Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2007-2008 Paul Mackerras, IBM Corp. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/gfp.h> #include <linux/types.h> #include <linux/pagewalk.h> #include <linux/hugetlb.h> #include <linux/syscalls.h> #include <linux/pgtable.h> #include <linux/uaccess.h> /* * Free all pages allocated for subpage protection maps and pointers. * Also makes sure that the subpage_prot_table structure is * reinitialized for the next user. */ void subpage_prot_free(struct mm_struct *mm) { struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context); unsigned long i, j, addr; u32 **p; if (!spt) return; for (i = 0; i < 4; ++i) { if (spt->low_prot[i]) { free_page((unsigned long)spt->low_prot[i]); spt->low_prot[i] = NULL; } } addr = 0; for (i = 0; i < (TASK_SIZE_USER64 >> 43); ++i) { p = spt->protptrs[i]; if (!p) continue; spt->protptrs[i] = NULL; for (j = 0; j < SBP_L2_COUNT && addr < spt->maxaddr; ++j, addr += PAGE_SIZE) if (p[j]) free_page((unsigned long)p[j]); free_page((unsigned long)p); } spt->maxaddr = 0; kfree(spt); } static void hpte_flush_range(struct mm_struct *mm, unsigned long addr, int npages) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; pgd = pgd_offset(mm, addr); p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return; pud = pud_offset(p4d, addr); if (pud_none(*pud)) return; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return; pte = pte_offset_map_lock(mm, pmd, addr, &ptl); arch_enter_lazy_mmu_mode(); for (; npages > 0; --npages) { pte_update(mm, addr, pte, 0, 0, 0); addr += PAGE_SIZE; ++pte; } arch_leave_lazy_mmu_mode(); pte_unmap_unlock(pte - 1, ptl); } /* * Clear the subpage protection map for an address range, allowing * all accesses that are allowed by the pte permissions. */ static void subpage_prot_clear(unsigned long addr, unsigned long len) { struct mm_struct *mm = current->mm; struct subpage_prot_table *spt; u32 **spm, *spp; unsigned long i; size_t nw; unsigned long next, limit; mmap_write_lock(mm); spt = mm_ctx_subpage_prot(&mm->context); if (!spt) goto err_out; limit = addr + len; if (limit > spt->maxaddr) limit = spt->maxaddr; for (; addr < limit; addr = next) { next = pmd_addr_end(addr, limit); if (addr < 0x100000000UL) { spm = spt->low_prot; } else { spm = spt->protptrs[addr >> SBP_L3_SHIFT]; if (!spm) continue; } spp = spm[(addr >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; if (!spp) continue; spp += (addr >> PAGE_SHIFT) & (SBP_L1_COUNT - 1); i = (addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); nw = PTRS_PER_PTE - i; if (addr + (nw << PAGE_SHIFT) > next) nw = (next - addr) >> PAGE_SHIFT; memset(spp, 0, nw * sizeof(u32)); /* now flush any existing HPTEs for the range */ hpte_flush_range(mm, addr, nw); } err_out: mmap_write_unlock(mm); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static int subpage_walk_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; split_huge_pmd(vma, pmd, addr); return 0; } static const struct mm_walk_ops subpage_walk_ops = { .pmd_entry = subpage_walk_pmd_entry, }; static void subpage_mark_vma_nohuge(struct mm_struct *mm, unsigned long addr, unsigned long len) { struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, addr); /* * We don't try too hard, we just mark all the vma in that range * VM_NOHUGEPAGE and split them. */ for_each_vma_range(vmi, vma, addr + len) { vma->vm_flags |= VM_NOHUGEPAGE; walk_page_vma(vma, &subpage_walk_ops, NULL); } } #else static void subpage_mark_vma_nohuge(struct mm_struct *mm, unsigned long addr, unsigned long len) { return; } #endif /* * Copy in a subpage protection map for an address range. * The map has 2 bits per 4k subpage, so 32 bits per 64k page. * Each 2-bit field is 0 to allow any access, 1 to prevent writes, * 2 or 3 to prevent all accesses. * Note that the normal page protections also apply; the subpage * protection mechanism is an additional constraint, so putting 0 * in a 2-bit field won't allow writes to a page that is otherwise * write-protected. */ SYSCALL_DEFINE3(subpage_prot, unsigned long, addr, unsigned long, len, u32 __user *, map) { struct mm_struct *mm = current->mm; struct subpage_prot_table *spt; u32 **spm, *spp; unsigned long i; size_t nw; unsigned long next, limit; int err; if (radix_enabled()) return -ENOENT; /* Check parameters */ if ((addr & ~PAGE_MASK) || (len & ~PAGE_MASK) || addr >= mm->task_size || len >= mm->task_size || addr + len > mm->task_size) return -EINVAL; if (is_hugepage_only_range(mm, addr, len)) return -EINVAL; if (!map) { /* Clear out the protection map for the address range */ subpage_prot_clear(addr, len); return 0; } if (!access_ok(map, (len >> PAGE_SHIFT) * sizeof(u32))) return -EFAULT; mmap_write_lock(mm); spt = mm_ctx_subpage_prot(&mm->context); if (!spt) { /* * Allocate subpage prot table if not already done. * Do this with mmap_lock held */ spt = kzalloc(sizeof(struct subpage_prot_table), GFP_KERNEL); if (!spt) { err = -ENOMEM; goto out; } mm->context.hash_context->spt = spt; } subpage_mark_vma_nohuge(mm, addr, len); for (limit = addr + len; addr < limit; addr = next) { next = pmd_addr_end(addr, limit); err = -ENOMEM; if (addr < 0x100000000UL) { spm = spt->low_prot; } else { spm = spt->protptrs[addr >> SBP_L3_SHIFT]; if (!spm) { spm = (u32 **)get_zeroed_page(GFP_KERNEL); if (!spm) goto out; spt->protptrs[addr >> SBP_L3_SHIFT] = spm; } } spm += (addr >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1); spp = *spm; if (!spp) { spp = (u32 *)get_zeroed_page(GFP_KERNEL); if (!spp) goto out; *spm = spp; } spp += (addr >> PAGE_SHIFT) & (SBP_L1_COUNT - 1); local_irq_disable(); demote_segment_4k(mm, addr); local_irq_enable(); i = (addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); nw = PTRS_PER_PTE - i; if (addr + (nw << PAGE_SHIFT) > next) nw = (next - addr) >> PAGE_SHIFT; mmap_write_unlock(mm); if (__copy_from_user(spp, map, nw * sizeof(u32))) return -EFAULT; map += nw; mmap_write_lock(mm); /* now flush any existing HPTEs for the range */ hpte_flush_range(mm, addr, nw); } if (limit > spt->maxaddr) spt->maxaddr = limit; err = 0; out: mmap_write_unlock(mm); return err; } |