Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 | // SPDX-License-Identifier: GPL-2.0-only /* * Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family. * * Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <media/dvb_math.h> #include <media/dvb_frontend.h> #include "dib9000.h" #include "dibx000_common.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(fmt, arg...) do { \ if (debug) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##arg); \ } while (0) #define MAX_NUMBER_OF_FRONTENDS 6 struct i2c_device { struct i2c_adapter *i2c_adap; u8 i2c_addr; u8 *i2c_read_buffer; u8 *i2c_write_buffer; }; struct dib9000_pid_ctrl { #define DIB9000_PID_FILTER_CTRL 0 #define DIB9000_PID_FILTER 1 u8 cmd; u8 id; u16 pid; u8 onoff; }; struct dib9000_state { struct i2c_device i2c; struct dibx000_i2c_master i2c_master; struct i2c_adapter tuner_adap; struct i2c_adapter component_bus; u16 revision; u8 reg_offs; enum frontend_tune_state tune_state; u32 status; struct dvb_frontend_parametersContext channel_status; u8 fe_id; #define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff u16 gpio_dir; #define DIB9000_GPIO_DEFAULT_VALUES 0x0000 u16 gpio_val; #define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff u16 gpio_pwm_pos; union { /* common for all chips */ struct { u8 mobile_mode:1; } host; struct { struct dib9000_fe_memory_map { u16 addr; u16 size; } fe_mm[18]; u8 memcmd; struct mutex mbx_if_lock; /* to protect read/write operations */ struct mutex mbx_lock; /* to protect the whole mailbox handling */ struct mutex mem_lock; /* to protect the memory accesses */ struct mutex mem_mbx_lock; /* to protect the memory-based mailbox */ #define MBX_MAX_WORDS (256 - 200 - 2) #define DIB9000_MSG_CACHE_SIZE 2 u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS]; u8 fw_is_running; } risc; } platform; union { /* common for all platforms */ struct { struct dib9000_config cfg; } d9; } chip; struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; u16 component_bus_speed; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[255]; u8 i2c_read_buffer[255]; struct mutex demod_lock; u8 get_frontend_internal; struct dib9000_pid_ctrl pid_ctrl[10]; s8 pid_ctrl_index; /* -1: empty list; -2: do not use the list */ }; static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; enum dib9000_power_mode { DIB9000_POWER_ALL = 0, DIB9000_POWER_NO, DIB9000_POWER_INTERF_ANALOG_AGC, DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD, DIB9000_POWER_INTERFACE_ONLY, }; enum dib9000_out_messages { OUT_MSG_HBM_ACK, OUT_MSG_HOST_BUF_FAIL, OUT_MSG_REQ_VERSION, OUT_MSG_BRIDGE_I2C_W, OUT_MSG_BRIDGE_I2C_R, OUT_MSG_BRIDGE_APB_W, OUT_MSG_BRIDGE_APB_R, OUT_MSG_SCAN_CHANNEL, OUT_MSG_MONIT_DEMOD, OUT_MSG_CONF_GPIO, OUT_MSG_DEBUG_HELP, OUT_MSG_SUBBAND_SEL, OUT_MSG_ENABLE_TIME_SLICE, OUT_MSG_FE_FW_DL, OUT_MSG_FE_CHANNEL_SEARCH, OUT_MSG_FE_CHANNEL_TUNE, OUT_MSG_FE_SLEEP, OUT_MSG_FE_SYNC, OUT_MSG_CTL_MONIT, OUT_MSG_CONF_SVC, OUT_MSG_SET_HBM, OUT_MSG_INIT_DEMOD, OUT_MSG_ENABLE_DIVERSITY, OUT_MSG_SET_OUTPUT_MODE, OUT_MSG_SET_PRIORITARY_CHANNEL, OUT_MSG_ACK_FRG, OUT_MSG_INIT_PMU, }; enum dib9000_in_messages { IN_MSG_DATA, IN_MSG_FRAME_INFO, IN_MSG_CTL_MONIT, IN_MSG_ACK_FREE_ITEM, IN_MSG_DEBUG_BUF, IN_MSG_MPE_MONITOR, IN_MSG_RAWTS_MONITOR, IN_MSG_END_BRIDGE_I2C_RW, IN_MSG_END_BRIDGE_APB_RW, IN_MSG_VERSION, IN_MSG_END_OF_SCAN, IN_MSG_MONIT_DEMOD, IN_MSG_ERROR, IN_MSG_FE_FW_DL_DONE, IN_MSG_EVENT, IN_MSG_ACK_CHANGE_SVC, IN_MSG_HBM_PROF, }; /* memory_access requests */ #define FE_MM_W_CHANNEL 0 #define FE_MM_W_FE_INFO 1 #define FE_MM_RW_SYNC 2 #define FE_SYNC_CHANNEL 1 #define FE_SYNC_W_GENERIC_MONIT 2 #define FE_SYNC_COMPONENT_ACCESS 3 #define FE_MM_R_CHANNEL_SEARCH_STATE 3 #define FE_MM_R_CHANNEL_UNION_CONTEXT 4 #define FE_MM_R_FE_INFO 5 #define FE_MM_R_FE_MONITOR 6 #define FE_MM_W_CHANNEL_HEAD 7 #define FE_MM_W_CHANNEL_UNION 8 #define FE_MM_W_CHANNEL_CONTEXT 9 #define FE_MM_R_CHANNEL_UNION 10 #define FE_MM_R_CHANNEL_CONTEXT 11 #define FE_MM_R_CHANNEL_TUNE_STATE 12 #define FE_MM_R_GENERIC_MONITORING_SIZE 13 #define FE_MM_W_GENERIC_MONITORING 14 #define FE_MM_R_GENERIC_MONITORING 15 #define FE_MM_W_COMPONENT_ACCESS 16 #define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17 static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len); static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len); static u16 to_fw_output_mode(u16 mode) { switch (mode) { case OUTMODE_HIGH_Z: return 0; case OUTMODE_MPEG2_PAR_GATED_CLK: return 4; case OUTMODE_MPEG2_PAR_CONT_CLK: return 8; case OUTMODE_MPEG2_SERIAL: return 16; case OUTMODE_DIVERSITY: return 128; case OUTMODE_MPEG2_FIFO: return 2; case OUTMODE_ANALOG_ADC: return 1; default: return 0; } } static int dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 *b, u32 len, u16 attribute) { u32 chunk_size = 126; u32 l; int ret; if (state->platform.risc.fw_is_running && (reg < 1024)) return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len); memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 2; state->msg[1].addr = state->i2c.i2c_addr >> 1; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = b; state->msg[1].len = len; state->i2c_write_buffer[0] = reg >> 8; state->i2c_write_buffer[1] = reg & 0xff; if (attribute & DATA_BUS_ACCESS_MODE_8BIT) state->i2c_write_buffer[0] |= (1 << 5); if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) state->i2c_write_buffer[0] |= (1 << 4); do { l = min(len, chunk_size); state->msg[1].len = l; state->msg[1].buf = b; ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0; if (ret != 0) { dprintk("i2c read error on %d\n", reg); return -EREMOTEIO; } b += l; len -= l; if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) reg += l / 2; } while ((ret == 0) && len); return 0; } static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg) { struct i2c_msg msg[2] = { {.addr = i2c->i2c_addr >> 1, .flags = 0, .buf = i2c->i2c_write_buffer, .len = 2}, {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, .buf = i2c->i2c_read_buffer, .len = 2}, }; i2c->i2c_write_buffer[0] = reg >> 8; i2c->i2c_write_buffer[1] = reg & 0xff; if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) { dprintk("read register %x error\n", reg); return 0; } return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1]; } static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg) { if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0) return 0; return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; } static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute) { if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, attribute) != 0) return 0; return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; } #define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) static int dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 *buf, u32 len, u16 attribute) { u32 chunk_size = 126; u32 l; int ret; if (state->platform.risc.fw_is_running && (reg < 1024)) { if (dib9000_risc_apb_access_write (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0) return -EINVAL; return 0; } memset(&state->msg[0], 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = len + 2; state->i2c_write_buffer[0] = (reg >> 8) & 0xff; state->i2c_write_buffer[1] = (reg) & 0xff; if (attribute & DATA_BUS_ACCESS_MODE_8BIT) state->i2c_write_buffer[0] |= (1 << 5); if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) state->i2c_write_buffer[0] |= (1 << 4); do { l = min(len, chunk_size); state->msg[0].len = l + 2; memcpy(&state->i2c_write_buffer[2], buf, l); ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0; buf += l; len -= l; if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) reg += l / 2; } while ((ret == 0) && len); return ret; } static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) { struct i2c_msg msg = { .addr = i2c->i2c_addr >> 1, .flags = 0, .buf = i2c->i2c_write_buffer, .len = 4 }; i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff; i2c->i2c_write_buffer[1] = reg & 0xff; i2c->i2c_write_buffer[2] = (val >> 8) & 0xff; i2c->i2c_write_buffer[3] = val & 0xff; return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; } static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val) { u8 b[2] = { val >> 8, val & 0xff }; return dib9000_write16_attr(state, reg, b, 2, 0); } static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute) { u8 b[2] = { val >> 8, val & 0xff }; return dib9000_write16_attr(state, reg, b, 2, attribute); } #define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0) #define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) #define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute)) #define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0) #define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0) #define MAC_IRQ (1 << 1) #define IRQ_POL_MSK (1 << 4) #define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) #define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading) { u8 b[14] = { 0 }; /* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */ /* b[0] = 0 << 7; */ b[1] = 1; /* b[2] = 0; */ /* b[3] = 0; */ b[4] = (u8) (addr >> 8); b[5] = (u8) (addr & 0xff); /* b[10] = 0; */ /* b[11] = 0; */ b[12] = (u8) (addr >> 8); b[13] = (u8) (addr & 0xff); addr += len; /* b[6] = 0; */ /* b[7] = 0; */ b[8] = (u8) (addr >> 8); b[9] = (u8) (addr & 0xff); dib9000_write(state, 1056, b, 14); if (reading) dib9000_write_word(state, 1056, (1 << 15) | 1); state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */ } static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd) { struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f]; /* decide whether we need to "refresh" the memory controller */ if (state->platform.risc.memcmd == cmd && /* same command */ !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */ return; dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80); state->platform.risc.memcmd = cmd; } static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len) { if (!state->platform.risc.fw_is_running) return -EIO; if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } dib9000_risc_mem_setup(state, cmd | 0x80); dib9000_risc_mem_read_chunks(state, b, len); mutex_unlock(&state->platform.risc.mem_lock); return 0; } static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b) { struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd]; if (!state->platform.risc.fw_is_running) return -EIO; if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } dib9000_risc_mem_setup(state, cmd); dib9000_risc_mem_write_chunks(state, b, m->size); mutex_unlock(&state->platform.risc.mem_lock); return 0; } static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len) { u16 offs; if (risc_id == 1) offs = 16; else offs = 0; /* config crtl reg */ dib9000_write_word(state, 1024 + offs, 0x000f); dib9000_write_word(state, 1025 + offs, 0); dib9000_write_word(state, 1031 + offs, key); dprintk("going to download %dB of microcode\n", len); if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) { dprintk("error while downloading microcode for RISC %c\n", 'A' + risc_id); return -EIO; } dprintk("Microcode for RISC %c loaded\n", 'A' + risc_id); return 0; } static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id) { u16 mbox_offs; u16 reset_reg; u16 tries = 1000; if (risc_id == 1) mbox_offs = 16; else mbox_offs = 0; /* Reset mailbox */ dib9000_write_word(state, 1027 + mbox_offs, 0x8000); /* Read reset status */ do { reset_reg = dib9000_read_word(state, 1027 + mbox_offs); msleep(100); } while ((reset_reg & 0x8000) && --tries); if (reset_reg & 0x8000) { dprintk("MBX: init ERROR, no response from RISC %c\n", 'A' + risc_id); return -EIO; } dprintk("MBX: initialized\n"); return 0; } #define MAX_MAILBOX_TRY 100 static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr) { u8 *d, b[2]; u16 tmp; u16 size; u32 i; int ret = 0; if (!state->platform.risc.fw_is_running) return -EINVAL; if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } tmp = MAX_MAILBOX_TRY; do { size = dib9000_read_word_attr(state, 1043, attr) & 0xff; if ((size + len + 1) > MBX_MAX_WORDS && --tmp) { dprintk("MBX: RISC mbx full, retrying\n"); msleep(100); } else break; } while (1); /*dprintk( "MBX: size: %d\n", size); */ if (tmp == 0) { ret = -EINVAL; goto out; } #ifdef DUMP_MSG dprintk("--> %02x %d %*ph\n", id, len + 1, len, data); #endif /* byte-order conversion - works on big (where it is not necessary) or little endian */ d = (u8 *) data; for (i = 0; i < len; i++) { tmp = data[i]; *d++ = tmp >> 8; *d++ = tmp & 0xff; } /* write msg */ b[0] = id; b[1] = len + 1; if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) { ret = -EIO; goto out; } /* update register nb_mes_in_RX */ ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr); out: mutex_unlock(&state->platform.risc.mbx_if_lock); return ret; } static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr) { #ifdef DUMP_MSG u16 *d = data; #endif u16 tmp, i; u8 size; u8 mc_base; if (!state->platform.risc.fw_is_running) return 0; if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { dprintk("could not get the lock\n"); return 0; } if (risc_id == 1) mc_base = 16; else mc_base = 0; /* Length and type in the first word */ *data = dib9000_read_word_attr(state, 1029 + mc_base, attr); size = *data & 0xff; if (size <= MBX_MAX_WORDS) { data++; size--; /* Initial word already read */ dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr); /* to word conversion */ for (i = 0; i < size; i++) { tmp = *data; *data = (tmp >> 8) | (tmp << 8); data++; } #ifdef DUMP_MSG dprintk("<--\n"); for (i = 0; i < size + 1; i++) dprintk("%04x\n", d[i]); dprintk("\n"); #endif } else { dprintk("MBX: message is too big for message cache (%d), flushing message\n", size); size--; /* Initial word already read */ while (size--) dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr); } /* Update register nb_mes_in_TX */ dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr); mutex_unlock(&state->platform.risc.mbx_if_lock); return size + 1; } static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size) { u32 ts = data[1] << 16 | data[0]; char *b = (char *)&data[2]; b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */ if (*b == '~') { b++; dprintk("%s\n", b); } else dprintk("RISC%d: %d.%04d %s\n", state->fe_id, ts / 10000, ts % 10000, *b ? b : "<empty>"); return 1; } static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr) { int i; u8 size; u16 *block; /* find a free slot */ for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { block = state->platform.risc.message_cache[i]; if (*block == 0) { size = dib9000_mbx_read(state, block, 1, attr); /* dprintk( "MBX: fetched %04x message to cache\n", *block); */ switch (*block >> 8) { case IN_MSG_DEBUG_BUF: dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */ *block = 0; /* free the block */ break; #if 0 case IN_MSG_DATA: /* FE-TRACE */ dib9000_risc_data_process(state, block + 1, size); *block = 0; break; #endif default: break; } return 1; } } dprintk("MBX: no free cache-slot found for new message...\n"); return -1; } static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr) { if (risc_id == 0) return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */ else return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */ } static int dib9000_mbx_process(struct dib9000_state *state, u16 attr) { int ret = 0; if (!state->platform.risc.fw_is_running) return -1; if (mutex_lock_interruptible(&state->platform.risc.mbx_lock) < 0) { dprintk("could not get the lock\n"); return -1; } if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */ ret = dib9000_mbx_fetch_to_cache(state, attr); dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */ /* if (tmp) */ /* dprintk( "cleared IRQ: %x\n", tmp); */ mutex_unlock(&state->platform.risc.mbx_lock); return ret; } static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr) { u8 i; u16 *block; u16 timeout = 30; *msg = 0; do { /* dib9000_mbx_get_from_cache(); */ for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { block = state->platform.risc.message_cache[i]; if ((*block >> 8) == id) { *size = (*block & 0xff) - 1; memcpy(msg, block + 1, (*size) * 2); *block = 0; /* free the block */ i = 0; /* signal that we found a message */ break; } } if (i == 0) break; if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */ return -1; } while (--timeout); if (timeout == 0) { dprintk("waiting for message %d timed out\n", id); return -1; } return i == 0; } static int dib9000_risc_check_version(struct dib9000_state *state) { u8 r[4]; u8 size; u16 fw_version = 0; if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0) return -EIO; if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0) return -EIO; fw_version = (r[0] << 8) | r[1]; dprintk("RISC: ver: %d.%02d (IC: %d)\n", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]); if ((fw_version >> 10) != 7) return -EINVAL; switch (fw_version & 0x3ff) { case 11: case 12: case 14: case 15: case 16: case 17: break; default: dprintk("RISC: invalid firmware version"); return -EINVAL; } dprintk("RISC: valid firmware version"); return 0; } static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB) { /* Reconfig pool mac ram */ dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */ dib9000_write_word(state, 1226, 0x05); /* Toggles IP crypto to Host APB interface. */ dib9000_write_word(state, 1542, 1); /* Set jump and no jump in the dma box */ dib9000_write_word(state, 1074, 0); dib9000_write_word(state, 1075, 0); /* Set MAC as APB Master. */ dib9000_write_word(state, 1237, 0); /* Reset the RISCs */ if (codeA != NULL) dib9000_write_word(state, 1024, 2); else dib9000_write_word(state, 1024, 15); if (codeB != NULL) dib9000_write_word(state, 1040, 2); if (codeA != NULL) dib9000_firmware_download(state, 0, 0x1234, codeA, lenA); if (codeB != NULL) dib9000_firmware_download(state, 1, 0x1234, codeB, lenB); /* Run the RISCs */ if (codeA != NULL) dib9000_write_word(state, 1024, 0); if (codeB != NULL) dib9000_write_word(state, 1040, 0); if (codeA != NULL) if (dib9000_mbx_host_init(state, 0) != 0) return -EIO; if (codeB != NULL) if (dib9000_mbx_host_init(state, 1) != 0) return -EIO; msleep(100); state->platform.risc.fw_is_running = 1; if (dib9000_risc_check_version(state) != 0) return -EINVAL; state->platform.risc.memcmd = 0xff; return 0; } static u16 dib9000_identify(struct i2c_device *client) { u16 value; value = dib9000_i2c_read16(client, 896); if (value != 0x01b3) { dprintk("wrong Vendor ID (0x%x)\n", value); return 0; } value = dib9000_i2c_read16(client, 897); if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) { dprintk("wrong Device ID (0x%x)\n", value); return 0; } /* protect this driver to be used with 7000PC */ if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) { dprintk("this driver does not work with DiB7000PC\n"); return 0; } switch (value) { case 0x4000: dprintk("found DiB7000MA/PA/MB/PB\n"); break; case 0x4001: dprintk("found DiB7000HC\n"); break; case 0x4002: dprintk("found DiB7000MC\n"); break; case 0x4003: dprintk("found DiB9000A\n"); break; case 0x4004: dprintk("found DiB9000H\n"); break; case 0x4005: dprintk("found DiB9000M\n"); break; } return value; } static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode) { /* by default everything is going to be powered off */ u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906; u8 offset; if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005) offset = 1; else offset = 0; reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */ /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB9000_POWER_ALL: reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000; break; /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); break; case DIB9000_POWER_INTERF_ANALOG_AGC: reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); reg_906 &= ~((1 << 0)); break; case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 &= ~((1 << 0)); break; case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD: reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 &= ~((1 << 0)); break; default: case DIB9000_POWER_NO: break; } /* always power down unused parts */ if (!state->platform.host.mobile_mode) reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); /* P_sdio_select_clk = 0 on MC and after */ if (state->revision != 0x4000) reg_906 <<= 1; dib9000_write_word(state, 903 + offset, reg_903); dib9000_write_word(state, 904 + offset, reg_904); dib9000_write_word(state, 905 + offset, reg_905); dib9000_write_word(state, 906 + offset, reg_906); } static int dib9000_fw_reset(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; dib9000_write_word(state, 1817, 0x0003); dib9000_write_word(state, 1227, 1); dib9000_write_word(state, 1227, 0); switch ((state->revision = dib9000_identify(&state->i2c))) { case 0x4003: case 0x4004: case 0x4005: state->reg_offs = 1; break; default: return -EINVAL; } /* reset the i2c-master to use the host interface */ dibx000_reset_i2c_master(&state->i2c_master); dib9000_set_power_mode(state, DIB9000_POWER_ALL); /* unforce divstr regardless whether i2c enumeration was done or not */ dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1)); dib9000_write_word(state, 1796, 0); dib9000_write_word(state, 1805, 0x805); /* restart all parts */ dib9000_write_word(state, 898, 0xffff); dib9000_write_word(state, 899, 0xffff); dib9000_write_word(state, 900, 0x0001); dib9000_write_word(state, 901, 0xff19); dib9000_write_word(state, 902, 0x003c); dib9000_write_word(state, 898, 0); dib9000_write_word(state, 899, 0); dib9000_write_word(state, 900, 0); dib9000_write_word(state, 901, 0); dib9000_write_word(state, 902, 0); dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives); dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY); return 0; } static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len) { u16 mb[10]; u8 i, s; if (address >= 1024 || !state->platform.risc.fw_is_running) return -EINVAL; /* dprintk( "APB access through rd fw %d %x\n", address, attribute); */ mb[0] = (u16) address; mb[1] = len / 2; dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute); switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) { case 1: s--; for (i = 0; i < s; i++) { b[i * 2] = (mb[i + 1] >> 8) & 0xff; b[i * 2 + 1] = (mb[i + 1]) & 0xff; } return 0; default: return -EIO; } return -EIO; } static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len) { u16 mb[10]; u8 s, i; if (address >= 1024 || !state->platform.risc.fw_is_running) return -EINVAL; if (len > 18) return -EINVAL; /* dprintk( "APB access through wr fw %d %x\n", address, attribute); */ mb[0] = (u16)address; for (i = 0; i + 1 < len; i += 2) mb[1 + i / 2] = b[i] << 8 | b[i + 1]; if (len & 1) mb[1 + len / 2] = b[len - 1] << 8; dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, (3 + len) / 2, attribute); return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL; } static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i) { u8 index_loop = 10; if (!state->platform.risc.fw_is_running) return 0; dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i); do { dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1); } while (state->i2c_read_buffer[0] && index_loop--); if (index_loop > 0) return 0; return -EIO; } static int dib9000_fw_init(struct dib9000_state *state) { struct dibGPIOFunction *f; u16 b[40] = { 0 }; u8 i; u8 size; if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0) return -EIO; /* initialize the firmware */ for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) { f = &state->chip.d9.cfg.gpio_function[i]; if (f->mask) { switch (f->function) { case BOARD_GPIO_FUNCTION_COMPONENT_ON: b[0] = (u16) f->mask; b[1] = (u16) f->direction; b[2] = (u16) f->value; break; case BOARD_GPIO_FUNCTION_COMPONENT_OFF: b[3] = (u16) f->mask; b[4] = (u16) f->direction; b[5] = (u16) f->value; break; } } } if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0) return -EIO; /* subband */ b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */ for (i = 0; i < state->chip.d9.cfg.subband.size; i++) { b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz; b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask; b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction; b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value; } b[1 + i * 4] = 0; /* fe_id */ if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0) return -EIO; /* 0 - id, 1 - no_of_frontends */ b[0] = (0 << 8) | 1; /* 0 = i2c-address demod, 0 = tuner */ b[1] = (0 << 8) | (0); b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff); b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff); b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff); b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff); b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff); b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff); b[29] = state->chip.d9.cfg.if_drives; if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0) return -EIO; if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0) return -EIO; if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0) return -EIO; if (size > ARRAY_SIZE(b)) { dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, (int)ARRAY_SIZE(b)); return -EINVAL; } for (i = 0; i < size; i += 2) { state->platform.risc.fe_mm[i / 2].addr = b[i + 0]; state->platform.risc.fe_mm[i / 2].size = b[i + 1]; } return 0; } static void dib9000_fw_set_channel_head(struct dib9000_state *state) { u8 b[9]; u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000; if (state->fe_id % 2) freq += 101; b[0] = (u8) ((freq >> 0) & 0xff); b[1] = (u8) ((freq >> 8) & 0xff); b[2] = (u8) ((freq >> 16) & 0xff); b[3] = (u8) ((freq >> 24) & 0xff); b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff); b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff); b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff); b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff); b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */ if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT) b[8] |= 1; dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b); } static int dib9000_fw_get_channel(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; struct dibDVBTChannel { s8 spectrum_inversion; s8 nfft; s8 guard; s8 constellation; s8 hrch; s8 alpha; s8 code_rate_hp; s8 code_rate_lp; s8 select_hp; s8 intlv_native; }; struct dibDVBTChannel *ch; int ret = 0; if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, state->i2c_read_buffer, sizeof(struct dibDVBTChannel)); ch = (struct dibDVBTChannel *)state->i2c_read_buffer; switch (ch->spectrum_inversion & 0x7) { case 1: state->fe[0]->dtv_property_cache.inversion = INVERSION_ON; break; case 0: state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF; break; default: case -1: state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO; break; } switch (ch->nfft) { case 0: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K; break; case 2: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K; break; case 1: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; break; default: case -1: state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO; break; } switch (ch->guard) { case 0: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32; break; case 1: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16; break; case 2: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; break; case 3: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4; break; default: case -1: state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO; break; } switch (ch->constellation) { case 2: state->fe[0]->dtv_property_cache.modulation = QAM_64; break; case 1: state->fe[0]->dtv_property_cache.modulation = QAM_16; break; case 0: state->fe[0]->dtv_property_cache.modulation = QPSK; break; default: case -1: state->fe[0]->dtv_property_cache.modulation = QAM_AUTO; break; } switch (ch->hrch) { case 0: state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE; break; case 1: state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1; break; default: case -1: state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO; break; } switch (ch->code_rate_hp) { case 1: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2; break; case 2: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3; break; case 3: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4; break; case 5: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6; break; case 7: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8; break; default: case -1: state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO; break; } switch (ch->code_rate_lp) { case 1: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2; break; case 2: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3; break; case 3: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4; break; case 5: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6; break; case 7: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8; break; default: case -1: state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO; break; } error: mutex_unlock(&state->platform.risc.mem_mbx_lock); return ret; } static int dib9000_fw_set_channel_union(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; struct dibDVBTChannel { s8 spectrum_inversion; s8 nfft; s8 guard; s8 constellation; s8 hrch; s8 alpha; s8 code_rate_hp; s8 code_rate_lp; s8 select_hp; s8 intlv_native; }; struct dibDVBTChannel ch; switch (state->fe[0]->dtv_property_cache.inversion) { case INVERSION_ON: ch.spectrum_inversion = 1; break; case INVERSION_OFF: ch.spectrum_inversion = 0; break; default: case INVERSION_AUTO: ch.spectrum_inversion = -1; break; } switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_2K: ch.nfft = 0; break; case TRANSMISSION_MODE_4K: ch.nfft = 2; break; case TRANSMISSION_MODE_8K: ch.nfft = 1; break; default: case TRANSMISSION_MODE_AUTO: ch.nfft = 1; break; } switch (state->fe[0]->dtv_property_cache.guard_interval) { case GUARD_INTERVAL_1_32: ch.guard = 0; break; case GUARD_INTERVAL_1_16: ch.guard = 1; break; case GUARD_INTERVAL_1_8: ch.guard = 2; break; case GUARD_INTERVAL_1_4: ch.guard = 3; break; default: case GUARD_INTERVAL_AUTO: ch.guard = -1; break; } switch (state->fe[0]->dtv_property_cache.modulation) { case QAM_64: ch.constellation = 2; break; case QAM_16: ch.constellation = 1; break; case QPSK: ch.constellation = 0; break; default: case QAM_AUTO: ch.constellation = -1; break; } switch (state->fe[0]->dtv_property_cache.hierarchy) { case HIERARCHY_NONE: ch.hrch = 0; break; case HIERARCHY_1: case HIERARCHY_2: case HIERARCHY_4: ch.hrch = 1; break; default: case HIERARCHY_AUTO: ch.hrch = -1; break; } ch.alpha = 1; switch (state->fe[0]->dtv_property_cache.code_rate_HP) { case FEC_1_2: ch.code_rate_hp = 1; break; case FEC_2_3: ch.code_rate_hp = 2; break; case FEC_3_4: ch.code_rate_hp = 3; break; case FEC_5_6: ch.code_rate_hp = 5; break; case FEC_7_8: ch.code_rate_hp = 7; break; default: case FEC_AUTO: ch.code_rate_hp = -1; break; } switch (state->fe[0]->dtv_property_cache.code_rate_LP) { case FEC_1_2: ch.code_rate_lp = 1; break; case FEC_2_3: ch.code_rate_lp = 2; break; case FEC_3_4: ch.code_rate_lp = 3; break; case FEC_5_6: ch.code_rate_lp = 5; break; case FEC_7_8: ch.code_rate_lp = 7; break; default: case FEC_AUTO: ch.code_rate_lp = -1; break; } ch.select_hp = 1; ch.intlv_native = 1; dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch); return 0; } static int dib9000_fw_tune(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN; s8 i; switch (state->tune_state) { case CT_DEMOD_START: dib9000_fw_set_channel_head(state); /* write the channel context - a channel is initialized to 0, so it is OK */ dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info); dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info); if (search) dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0); else { dib9000_fw_set_channel_union(fe); dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0); } state->tune_state = CT_DEMOD_STEP_1; break; case CT_DEMOD_STEP_1: if (search) dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1); else dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1); i = (s8)state->i2c_read_buffer[0]; switch (i) { /* something happened */ case 0: break; case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */ if (search) state->status = FE_STATUS_DEMOD_SUCCESS; else { state->tune_state = CT_DEMOD_STOP; state->status = FE_STATUS_LOCKED; } break; default: state->status = FE_STATUS_TUNE_FAILED; state->tune_state = CT_DEMOD_STOP; break; } break; default: ret = FE_CALLBACK_TIME_NEVER; break; } return ret; } static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff) { struct dib9000_state *state = fe->demodulator_priv; u16 mode = (u16) onoff; return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1); } static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode) { struct dib9000_state *state = fe->demodulator_priv; u16 outreg, smo_mode; dprintk("setting output mode for demod %p to %d\n", fe, mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ break; case OUTMODE_DIVERSITY: outreg = (1 << 10) | (4 << 6); /* 0x0500 */ break; case OUTMODE_MPEG2_FIFO: outreg = (1 << 10) | (5 << 6); break; case OUTMODE_HIGH_Z: outreg = 0; break; default: dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->fe[0]); return -EINVAL; } dib9000_write_word(state, 1795, outreg); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: case OUTMODE_MPEG2_PAR_CONT_CLK: case OUTMODE_MPEG2_SERIAL: case OUTMODE_MPEG2_FIFO: smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1); if (state->chip.d9.cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); dib9000_write_word(state, 295, smo_mode); break; } outreg = to_fw_output_mode(mode); return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1); } static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib9000_state *state = i2c_get_adapdata(i2c_adap); u16 i, len, t, index_msg; for (index_msg = 0; index_msg < num; index_msg++) { if (msg[index_msg].flags & I2C_M_RD) { /* read */ len = msg[index_msg].len; if (len > 16) len = 16; if (dib9000_read_word(state, 790) != 0) dprintk("TunerITF: read busy\n"); dib9000_write_word(state, 784, (u16) (msg[index_msg].addr)); dib9000_write_word(state, 787, (len / 2) - 1); dib9000_write_word(state, 786, 1); /* start read */ i = 1000; while (dib9000_read_word(state, 790) != (len / 2) && i) i--; if (i == 0) dprintk("TunerITF: read failed\n"); for (i = 0; i < len; i += 2) { t = dib9000_read_word(state, 785); msg[index_msg].buf[i] = (t >> 8) & 0xff; msg[index_msg].buf[i + 1] = (t) & 0xff; } if (dib9000_read_word(state, 790) != 0) dprintk("TunerITF: read more data than expected\n"); } else { i = 1000; while (dib9000_read_word(state, 789) && i) i--; if (i == 0) dprintk("TunerITF: write busy\n"); len = msg[index_msg].len; if (len > 16) len = 16; for (i = 0; i < len; i += 2) dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]); dib9000_write_word(state, 784, (u16) msg[index_msg].addr); dib9000_write_word(state, 787, (len / 2) - 1); dib9000_write_word(state, 786, 0); /* start write */ i = 1000; while (dib9000_read_word(state, 791) > 0 && i) i--; if (i == 0) dprintk("TunerITF: write failed\n"); } } return num; } int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed) { struct dib9000_state *state = fe->demodulator_priv; state->component_bus_speed = speed; return 0; } EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed); static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib9000_state *state = i2c_get_adapdata(i2c_adap); u8 type = 0; /* I2C */ u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4; u16 scl = state->component_bus_speed; /* SCL frequency */ struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER]; u8 p[13] = { 0 }; p[0] = type; p[1] = port; p[2] = msg[0].addr << 1; p[3] = (u8) scl & 0xff; /* scl */ p[4] = (u8) (scl >> 8); p[7] = 0; p[8] = 0; p[9] = (u8) (msg[0].len); p[10] = (u8) (msg[0].len >> 8); if ((num > 1) && (msg[1].flags & I2C_M_RD)) { p[11] = (u8) (msg[1].len); p[12] = (u8) (msg[1].len >> 8); } else { p[11] = 0; p[12] = 0; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock\n"); return 0; } dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p); { /* write-part */ dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0); dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len); } /* do the transaction */ if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); return 0; } /* read back any possible result */ if ((num > 1) && (msg[1].flags & I2C_M_RD)) dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len); mutex_unlock(&state->platform.risc.mem_mbx_lock); return num; } static u32 dib9000_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static const struct i2c_algorithm dib9000_tuner_algo = { .master_xfer = dib9000_tuner_xfer, .functionality = dib9000_i2c_func, }; static const struct i2c_algorithm dib9000_component_bus_algo = { .master_xfer = dib9000_fw_component_bus_xfer, .functionality = dib9000_i2c_func, }; struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe) { struct dib9000_state *st = fe->demodulator_priv; return &st->tuner_adap; } EXPORT_SYMBOL(dib9000_get_tuner_interface); struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe) { struct dib9000_state *st = fe->demodulator_priv; return &st->component_bus; } EXPORT_SYMBOL(dib9000_get_component_bus_interface); struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) { struct dib9000_state *st = fe->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } EXPORT_SYMBOL(dib9000_get_i2c_master); int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c) { struct dib9000_state *st = fe->demodulator_priv; st->i2c.i2c_adap = i2c; return 0; } EXPORT_SYMBOL(dib9000_set_i2c_adapter); static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val) { st->gpio_dir = dib9000_read_word(st, 773); st->gpio_dir &= ~(1 << num); /* reset the direction bit */ st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ dib9000_write_word(st, 773, st->gpio_dir); st->gpio_val = dib9000_read_word(st, 774); st->gpio_val &= ~(1 << num); /* reset the direction bit */ st->gpio_val |= (val & 0x01) << num; /* set the new value */ dib9000_write_word(st, 774, st->gpio_val); dprintk("gpio dir: %04x: gpio val: %04x\n", st->gpio_dir, st->gpio_val); return 0; } int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) { struct dib9000_state *state = fe->demodulator_priv; return dib9000_cfg_gpio(state, num, dir, val); } EXPORT_SYMBOL(dib9000_set_gpio); int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) { struct dib9000_state *state = fe->demodulator_priv; u16 val; int ret; if ((state->pid_ctrl_index != -2) && (state->pid_ctrl_index < 9)) { /* postpone the pid filtering cmd */ dprintk("pid filter cmd postpone\n"); state->pid_ctrl_index++; state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER_CTRL; state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; return 0; } if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } val = dib9000_read_word(state, 294 + 1) & 0xffef; val |= (onoff & 0x1) << 4; dprintk("PID filter enabled %d\n", onoff); ret = dib9000_write_word(state, 294 + 1, val); mutex_unlock(&state->demod_lock); return ret; } EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl); int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) { struct dib9000_state *state = fe->demodulator_priv; int ret; if (state->pid_ctrl_index != -2) { /* postpone the pid filtering cmd */ dprintk("pid filter postpone\n"); if (state->pid_ctrl_index < 9) { state->pid_ctrl_index++; state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER; state->pid_ctrl[state->pid_ctrl_index].id = id; state->pid_ctrl[state->pid_ctrl_index].pid = pid; state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; } else dprintk("can not add any more pid ctrl cmd\n"); return 0; } if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff); ret = dib9000_write_word(state, 300 + 1 + id, onoff ? (1 << 13) | pid : 0); mutex_unlock(&state->demod_lock); return ret; } EXPORT_SYMBOL(dib9000_fw_pid_filter); int dib9000_firmware_post_pll_init(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; return dib9000_fw_init(state); } EXPORT_SYMBOL(dib9000_firmware_post_pll_init); static void dib9000_release(struct dvb_frontend *demod) { struct dib9000_state *st = demod->demodulator_priv; u8 index_frontend; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) dvb_frontend_detach(st->fe[index_frontend]); dibx000_exit_i2c_master(&st->i2c_master); i2c_del_adapter(&st->tuner_adap); i2c_del_adapter(&st->component_bus); kfree(st->fe[0]); kfree(st); } static int dib9000_wakeup(struct dvb_frontend *fe) { return 0; } static int dib9000_sleep(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); if (ret < 0) goto error; } ret = dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0); error: mutex_unlock(&state->demod_lock); return ret; } static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static int dib9000_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend, sub_index_frontend; enum fe_status stat; int ret = 0; if (state->get_frontend_internal == 0) { if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } } for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); if (stat & FE_HAS_SYNC) { dprintk("TPS lock on the slave%i\n", index_frontend); /* synchronize the cache with the other frontends */ state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c); for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { if (sub_index_frontend != index_frontend) { state->fe[sub_index_frontend]->dtv_property_cache.modulation = state->fe[index_frontend]->dtv_property_cache.modulation; state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = state->fe[index_frontend]->dtv_property_cache.hierarchy; state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = state->fe[index_frontend]->dtv_property_cache.code_rate_HP; state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = state->fe[index_frontend]->dtv_property_cache.code_rate_LP; state->fe[sub_index_frontend]->dtv_property_cache.rolloff = state->fe[index_frontend]->dtv_property_cache.rolloff; } } ret = 0; goto return_value; } } /* get the channel from master chip */ ret = dib9000_fw_get_channel(fe); if (ret != 0) goto return_value; /* synchronize the cache with the other frontends */ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion; state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode; state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval; state->fe[index_frontend]->dtv_property_cache.modulation = c->modulation; state->fe[index_frontend]->dtv_property_cache.hierarchy = c->hierarchy; state->fe[index_frontend]->dtv_property_cache.code_rate_HP = c->code_rate_HP; state->fe[index_frontend]->dtv_property_cache.code_rate_LP = c->code_rate_LP; state->fe[index_frontend]->dtv_property_cache.rolloff = c->rolloff; } ret = 0; return_value: if (state->get_frontend_internal == 0) mutex_unlock(&state->demod_lock); return ret; } static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) { struct dib9000_state *state = fe->demodulator_priv; state->tune_state = tune_state; if (tune_state == CT_DEMOD_START) state->status = FE_STATUS_TUNE_PENDING; return 0; } static u32 dib9000_get_status(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; return state->status; } static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status) { struct dib9000_state *state = fe->demodulator_priv; memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext)); return 0; } static int dib9000_set_frontend(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; int sleep_time, sleep_time_slave; u32 frontend_status; u8 nbr_pending, exit_condition, index_frontend, index_frontend_success; struct dvb_frontend_parametersContext channel_status; /* check that the correct parameters are set */ if (state->fe[0]->dtv_property_cache.frequency == 0) { dprintk("dib9000: must specify frequency\n"); return 0; } if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) { dprintk("dib9000: must specify bandwidth\n"); return 0; } state->pid_ctrl_index = -1; /* postpone the pid filtering cmd */ if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return 0; } fe->dtv_property_cache.delivery_system = SYS_DVBT; /* set the master status */ if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO || state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO || state->fe[0]->dtv_property_cache.modulation == QAM_AUTO || state->fe[0]->dtv_property_cache.code_rate_HP == FEC_AUTO) { /* no channel specified, autosearch the channel */ state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN; } else state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; /* set mode and status for the different frontends */ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { dib9000_fw_set_diversity_in(state->fe[index_frontend], 1); /* synchronization of the cache */ memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT; dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status); dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); } /* actual tune */ exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */ index_frontend_success = 0; do { sleep_time = dib9000_fw_tune(state->fe[0]); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); if (sleep_time == FE_CALLBACK_TIME_NEVER) sleep_time = sleep_time_slave; else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) sleep_time = sleep_time_slave; } if (sleep_time != FE_CALLBACK_TIME_NEVER) msleep(sleep_time / 10); else break; nbr_pending = 0; exit_condition = 0; index_frontend_success = 0; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { frontend_status = -dib9000_get_status(state->fe[index_frontend]); if (frontend_status > -FE_STATUS_TUNE_PENDING) { exit_condition = 2; /* tune success */ index_frontend_success = index_frontend; break; } if (frontend_status == -FE_STATUS_TUNE_PENDING) nbr_pending++; /* some frontends are still tuning */ } if ((exit_condition != 2) && (nbr_pending == 0)) exit_condition = 1; /* if all tune are done and no success, exit: tune failed */ } while (exit_condition == 0); /* check the tune result */ if (exit_condition == 1) { /* tune failed */ dprintk("tune failed\n"); mutex_unlock(&state->demod_lock); /* tune failed; put all the pid filtering cmd to junk */ state->pid_ctrl_index = -1; return 0; } dprintk("tune success on frontend%i\n", index_frontend_success); /* synchronize all the channel cache */ state->get_frontend_internal = 1; dib9000_get_frontend(state->fe[0], &state->fe[0]->dtv_property_cache); state->get_frontend_internal = 0; /* retune the other frontends with the found channel */ channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { /* only retune the frontends which was not tuned success */ if (index_frontend != index_frontend_success) { dib9000_set_channel_status(state->fe[index_frontend], &channel_status); dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); } } do { sleep_time = FE_CALLBACK_TIME_NEVER; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (index_frontend != index_frontend_success) { sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); if (sleep_time == FE_CALLBACK_TIME_NEVER) sleep_time = sleep_time_slave; else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) sleep_time = sleep_time_slave; } } if (sleep_time != FE_CALLBACK_TIME_NEVER) msleep(sleep_time / 10); else break; nbr_pending = 0; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (index_frontend != index_frontend_success) { frontend_status = -dib9000_get_status(state->fe[index_frontend]); if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING)) nbr_pending++; /* some frontends are still tuning */ } } } while (nbr_pending != 0); /* set the output mode */ dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); /* turn off the diversity for the last frontend */ dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0); mutex_unlock(&state->demod_lock); if (state->pid_ctrl_index >= 0) { u8 index_pid_filter_cmd; u8 pid_ctrl_index = state->pid_ctrl_index; state->pid_ctrl_index = -2; for (index_pid_filter_cmd = 0; index_pid_filter_cmd <= pid_ctrl_index; index_pid_filter_cmd++) { if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER_CTRL) dib9000_fw_pid_filter_ctrl(state->fe[0], state->pid_ctrl[index_pid_filter_cmd].onoff); else if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER) dib9000_fw_pid_filter(state->fe[0], state->pid_ctrl[index_pid_filter_cmd].id, state->pid_ctrl[index_pid_filter_cmd].pid, state->pid_ctrl[index_pid_filter_cmd].onoff); } } /* do not postpone any more the pid filtering */ state->pid_ctrl_index = -2; return 0; } static u16 dib9000_read_lock(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; return dib9000_read_word(state, 535); } static int dib9000_read_status(struct dvb_frontend *fe, enum fe_status *stat) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; u16 lock = 0, lock_slave = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) lock_slave |= dib9000_read_lock(state->fe[index_frontend]); lock = dib9000_read_word(state, 535); *stat = 0; if ((lock & 0x8000) || (lock_slave & 0x8000)) *stat |= FE_HAS_SIGNAL; if ((lock & 0x3000) || (lock_slave & 0x3000)) *stat |= FE_HAS_CARRIER; if ((lock & 0x0100) || (lock_slave & 0x0100)) *stat |= FE_HAS_VITERBI; if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38)) *stat |= FE_HAS_SYNC; if ((lock & 0x0008) || (lock_slave & 0x0008)) *stat |= FE_HAS_LOCK; mutex_unlock(&state->demod_lock); return 0; } static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber) { struct dib9000_state *state = fe->demodulator_priv; u16 *c; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock\n"); ret = -EINTR; goto error; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, state->i2c_read_buffer, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); c = (u16 *)state->i2c_read_buffer; *ber = c[10] << 16 | c[11]; error: mutex_unlock(&state->demod_lock); return ret; } static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; u16 *c = (u16 *)state->i2c_read_buffer; u16 val; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } *strength = 0; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); if (val > 65535 - *strength) *strength = 65535; else *strength += val; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock\n"); ret = -EINTR; goto error; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); val = 65535 - c[4]; if (val > 65535 - *strength) *strength = 65535; else *strength += val; error: mutex_unlock(&state->demod_lock); return ret; } static u32 dib9000_get_snr(struct dvb_frontend *fe) { struct dib9000_state *state = fe->demodulator_priv; u16 *c = (u16 *)state->i2c_read_buffer; u32 n, s, exp; u16 val; if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock\n"); return 0; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); return 0; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); val = c[7]; n = (val >> 4) & 0xff; exp = ((val & 0xf) << 2); val = c[8]; exp += ((val >> 14) & 0x3); if ((exp & 0x20) != 0) exp -= 0x40; n <<= exp + 16; s = (val >> 6) & 0xFF; exp = (val & 0x3F); if ((exp & 0x20) != 0) exp -= 0x40; s <<= exp + 16; if (n > 0) { u32 t = (s / n) << 16; return t + ((s << 16) - n * t) / n; } return 0xffffffff; } static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend; u32 snr_master; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } snr_master = dib9000_get_snr(fe); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) snr_master += dib9000_get_snr(state->fe[index_frontend]); if ((snr_master >> 16) != 0) { snr_master = 10 * intlog10(snr_master >> 16); *snr = snr_master / ((1 << 24) / 10); } else *snr = 0; mutex_unlock(&state->demod_lock); return 0; } static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) { struct dib9000_state *state = fe->demodulator_priv; u16 *c = (u16 *)state->i2c_read_buffer; int ret = 0; if (mutex_lock_interruptible(&state->demod_lock) < 0) { dprintk("could not get the lock\n"); return -EINTR; } if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { dprintk("could not get the lock\n"); ret = -EINTR; goto error; } if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { mutex_unlock(&state->platform.risc.mem_mbx_lock); ret = -EIO; goto error; } dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); mutex_unlock(&state->platform.risc.mem_mbx_lock); *unc = c[12]; error: mutex_unlock(&state->demod_lock); return ret; } int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr) { int k = 0, ret = 0; u8 new_addr = 0; struct i2c_device client = {.i2c_adap = i2c }; client.i2c_write_buffer = kzalloc(4, GFP_KERNEL); if (!client.i2c_write_buffer) { dprintk("%s: not enough memory\n", __func__); return -ENOMEM; } client.i2c_read_buffer = kzalloc(4, GFP_KERNEL); if (!client.i2c_read_buffer) { dprintk("%s: not enough memory\n", __func__); ret = -ENOMEM; goto error_memory; } client.i2c_addr = default_addr + 16; dib9000_i2c_write16(&client, 1796, 0x0); for (k = no_of_demods - 1; k >= 0; k--) { /* designated i2c address */ new_addr = first_addr + (k << 1); client.i2c_addr = default_addr; dib9000_i2c_write16(&client, 1817, 3); dib9000_i2c_write16(&client, 1796, 0); dib9000_i2c_write16(&client, 1227, 1); dib9000_i2c_write16(&client, 1227, 0); client.i2c_addr = new_addr; dib9000_i2c_write16(&client, 1817, 3); dib9000_i2c_write16(&client, 1796, 0); dib9000_i2c_write16(&client, 1227, 1); dib9000_i2c_write16(&client, 1227, 0); if (dib9000_identify(&client) == 0) { client.i2c_addr = default_addr; if (dib9000_identify(&client) == 0) { dprintk("DiB9000 #%d: not identified\n", k); ret = -EIO; goto error; } } dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6)); dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2); dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); } for (k = 0; k < no_of_demods; k++) { new_addr = first_addr | (k << 1); client.i2c_addr = new_addr; dib9000_i2c_write16(&client, 1794, (new_addr << 2)); dib9000_i2c_write16(&client, 1795, 0); } error: kfree(client.i2c_read_buffer); error_memory: kfree(client.i2c_write_buffer); return ret; } EXPORT_SYMBOL(dib9000_i2c_enumeration); int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) { struct dib9000_state *state = fe->demodulator_priv; u8 index_frontend = 1; while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) index_frontend++; if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend); state->fe[index_frontend] = fe_slave; return 0; } dprintk("too many slave frontend\n"); return -ENOMEM; } EXPORT_SYMBOL(dib9000_set_slave_frontend); struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) { struct dib9000_state *state = fe->demodulator_priv; if (slave_index >= MAX_NUMBER_OF_FRONTENDS) return NULL; return state->fe[slave_index]; } EXPORT_SYMBOL(dib9000_get_slave_frontend); static const struct dvb_frontend_ops dib9000_ops; struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg) { struct dvb_frontend *fe; struct dib9000_state *st; st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL); if (st == NULL) return NULL; fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); if (fe == NULL) { kfree(st); return NULL; } memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config)); st->i2c.i2c_adap = i2c_adap; st->i2c.i2c_addr = i2c_addr; st->i2c.i2c_write_buffer = st->i2c_write_buffer; st->i2c.i2c_read_buffer = st->i2c_read_buffer; st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS; st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES; st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS; mutex_init(&st->platform.risc.mbx_if_lock); mutex_init(&st->platform.risc.mbx_lock); mutex_init(&st->platform.risc.mem_lock); mutex_init(&st->platform.risc.mem_mbx_lock); mutex_init(&st->demod_lock); st->get_frontend_internal = 0; st->pid_ctrl_index = -2; st->fe[0] = fe; fe->demodulator_priv = st; memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops)); /* Ensure the output mode remains at the previous default if it's * not specifically set by the caller. */ if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO; if (dib9000_identify(&st->i2c) == 0) goto error; dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr); st->tuner_adap.dev.parent = i2c_adap->dev.parent; strscpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", sizeof(st->tuner_adap.name)); st->tuner_adap.algo = &dib9000_tuner_algo; st->tuner_adap.algo_data = NULL; i2c_set_adapdata(&st->tuner_adap, st); if (i2c_add_adapter(&st->tuner_adap) < 0) goto error; st->component_bus.dev.parent = i2c_adap->dev.parent; strscpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", sizeof(st->component_bus.name)); st->component_bus.algo = &dib9000_component_bus_algo; st->component_bus.algo_data = NULL; st->component_bus_speed = 340; i2c_set_adapdata(&st->component_bus, st); if (i2c_add_adapter(&st->component_bus) < 0) goto component_bus_add_error; dib9000_fw_reset(fe); return fe; component_bus_add_error: i2c_del_adapter(&st->tuner_adap); error: kfree(st); return NULL; } EXPORT_SYMBOL_GPL(dib9000_attach); static const struct dvb_frontend_ops dib9000_ops = { .delsys = { SYS_DVBT }, .info = { .name = "DiBcom 9000", .frequency_min_hz = 44250 * kHz, .frequency_max_hz = 867250 * kHz, .frequency_stepsize_hz = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib9000_release, .init = dib9000_wakeup, .sleep = dib9000_sleep, .set_frontend = dib9000_set_frontend, .get_tune_settings = dib9000_fe_get_tune_settings, .get_frontend = dib9000_get_frontend, .read_status = dib9000_read_status, .read_ber = dib9000_read_ber, .read_signal_strength = dib9000_read_signal_strength, .read_snr = dib9000_read_snr, .read_ucblocks = dib9000_read_unc_blocks, }; MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>"); MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>"); MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator"); MODULE_LICENSE("GPL"); |