds the number of keys supported * in the hardware. */ pkey_assert(nr_allocated_pkeys < NR_PKEYS); allocated_pkeys[nr_allocated_pkeys++] = new_pkey; } /* * Make sure that allocation state is properly * preserved across fork(). */ if (i == NR_PKEYS*2) become_child(); } dprintf3("%s()::%d\n", __func__, __LINE__); /* * On x86: * There are 16 pkeys supported in hardware. Three are * allocated by the time we get here: * 1. The default key (0) * 2. One possibly consumed by an execute-only mapping. * 3. One allocated by the test code and passed in via * 'pkey' to this function. * Ensure that we can allocate at least another 13 (16-3). * * On powerpc: * There are either 5, 28, 29 or 32 pkeys supported in * hardware depending on the page size (4K or 64K) and * platform (powernv or powervm). Four are allocated by * the time we get here. These include pkey-0, pkey-1, * exec-only pkey and the one allocated by the test code. * Ensure that we can allocate the remaining. */ pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1)); for (i = 0; i < nr_allocated_pkeys; i++) { err = sys_pkey_free(allocated_pkeys[i]); pkey_assert(!err); read_pkey_reg(); /* for shadow checking */ } } void arch_force_pkey_reg_init(void) { #if defined(__i386__) || defined(__x86_64__) /* arch */ u64 *buf; /* * All keys should be allocated and set to allow reads and * writes, so the register should be all 0. If not, just * skip the test. */ if (read_pkey_reg()) return; /* * Just allocate an absurd about of memory rather than * doing the XSAVE size enumeration dance. */ buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); /* These __builtins require compiling with -mxsave */ /* XSAVE to build a valid buffer: */ __builtin_ia32_xsave(buf, XSTATE_PKEY); /* Clear XSTATE_BV[PKRU]: */ buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY; /* XRSTOR will likely get PKRU back to the init state: */ __builtin_ia32_xrstor(buf, XSTATE_PKEY); munmap(buf, 1*MB); #endif } /* * This is mostly useless on ppc for now. But it will not * hurt anything and should give some better coverage as * a long-running test that continually checks the pkey * register. */ void test_pkey_init_state(int *ptr, u16 pkey) { int err; int allocated_pkeys[NR_PKEYS] = {0}; int nr_allocated_pkeys = 0; int i; for (i = 0; i < NR_PKEYS; i++) { int new_pkey = alloc_pkey(); if (new_pkey < 0) continue; allocated_pkeys[nr_allocated_pkeys++] = new_pkey; } dprintf3("%s()::%d\n", __func__, __LINE__); arch_force_pkey_reg_init(); /* * Loop for a bit, hoping to get exercise the kernel * context switch code. */ for (i = 0; i < 1000000; i++) read_pkey_reg(); for (i = 0; i < nr_allocated_pkeys; i++) { err = sys_pkey_free(allocated_pkeys[i]); pkey_assert(!err); read_pkey_reg(); /* for shadow checking */ } } /* * pkey 0 is special. It is allocated by default, so you do not * have to call pkey_alloc() to use it first. Make sure that it * is usable. */ void test_mprotect_with_pkey_0(int *ptr, u16 pkey) { long size; int prot; assert(pkey_last_malloc_record); size = pkey_last_malloc_record->size; /* * This is a bit of a hack. But mprotect() requires * huge-page-aligned sizes when operating on hugetlbfs. * So, make sure that we use something that's a multiple * of a huge page when we can. */ if (size >= HPAGE_SIZE) size = HPAGE_SIZE; prot = pkey_last_malloc_record->prot; /* Use pkey 0 */ mprotect_pkey(ptr, size, prot, 0); /* Make sure that we can set it back to the original pkey. */ mprotect_pkey(ptr, size, prot, pkey); } void test_ptrace_of_child(int *ptr, u16 pkey) { __attribute__((__unused__)) int peek_result; pid_t child_pid; void *ignored = 0; long ret; int status; /* * This is the "control" for our little expermient. Make sure * we can always access it when ptracing. */ int *plain_ptr_unaligned = malloc(HPAGE_SIZE); int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE); /* * Fork a child which is an exact copy of this process, of course. * That means we can do all of our tests via ptrace() and then plain * memory access and ensure they work differently. */ child_pid = fork_lazy_child(); dprintf1("[%d] child pid: %d\n", getpid(), child_pid); ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored); if (ret) perror("attach"); dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__); pkey_assert(ret != -1); ret = waitpid(child_pid, &status, WUNTRACED); if ((ret != child_pid) || !(WIFSTOPPED(status))) { fprintf(stderr, "weird waitpid result %ld stat %x\n", ret, status); pkey_assert(0); } dprintf2("waitpid ret: %ld\n", ret); dprintf2("waitpid status: %d\n", status); pkey_access_deny(pkey); pkey_write_deny(pkey); /* Write access, untested for now: ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data); pkey_assert(ret != -1); dprintf1("poke at %p: %ld\n", peek_at, ret); */ /* * Try to access the pkey-protected "ptr" via ptrace: */ ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored); /* expect it to work, without an error: */ pkey_assert(ret != -1); /* Now access from the current task, and expect an exception: */ peek_result = read_ptr(ptr); expected_pkey_fault(pkey); /* * Try to access the NON-pkey-protected "plain_ptr" via ptrace: */ ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored); /* expect it to work, without an error: */ pkey_assert(ret != -1); /* Now access from the current task, and expect NO exception: */ peek_result = read_ptr(plain_ptr); do_not_expect_pkey_fault("read plain pointer after ptrace"); ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0); pkey_assert(ret != -1); ret = kill(child_pid, SIGKILL); pkey_assert(ret != -1); wait(&status); free(plain_ptr_unaligned); } void *get_pointer_to_instructions(void) { void *p1; p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE); dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write); /* lots_o_noops_around_write should be page-aligned already */ assert(p1 == &lots_o_noops_around_write); /* Point 'p1' at the *second* page of the function: */ p1 += PAGE_SIZE; /* * Try to ensure we fault this in on next touch to ensure * we get an instruction fault as opposed to a data one */ madvise(p1, PAGE_SIZE, MADV_DONTNEED); return p1; } void test_executing_on_unreadable_memory(int *ptr, u16 pkey) { void *p1; int scratch; int ptr_contents; int ret; p1 = get_pointer_to_instructions(); lots_o_noops_around_write(&scratch); ptr_contents = read_ptr(p1); dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents); ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey); pkey_assert(!ret); pkey_access_deny(pkey); dprintf2("pkey_reg: %016llx\n", read_pkey_reg()); /* * Make sure this is an *instruction* fault */ madvise(p1, PAGE_SIZE, MADV_DONTNEED); lots_o_noops_around_write(&scratch); do_not_expect_pkey_fault("executing on PROT_EXEC memory"); expect_fault_on_read_execonly_key(p1, pkey); } void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey) { void *p1; int scratch; int ptr_contents; int ret; dprintf1("%s() start\n", __func__); p1 = get_pointer_to_instructions(); lots_o_noops_around_write(&scratch); ptr_contents = read_ptr(p1); dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents); /* Use a *normal* mprotect(), not mprotect_pkey(): */ ret = mprotect(p1, PAGE_SIZE, PROT_EXEC); pkey_assert(!ret); /* * Reset the shadow, assuming that the above mprotect() * correctly changed PKRU, but to an unknown value since * the actual allocated pkey is unknown. */ shadow_pkey_reg = __read_pkey_reg(); dprintf2("pkey_reg: %016llx\n", read_pkey_reg()); /* Make sure this is an *instruction* fault */ madvise(p1, PAGE_SIZE, MADV_DONTNEED); lots_o_noops_around_write(&scratch); do_not_expect_pkey_fault("executing on PROT_EXEC memory"); expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY); /* * Put the memory back to non-PROT_EXEC. Should clear the * exec-only pkey off the VMA and allow it to be readable * again. Go to PROT_NONE first to check for a kernel bug * that did not clear the pkey when doing PROT_NONE. */ ret = mprotect(p1, PAGE_SIZE, PROT_NONE); pkey_assert(!ret); ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC); pkey_assert(!ret); ptr_contents = read_ptr(p1); do_not_expect_pkey_fault("plain read on recently PROT_EXEC area"); } #if defined(__i386__) || defined(__x86_64__) void test_ptrace_modifies_pkru(int *ptr, u16 pkey) { u32 new_pkru; pid_t child; int status, ret; int pkey_offset = pkey_reg_xstate_offset(); size_t xsave_size = cpu_max_xsave_size(); void *xsave; u32 *pkey_register; u64 *xstate_bv; struct iovec iov; new_pkru = ~read_pkey_reg(); /* Don't make PROT_EXEC mappings inaccessible */ new_pkru &= ~3; child = fork(); pkey_assert(child >= 0); dprintf3("[%d] fork() ret: %d\n", getpid(), child); if (!child) { ptrace(PTRACE_TRACEME, 0, 0, 0); /* Stop and allow the tracer to modify PKRU directly */ raise(SIGSTOP); /* * need __read_pkey_reg() version so we do not do shadow_pkey_reg * checking */ if (__read_pkey_reg() != new_pkru) exit(1); /* Stop and allow the tracer to clear XSTATE_BV for PKRU */ raise(SIGSTOP); if (__read_pkey_reg() != 0) exit(1); /* Stop and allow the tracer to examine PKRU */ raise(SIGSTOP); exit(0); } pkey_assert(child == waitpid(child, &status, 0)); dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status); pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP); xsave = (void *)malloc(xsave_size); pkey_assert(xsave > 0); /* Modify the PKRU register directly */ iov.iov_base = xsave; iov.iov_len = xsave_size; ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov); pkey_assert(ret == 0); pkey_register = (u32 *)(xsave + pkey_offset); pkey_assert(*pkey_register == read_pkey_reg()); *pkey_register = new_pkru; ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov); pkey_assert(ret == 0); /* Test that the modification is visible in ptrace before any execution */ memset(xsave, 0xCC, xsave_size); ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov); pkey_assert(ret == 0); pkey_assert(*pkey_register == new_pkru); /* Execute the tracee */ ret = ptrace(PTRACE_CONT, child, 0, 0); pkey_assert(ret == 0); /* Test that the tracee saw the PKRU value change */ pkey_assert(child == waitpid(child, &status, 0)); dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status); pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP); /* Test that the modification is visible in ptrace after execution */ memset(xsave, 0xCC, xsave_size); ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov); pkey_assert(ret == 0); pkey_assert(*pkey_register == new_pkru); /* Clear the PKRU bit from XSTATE_BV */ xstate_bv = (u64 *)(xsave + 512); *xstate_bv &= ~(1 << 9); ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov); pkey_assert(ret == 0); /* Test that the modification is visible in ptrace before any execution */ memset(xsave, 0xCC, xsave_size); ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov); pkey_assert(ret == 0); pkey_assert(*pkey_register == 0); ret = ptrace(PTRACE_CONT, child, 0, 0); pkey_assert(ret == 0); /* Test that the tracee saw the PKRU value go to 0 */ pkey_assert(child == waitpid(child, &status, 0)); dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status); pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP); /* Test that the modification is visible in ptrace after execution */ memset(xsave, 0xCC, xsave_size); ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov); pkey_assert(ret == 0); pkey_assert(*pkey_register == 0); ret = ptrace(PTRACE_CONT, child, 0, 0); pkey_assert(ret == 0); pkey_assert(child == waitpid(child, &status, 0)); dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status); pkey_assert(WIFEXITED(status)); pkey_assert(WEXITSTATUS(status) == 0); free(xsave); } #endif void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey) { int size = PAGE_SIZE; int sret; if (cpu_has_pkeys()) { dprintf1("SKIP: %s: no CPU support\n", __func__); return; } sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey); pkey_assert(sret < 0); } void (*pkey_tests[])(int *ptr, u16 pkey) = { test_read_of_write_disabled_region, test_read_of_access_disabled_region, test_read_of_access_disabled_region_with_page_already_mapped, test_write_of_write_disabled_region, test_write_of_write_disabled_region_with_page_already_mapped, test_write_of_access_disabled_region, test_write_of_access_disabled_region_with_page_already_mapped, test_kernel_write_of_access_disabled_region, test_kernel_write_of_write_disabled_region, test_kernel_gup_of_access_disabled_region, test_kernel_gup_write_to_write_disabled_region, test_executing_on_unreadable_memory, test_implicit_mprotect_exec_only_memory, test_mprotect_with_pkey_0, test_ptrace_of_child, test_pkey_init_state, test_pkey_syscalls_on_non_allocated_pkey, test_pkey_syscalls_bad_args, test_pkey_alloc_exhaust, test_pkey_alloc_free_attach_pkey0, #if defined(__i386__) || defined(__x86_64__) test_ptrace_modifies_pkru, #endif }; void run_tests_once(void) { int *ptr; int prot = PROT_READ|PROT_WRITE; for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) { int pkey; int orig_pkey_faults = pkey_faults; dprintf1("======================\n"); dprintf1("test %d preparing...\n", test_nr); tracing_on(); pkey = alloc_random_pkey(); dprintf1("test %d starting with pkey: %d\n", test_nr, pkey); ptr = malloc_pkey(PAGE_SIZE, prot, pkey); dprintf1("test %d starting...\n", test_nr); pkey_tests[test_nr](ptr, pkey); dprintf1("freeing test memory: %p\n", ptr); free_pkey_malloc(ptr); sys_pkey_free(pkey); dprintf1("pkey_faults: %d\n", pkey_faults); dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults); tracing_off(); close_test_fds(); printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr); dprintf1("======================\n\n"); } iteration_nr++; } void pkey_setup_shadow(void) { shadow_pkey_reg = __read_pkey_reg(); } int main(void) { int nr_iterations = 22; int pkeys_supported = is_pkeys_supported(); srand((unsigned int)time(NULL)); setup_handlers(); printf("has pkeys: %d\n", pkeys_supported); if (!pkeys_supported) { int size = PAGE_SIZE; int *ptr; printf("running PKEY tests for unsupported CPU/OS\n"); ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); assert(ptr != (void *)-1); test_mprotect_pkey_on_unsupported_cpu(ptr, 1); exit(0); } pkey_setup_shadow(); printf("startup pkey_reg: %016llx\n", read_pkey_reg()); setup_hugetlbfs(); while (nr_iterations-- > 0) run_tests_once(); printf("done (all tests OK)\n"); return 0; } |