Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | // SPDX-License-Identifier: GPL-2.0-only /* * Created by: Nicolas Pitre, October 2012 * Copyright: (C) 2012-2013 Linaro Limited * * Some portions of this file were originally written by Achin Gupta * Copyright: (C) 2012 ARM Limited */ #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/errno.h> #include <linux/irqchip/arm-gic.h> #include <asm/mcpm.h> #include <asm/proc-fns.h> #include <asm/cacheflush.h> #include <asm/cputype.h> #include <asm/cp15.h> #include <linux/arm-cci.h> #include "spc.h" /* SCC conf registers */ #define RESET_CTRL 0x018 #define RESET_A15_NCORERESET(cpu) (1 << (2 + (cpu))) #define RESET_A7_NCORERESET(cpu) (1 << (16 + (cpu))) #define A15_CONF 0x400 #define A7_CONF 0x500 #define SYS_INFO 0x700 #define SPC_BASE 0xb00 static void __iomem *scc; #define TC2_CLUSTERS 2 #define TC2_MAX_CPUS_PER_CLUSTER 3 static unsigned int tc2_nr_cpus[TC2_CLUSTERS]; static int tc2_pm_cpu_powerup(unsigned int cpu, unsigned int cluster) { pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) return -EINVAL; ve_spc_set_resume_addr(cluster, cpu, __pa_symbol(mcpm_entry_point)); ve_spc_cpu_wakeup_irq(cluster, cpu, true); return 0; } static int tc2_pm_cluster_powerup(unsigned int cluster) { pr_debug("%s: cluster %u\n", __func__, cluster); if (cluster >= TC2_CLUSTERS) return -EINVAL; ve_spc_powerdown(cluster, false); return 0; } static void tc2_pm_cpu_powerdown_prepare(unsigned int cpu, unsigned int cluster) { pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER); ve_spc_cpu_wakeup_irq(cluster, cpu, true); /* * If the CPU is committed to power down, make sure * the power controller will be in charge of waking it * up upon IRQ, ie IRQ lines are cut from GIC CPU IF * to the CPU by disabling the GIC CPU IF to prevent wfi * from completing execution behind power controller back */ gic_cpu_if_down(0); } static void tc2_pm_cluster_powerdown_prepare(unsigned int cluster) { pr_debug("%s: cluster %u\n", __func__, cluster); BUG_ON(cluster >= TC2_CLUSTERS); ve_spc_powerdown(cluster, true); ve_spc_global_wakeup_irq(true); } static void tc2_pm_cpu_cache_disable(void) { v7_exit_coherency_flush(louis); } static void tc2_pm_cluster_cache_disable(void) { if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) { /* * On the Cortex-A15 we need to disable * L2 prefetching before flushing the cache. */ asm volatile( "mcr p15, 1, %0, c15, c0, 3 \n\t" "isb \n\t" "dsb " : : "r" (0x400) ); } v7_exit_coherency_flush(all); cci_disable_port_by_cpu(read_cpuid_mpidr()); } static int tc2_core_in_reset(unsigned int cpu, unsigned int cluster) { u32 mask = cluster ? RESET_A7_NCORERESET(cpu) : RESET_A15_NCORERESET(cpu); return !(readl_relaxed(scc + RESET_CTRL) & mask); } #define POLL_MSEC 10 #define TIMEOUT_MSEC 1000 static int tc2_pm_wait_for_powerdown(unsigned int cpu, unsigned int cluster) { unsigned tries; pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER); for (tries = 0; tries < TIMEOUT_MSEC / POLL_MSEC; ++tries) { pr_debug("%s(cpu=%u, cluster=%u): RESET_CTRL = 0x%08X\n", __func__, cpu, cluster, readl_relaxed(scc + RESET_CTRL)); /* * We need the CPU to reach WFI, but the power * controller may put the cluster in reset and * power it off as soon as that happens, before * we have a chance to see STANDBYWFI. * * So we need to check for both conditions: */ if (tc2_core_in_reset(cpu, cluster) || ve_spc_cpu_in_wfi(cpu, cluster)) return 0; /* success: the CPU is halted */ /* Otherwise, wait and retry: */ msleep(POLL_MSEC); } return -ETIMEDOUT; /* timeout */ } static void tc2_pm_cpu_suspend_prepare(unsigned int cpu, unsigned int cluster) { ve_spc_set_resume_addr(cluster, cpu, __pa_symbol(mcpm_entry_point)); } static void tc2_pm_cpu_is_up(unsigned int cpu, unsigned int cluster) { pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER); ve_spc_cpu_wakeup_irq(cluster, cpu, false); ve_spc_set_resume_addr(cluster, cpu, 0); } static void tc2_pm_cluster_is_up(unsigned int cluster) { pr_debug("%s: cluster %u\n", __func__, cluster); BUG_ON(cluster >= TC2_CLUSTERS); ve_spc_powerdown(cluster, false); ve_spc_global_wakeup_irq(false); } static const struct mcpm_platform_ops tc2_pm_power_ops = { .cpu_powerup = tc2_pm_cpu_powerup, .cluster_powerup = tc2_pm_cluster_powerup, .cpu_suspend_prepare = tc2_pm_cpu_suspend_prepare, .cpu_powerdown_prepare = tc2_pm_cpu_powerdown_prepare, .cluster_powerdown_prepare = tc2_pm_cluster_powerdown_prepare, .cpu_cache_disable = tc2_pm_cpu_cache_disable, .cluster_cache_disable = tc2_pm_cluster_cache_disable, .wait_for_powerdown = tc2_pm_wait_for_powerdown, .cpu_is_up = tc2_pm_cpu_is_up, .cluster_is_up = tc2_pm_cluster_is_up, }; /* * Enable cluster-level coherency, in preparation for turning on the MMU. */ static void __naked tc2_pm_power_up_setup(unsigned int affinity_level) { asm volatile (" \n" " cmp r0, #1 \n" " bxne lr \n" " b cci_enable_port_for_self "); } static int __init tc2_pm_init(void) { unsigned int mpidr, cpu, cluster; int ret, irq; u32 a15_cluster_id, a7_cluster_id, sys_info; struct device_node *np; /* * The power management-related features are hidden behind * SCC registers. We need to extract runtime information like * cluster ids and number of CPUs really available in clusters. */ np = of_find_compatible_node(NULL, NULL, "arm,vexpress-scc,v2p-ca15_a7"); scc = of_iomap(np, 0); if (!scc) return -ENODEV; a15_cluster_id = readl_relaxed(scc + A15_CONF) & 0xf; a7_cluster_id = readl_relaxed(scc + A7_CONF) & 0xf; if (a15_cluster_id >= TC2_CLUSTERS || a7_cluster_id >= TC2_CLUSTERS) return -EINVAL; sys_info = readl_relaxed(scc + SYS_INFO); tc2_nr_cpus[a15_cluster_id] = (sys_info >> 16) & 0xf; tc2_nr_cpus[a7_cluster_id] = (sys_info >> 20) & 0xf; irq = irq_of_parse_and_map(np, 0); /* * A subset of the SCC registers is also used to communicate * with the SPC (power controller). We need to be able to * drive it very early in the boot process to power up * processors, so we initialize the SPC driver here. */ ret = ve_spc_init(scc + SPC_BASE, a15_cluster_id, irq); if (ret) return ret; if (!cci_probed()) return -ENODEV; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) { pr_err("%s: boot CPU is out of bound!\n", __func__); return -EINVAL; } ret = mcpm_platform_register(&tc2_pm_power_ops); if (!ret) { mcpm_sync_init(tc2_pm_power_up_setup); /* test if we can (re)enable the CCI on our own */ BUG_ON(mcpm_loopback(tc2_pm_cluster_cache_disable) != 0); pr_info("TC2 power management initialized\n"); } return ret; } early_initcall(tc2_pm_init); |