Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs * Copyright (C) 2011 Don Zickus Red Hat, Inc. * * Pentium III FXSR, SSE support * Gareth Hughes <gareth@valinux.com>, May 2000 */ /* * Handle hardware traps and faults. */ #include <linux/spinlock.h> #include <linux/kprobes.h> #include <linux/kdebug.h> #include <linux/sched/debug.h> #include <linux/nmi.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/hardirq.h> #include <linux/ratelimit.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/atomic.h> #include <linux/sched/clock.h> #include <asm/cpu_entry_area.h> #include <asm/traps.h> #include <asm/mach_traps.h> #include <asm/nmi.h> #include <asm/x86_init.h> #include <asm/reboot.h> #include <asm/cache.h> #include <asm/nospec-branch.h> #include <asm/sev.h> #define CREATE_TRACE_POINTS #include <trace/events/nmi.h> struct nmi_desc { raw_spinlock_t lock; struct list_head head; }; static struct nmi_desc nmi_desc[NMI_MAX] = { { .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), .head = LIST_HEAD_INIT(nmi_desc[0].head), }, { .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), .head = LIST_HEAD_INIT(nmi_desc[1].head), }, { .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), .head = LIST_HEAD_INIT(nmi_desc[2].head), }, { .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), .head = LIST_HEAD_INIT(nmi_desc[3].head), }, }; struct nmi_stats { unsigned int normal; unsigned int unknown; unsigned int external; unsigned int swallow; }; static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); static int ignore_nmis __read_mostly; int unknown_nmi_panic; /* * Prevent NMI reason port (0x61) being accessed simultaneously, can * only be used in NMI handler. */ static DEFINE_RAW_SPINLOCK(nmi_reason_lock); static int __init setup_unknown_nmi_panic(char *str) { unknown_nmi_panic = 1; return 1; } __setup("unknown_nmi_panic", setup_unknown_nmi_panic); #define nmi_to_desc(type) (&nmi_desc[type]) static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; static int __init nmi_warning_debugfs(void) { debugfs_create_u64("nmi_longest_ns", 0644, arch_debugfs_dir, &nmi_longest_ns); return 0; } fs_initcall(nmi_warning_debugfs); static void nmi_check_duration(struct nmiaction *action, u64 duration) { int remainder_ns, decimal_msecs; if (duration < nmi_longest_ns || duration < action->max_duration) return; action->max_duration = duration; remainder_ns = do_div(duration, (1000 * 1000)); decimal_msecs = remainder_ns / 1000; printk_ratelimited(KERN_INFO "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", action->handler, duration, decimal_msecs); } static int nmi_handle(unsigned int type, struct pt_regs *regs) { struct nmi_desc *desc = nmi_to_desc(type); struct nmiaction *a; int handled=0; rcu_read_lock(); /* * NMIs are edge-triggered, which means if you have enough * of them concurrently, you can lose some because only one * can be latched at any given time. Walk the whole list * to handle those situations. */ list_for_each_entry_rcu(a, &desc->head, list) { int thishandled; u64 delta; delta = sched_clock(); thishandled = a->handler(type, regs); handled += thishandled; delta = sched_clock() - delta; trace_nmi_handler(a->handler, (int)delta, thishandled); nmi_check_duration(a, delta); } rcu_read_unlock(); /* return total number of NMI events handled */ return handled; } NOKPROBE_SYMBOL(nmi_handle); int __register_nmi_handler(unsigned int type, struct nmiaction *action) { struct nmi_desc *desc = nmi_to_desc(type); unsigned long flags; if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list))) return -EINVAL; raw_spin_lock_irqsave(&desc->lock, flags); /* * Indicate if there are multiple registrations on the * internal NMI handler call chains (SERR and IO_CHECK). */ WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); /* * some handlers need to be executed first otherwise a fake * event confuses some handlers (kdump uses this flag) */ if (action->flags & NMI_FLAG_FIRST) list_add_rcu(&action->list, &desc->head); else list_add_tail_rcu(&action->list, &desc->head); raw_spin_unlock_irqrestore(&desc->lock, flags); return 0; } EXPORT_SYMBOL(__register_nmi_handler); void unregister_nmi_handler(unsigned int type, const char *name) { struct nmi_desc *desc = nmi_to_desc(type); struct nmiaction *n, *found = NULL; unsigned long flags; raw_spin_lock_irqsave(&desc->lock, flags); list_for_each_entry_rcu(n, &desc->head, list) { /* * the name passed in to describe the nmi handler * is used as the lookup key */ if (!strcmp(n->name, name)) { WARN(in_nmi(), "Trying to free NMI (%s) from NMI context!\n", n->name); list_del_rcu(&n->list); found = n; break; } } raw_spin_unlock_irqrestore(&desc->lock, flags); if (found) { synchronize_rcu(); INIT_LIST_HEAD(&found->list); } } EXPORT_SYMBOL_GPL(unregister_nmi_handler); static void pci_serr_error(unsigned char reason, struct pt_regs *regs) { /* check to see if anyone registered against these types of errors */ if (nmi_handle(NMI_SERR, regs)) return; pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", reason, smp_processor_id()); if (panic_on_unrecovered_nmi) nmi_panic(regs, "NMI: Not continuing"); pr_emerg("Dazed and confused, but trying to continue\n"); /* Clear and disable the PCI SERR error line. */ reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; outb(reason, NMI_REASON_PORT); } NOKPROBE_SYMBOL(pci_serr_error); static void io_check_error(unsigned char reason, struct pt_regs *regs) { unsigned long i; /* check to see if anyone registered against these types of errors */ if (nmi_handle(NMI_IO_CHECK, regs)) return; pr_emerg( "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", reason, smp_processor_id()); show_regs(regs); if (panic_on_io_nmi) { nmi_panic(regs, "NMI IOCK error: Not continuing"); /* * If we end up here, it means we have received an NMI while * processing panic(). Simply return without delaying and * re-enabling NMIs. */ return; } /* Re-enable the IOCK line, wait for a few seconds */ reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; outb(reason, NMI_REASON_PORT); i = 20000; while (--i) { touch_nmi_watchdog(); udelay(100); } reason &= ~NMI_REASON_CLEAR_IOCHK; outb(reason, NMI_REASON_PORT); } NOKPROBE_SYMBOL(io_check_error); static void unknown_nmi_error(unsigned char reason, struct pt_regs *regs) { int handled; /* * Use 'false' as back-to-back NMIs are dealt with one level up. * Of course this makes having multiple 'unknown' handlers useless * as only the first one is ever run (unless it can actually determine * if it caused the NMI) */ handled = nmi_handle(NMI_UNKNOWN, regs); if (handled) { __this_cpu_add(nmi_stats.unknown, handled); return; } __this_cpu_add(nmi_stats.unknown, 1); pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", reason, smp_processor_id()); if (unknown_nmi_panic || panic_on_unrecovered_nmi) nmi_panic(regs, "NMI: Not continuing"); pr_emerg("Dazed and confused, but trying to continue\n"); } NOKPROBE_SYMBOL(unknown_nmi_error); static DEFINE_PER_CPU(bool, swallow_nmi); static DEFINE_PER_CPU(unsigned long, last_nmi_rip); static noinstr void default_do_nmi(struct pt_regs *regs) { unsigned char reason = 0; int handled; bool b2b = false; /* * CPU-specific NMI must be processed before non-CPU-specific * NMI, otherwise we may lose it, because the CPU-specific * NMI can not be detected/processed on other CPUs. */ /* * Back-to-back NMIs are interesting because they can either * be two NMI or more than two NMIs (any thing over two is dropped * due to NMI being edge-triggered). If this is the second half * of the back-to-back NMI, assume we dropped things and process * more handlers. Otherwise reset the 'swallow' NMI behaviour */ if (regs->ip == __this_cpu_read(last_nmi_rip)) b2b = true; else __this_cpu_write(swallow_nmi, false); __this_cpu_write(last_nmi_rip, regs->ip); instrumentation_begin(); handled = nmi_handle(NMI_LOCAL, regs); __this_cpu_add(nmi_stats.normal, handled); if (handled) { /* * There are cases when a NMI handler handles multiple * events in the current NMI. One of these events may * be queued for in the next NMI. Because the event is * already handled, the next NMI will result in an unknown * NMI. Instead lets flag this for a potential NMI to * swallow. */ if (handled > 1) __this_cpu_write(swallow_nmi, true); goto out; } /* * Non-CPU-specific NMI: NMI sources can be processed on any CPU. * * Another CPU may be processing panic routines while holding * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, * and if so, call its callback directly. If there is no CPU preparing * crash dump, we simply loop here. */ while (!raw_spin_trylock(&nmi_reason_lock)) { run_crash_ipi_callback(regs); cpu_relax(); } reason = x86_platform.get_nmi_reason(); if (reason & NMI_REASON_MASK) { if (reason & NMI_REASON_SERR) pci_serr_error(reason, regs); else if (reason & NMI_REASON_IOCHK) io_check_error(reason, regs); #ifdef CONFIG_X86_32 /* * Reassert NMI in case it became active * meanwhile as it's edge-triggered: */ reassert_nmi(); #endif __this_cpu_add(nmi_stats.external, 1); raw_spin_unlock(&nmi_reason_lock); goto out; } raw_spin_unlock(&nmi_reason_lock); /* * Only one NMI can be latched at a time. To handle * this we may process multiple nmi handlers at once to * cover the case where an NMI is dropped. The downside * to this approach is we may process an NMI prematurely, * while its real NMI is sitting latched. This will cause * an unknown NMI on the next run of the NMI processing. * * We tried to flag that condition above, by setting the * swallow_nmi flag when we process more than one event. * This condition is also only present on the second half * of a back-to-back NMI, so we flag that condition too. * * If both are true, we assume we already processed this * NMI previously and we swallow it. Otherwise we reset * the logic. * * There are scenarios where we may accidentally swallow * a 'real' unknown NMI. For example, while processing * a perf NMI another perf NMI comes in along with a * 'real' unknown NMI. These two NMIs get combined into * one (as described above). When the next NMI gets * processed, it will be flagged by perf as handled, but * no one will know that there was a 'real' unknown NMI sent * also. As a result it gets swallowed. Or if the first * perf NMI returns two events handled then the second * NMI will get eaten by the logic below, again losing a * 'real' unknown NMI. But this is the best we can do * for now. */ if (b2b && __this_cpu_read(swallow_nmi)) __this_cpu_add(nmi_stats.swallow, 1); else unknown_nmi_error(reason, regs); out: instrumentation_end(); } /* * NMIs can page fault or hit breakpoints which will cause it to lose * its NMI context with the CPU when the breakpoint or page fault does an IRET. * * As a result, NMIs can nest if NMIs get unmasked due an IRET during * NMI processing. On x86_64, the asm glue protects us from nested NMIs * if the outer NMI came from kernel mode, but we can still nest if the * outer NMI came from user mode. * * To handle these nested NMIs, we have three states: * * 1) not running * 2) executing * 3) latched * * When no NMI is in progress, it is in the "not running" state. * When an NMI comes in, it goes into the "executing" state. * Normally, if another NMI is triggered, it does not interrupt * the running NMI and the HW will simply latch it so that when * the first NMI finishes, it will restart the second NMI. * (Note, the latch is binary, thus multiple NMIs triggering, * when one is running, are ignored. Only one NMI is restarted.) * * If an NMI executes an iret, another NMI can preempt it. We do not * want to allow this new NMI to run, but we want to execute it when the * first one finishes. We set the state to "latched", and the exit of * the first NMI will perform a dec_return, if the result is zero * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the * dec_return would have set the state to NMI_EXECUTING (what we want it * to be when we are running). In this case, we simply jump back to * rerun the NMI handler again, and restart the 'latched' NMI. * * No trap (breakpoint or page fault) should be hit before nmi_restart, * thus there is no race between the first check of state for NOT_RUNNING * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs * at this point. * * In case the NMI takes a page fault, we need to save off the CR2 * because the NMI could have preempted another page fault and corrupt * the CR2 that is about to be read. As nested NMIs must be restarted * and they can not take breakpoints or page faults, the update of the * CR2 must be done before converting the nmi state back to NOT_RUNNING. * Otherwise, there would be a race of another nested NMI coming in * after setting state to NOT_RUNNING but before updating the nmi_cr2. */ enum nmi_states { NMI_NOT_RUNNING = 0, NMI_EXECUTING, NMI_LATCHED, }; static DEFINE_PER_CPU(enum nmi_states, nmi_state); static DEFINE_PER_CPU(unsigned long, nmi_cr2); static DEFINE_PER_CPU(unsigned long, nmi_dr7); DEFINE_IDTENTRY_RAW(exc_nmi) { irqentry_state_t irq_state; /* * Re-enable NMIs right here when running as an SEV-ES guest. This might * cause nested NMIs, but those can be handled safely. */ sev_es_nmi_complete(); if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id())) return; if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { this_cpu_write(nmi_state, NMI_LATCHED); return; } this_cpu_write(nmi_state, NMI_EXECUTING); this_cpu_write(nmi_cr2, read_cr2()); nmi_restart: /* * Needs to happen before DR7 is accessed, because the hypervisor can * intercept DR7 reads/writes, turning those into #VC exceptions. */ sev_es_ist_enter(regs); this_cpu_write(nmi_dr7, local_db_save()); irq_state = irqentry_nmi_enter(regs); inc_irq_stat(__nmi_count); if (!ignore_nmis) default_do_nmi(regs); irqentry_nmi_exit(regs, irq_state); local_db_restore(this_cpu_read(nmi_dr7)); sev_es_ist_exit(); if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) write_cr2(this_cpu_read(nmi_cr2)); if (this_cpu_dec_return(nmi_state)) goto nmi_restart; } #if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL) DEFINE_IDTENTRY_RAW(exc_nmi_noist) { exc_nmi(regs); } #endif #if IS_MODULE(CONFIG_KVM_INTEL) EXPORT_SYMBOL_GPL(asm_exc_nmi_noist); #endif void stop_nmi(void) { ignore_nmis++; } void restart_nmi(void) { ignore_nmis--; } /* reset the back-to-back NMI logic */ void local_touch_nmi(void) { __this_cpu_write(last_nmi_rip, 0); } EXPORT_SYMBOL_GPL(local_touch_nmi); |