Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 *  arch/arm/include/asm/io.h
 *
 *  Copyright (C) 1996-2000 Russell King
 *
 * Modifications:
 *  16-Sep-1996	RMK	Inlined the inx/outx functions & optimised for both
 *			constant addresses and variable addresses.
 *  04-Dec-1997	RMK	Moved a lot of this stuff to the new architecture
 *			specific IO header files.
 *  27-Mar-1999	PJB	Second parameter of memcpy_toio is const..
 *  04-Apr-1999	PJB	Added check_signature.
 *  12-Dec-1999	RMK	More cleanups
 *  18-Jun-2000 RMK	Removed virt_to_* and friends definitions
 *  05-Oct-2004 BJD     Moved memory string functions to use void __iomem
 */
#ifndef __ASM_ARM_IO_H
#define __ASM_ARM_IO_H

#ifdef __KERNEL__

#include <linux/string.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#include <asm/memory.h>
#include <asm-generic/pci_iomap.h>

/*
 * ISA I/O bus memory addresses are 1:1 with the physical address.
 */
#define isa_virt_to_bus virt_to_phys
#define isa_bus_to_virt phys_to_virt

/*
 * Atomic MMIO-wide IO modify
 */
extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);

/*
 * Generic IO read/write.  These perform native-endian accesses.  Note
 * that some architectures will want to re-define __raw_{read,write}w.
 */
void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);

void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);

#if __LINUX_ARM_ARCH__ < 6
/*
 * Half-word accesses are problematic with RiscPC due to limitations of
 * the bus. Rather than special-case the machine, just let the compiler
 * generate the access for CPUs prior to ARMv6.
 */
#define __raw_readw(a)         (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
#define __raw_writew(v,a)      ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
#else
/*
 * When running under a hypervisor, we want to avoid I/O accesses with
 * writeback addressing modes as these incur a significant performance
 * overhead (the address generation must be emulated in software).
 */
#define __raw_writew __raw_writew
static inline void __raw_writew(u16 val, volatile void __iomem *addr)
{
	asm volatile("strh %1, %0"
		     : : "Q" (*(volatile u16 __force *)addr), "r" (val));
}

#define __raw_readw __raw_readw
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
	u16 val;
	asm volatile("ldrh %0, %1"
		     : "=r" (val)
		     : "Q" (*(volatile u16 __force *)addr));
	return val;
}
#endif

#define __raw_writeb __raw_writeb
static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
{
	asm volatile("strb %1, %0"
		     : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
}

#define __raw_writel __raw_writel
static inline void __raw_writel(u32 val, volatile void __iomem *addr)
{
	asm volatile("str %1, %0"
		     : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
}

#define __raw_readb __raw_readb
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
	u8 val;
	asm volatile("ldrb %0, %1"
		     : "=r" (val)
		     : "Qo" (*(volatile u8 __force *)addr));
	return val;
}

#define __raw_readl __raw_readl
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
	u32 val;
	asm volatile("ldr %0, %1"
		     : "=r" (val)
		     : "Qo" (*(volatile u32 __force *)addr));
	return val;
}

/*
 * Architecture ioremap implementation.
 */
#define MT_DEVICE		0
#define MT_DEVICE_NONSHARED	1
#define MT_DEVICE_CACHED	2
#define MT_DEVICE_WC		3
/*
 * types 4 onwards can be found in asm/mach/map.h and are undefined
 * for ioremap
 */

/*
 * __arm_ioremap takes CPU physical address.
 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
 * The _caller variety takes a __builtin_return_address(0) value for
 * /proc/vmalloc to use - and should only be used in non-inline functions.
 */
extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
	void *);
extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
void __arm_iomem_set_ro(void __iomem *ptr, size_t size);

extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
	unsigned int, void *);

/*
 * Bad read/write accesses...
 */
extern void __readwrite_bug(const char *fn);

/*
 * A typesafe __io() helper
 */
static inline void __iomem *__typesafe_io(unsigned long addr)
{
	return (void __iomem *)addr;
}

#define IOMEM(x)	((void __force __iomem *)(x))

/* IO barriers */
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
#include <asm/barrier.h>
#define __iormb()		rmb()
#define __iowmb()		wmb()
#else
#define __iormb()		do { } while (0)
#define __iowmb()		do { } while (0)
#endif

/* PCI fixed i/o mapping */
#define PCI_IO_VIRT_BASE	0xfee00000
#define PCI_IOBASE		((void __iomem *)PCI_IO_VIRT_BASE)

#if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
void pci_ioremap_set_mem_type(int mem_type);
#else
static inline void pci_ioremap_set_mem_type(int mem_type) {}
#endif

struct resource;

#define pci_remap_iospace pci_remap_iospace
int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr);

/*
 * PCI configuration space mapping function.
 *
 * The PCI specification does not allow configuration write
 * transactions to be posted. Add an arch specific
 * pci_remap_cfgspace() definition that is implemented
 * through strongly ordered memory mappings.
 */
#define pci_remap_cfgspace pci_remap_cfgspace
void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size);
/*
 * Now, pick up the machine-defined IO definitions
 */
#ifdef CONFIG_NEED_MACH_IO_H
#include <mach/io.h>
#else
#if IS_ENABLED(CONFIG_PCMCIA) || defined(CONFIG_PCI)
#define IO_SPACE_LIMIT	((resource_size_t)0xfffff)
#else
#define IO_SPACE_LIMIT ((resource_size_t)0)
#endif
#define __io(a)		__typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
#endif

/*
 *  IO port access primitives
 *  -------------------------
 *
 * The ARM doesn't have special IO access instructions; all IO is memory
 * mapped.  Note that these are defined to perform little endian accesses
 * only.  Their primary purpose is to access PCI and ISA peripherals.
 *
 * Note that for a big endian machine, this implies that the following
 * big endian mode connectivity is in place, as described by numerous
 * ARM documents:
 *
 *    PCI:  D0-D7   D8-D15 D16-D23 D24-D31
 *    ARM: D24-D31 D16-D23  D8-D15  D0-D7
 *
 * The machine specific io.h include defines __io to translate an "IO"
 * address to a memory address.
 *
 * Note that we prevent GCC re-ordering or caching values in expressions
 * by introducing sequence points into the in*() definitions.  Note that
 * __raw_* do not guarantee this behaviour.
 *
 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
 */
#ifdef __io
#define outb(v,p)	({ __iowmb(); __raw_writeb(v,__io(p)); })
#define outw(v,p)	({ __iowmb(); __raw_writew((__force __u16) \
					cpu_to_le16(v),__io(p)); })
#define outl(v,p)	({ __iowmb(); __raw_writel((__force __u32) \
					cpu_to_le32(v),__io(p)); })

#define inb(p)	({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
#define inw(p)	({ __u16 __v = le16_to_cpu((__force __le16) \
			__raw_readw(__io(p))); __iormb(); __v; })
#define inl(p)	({ __u32 __v = le32_to_cpu((__force __le32) \
			__raw_readl(__io(p))); __iormb(); __v; })

#define outsb(p,d,l)		__raw_writesb(__io(p),d,l)
#define outsw(p,d,l)		__raw_writesw(__io(p),d,l)
#define outsl(p,d,l)		__raw_writesl(__io(p),d,l)

#define insb(p,d,l)		__raw_readsb(__io(p),d,l)
#define insw(p,d,l)		__raw_readsw(__io(p),d,l)
#define insl(p,d,l)		__raw_readsl(__io(p),d,l)
#endif

/*
 * String version of IO memory access ops:
 */
extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
extern void _memset_io(volatile void __iomem *, int, size_t);

/*
 *  Memory access primitives
 *  ------------------------
 *
 * These perform PCI memory accesses via an ioremap region.  They don't
 * take an address as such, but a cookie.
 *
 * Again, these are defined to perform little endian accesses.  See the
 * IO port primitives for more information.
 */
#ifndef readl
#define readb_relaxed(c) ({ u8  __r = __raw_readb(c); __r; })
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
					__raw_readw(c)); __r; })
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
					__raw_readl(c)); __r; })

#define writeb_relaxed(v,c)	__raw_writeb(v,c)
#define writew_relaxed(v,c)	__raw_writew((__force u16) cpu_to_le16(v),c)
#define writel_relaxed(v,c)	__raw_writel((__force u32) cpu_to_le32(v),c)

#define readb(c)		({ u8  __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c)		({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c)		({ u32 __v = readl_relaxed(c); __iormb(); __v; })

#define writeb(v,c)		({ __iowmb(); writeb_relaxed(v,c); })
#define writew(v,c)		({ __iowmb(); writew_relaxed(v,c); })
#define writel(v,c)		({ __iowmb(); writel_relaxed(v,c); })

#define readsb(p,d,l)		__raw_readsb(p,d,l)
#define readsw(p,d,l)		__raw_readsw(p,d,l)
#define readsl(p,d,l)		__raw_readsl(p,d,l)

#define writesb(p,d,l)		__raw_writesb(p,d,l)
#define writesw(p,d,l)		__raw_writesw(p,d,l)
#define writesl(p,d,l)		__raw_writesl(p,d,l)

#ifndef __ARMBE__
static inline void memset_io(volatile void __iomem *dst, unsigned c,
	size_t count)
{
	extern void mmioset(void *, unsigned int, size_t);
	mmioset((void __force *)dst, c, count);
}
#define memset_io(dst,c,count) memset_io(dst,c,count)

static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
	size_t count)
{
	extern void mmiocpy(void *, const void *, size_t);
	mmiocpy(to, (const void __force *)from, count);
}
#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)

static inline void memcpy_toio(volatile void __iomem *to, const void *from,
	size_t count)
{
	extern void mmiocpy(void *, const void *, size_t);
	mmiocpy((void __force *)to, from, count);
}
#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)

#else
#define memset_io(c,v,l)	_memset_io(c,(v),(l))
#define memcpy_fromio(a,c,l)	_memcpy_fromio((a),c,(l))
#define memcpy_toio(c,a,l)	_memcpy_toio(c,(a),(l))
#endif

#endif	/* readl */

/*
 * ioremap() and friends.
 *
 * ioremap() takes a resource address, and size.  Due to the ARM memory
 * types, it is important to use the correct ioremap() function as each
 * mapping has specific properties.
 *
 * Function		Memory type	Cacheability	Cache hint
 * ioremap()		Device		n/a		n/a
 * ioremap_cache()	Normal		Writeback	Read allocate
 * ioremap_wc()		Normal		Non-cacheable	n/a
 * ioremap_wt()		Normal		Non-cacheable	n/a
 *
 * All device mappings have the following properties:
 * - no access speculation
 * - no repetition (eg, on return from an exception)
 * - number, order and size of accesses are maintained
 * - unaligned accesses are "unpredictable"
 * - writes may be delayed before they hit the endpoint device
 *
 * All normal memory mappings have the following properties:
 * - reads can be repeated with no side effects
 * - repeated reads return the last value written
 * - reads can fetch additional locations without side effects
 * - writes can be repeated (in certain cases) with no side effects
 * - writes can be merged before accessing the target
 * - unaligned accesses can be supported
 * - ordering is not guaranteed without explicit dependencies or barrier
 *   instructions
 * - writes may be delayed before they hit the endpoint memory
 *
 * The cache hint is only a performance hint: CPUs may alias these hints.
 * Eg, a CPU not implementing read allocate but implementing write allocate
 * will provide a write allocate mapping instead.
 */
void __iomem *ioremap(resource_size_t res_cookie, size_t size);
#define ioremap ioremap

/*
 * Do not use ioremap_cache for mapping memory. Use memremap instead.
 */
void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
#define ioremap_cache ioremap_cache

void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
#define ioremap_wc ioremap_wc
#define ioremap_wt ioremap_wc

void iounmap(volatile void __iomem *io_addr);
#define iounmap iounmap

void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
#define arch_memremap_wb arch_memremap_wb

/*
 * io{read,write}{16,32}be() macros
 */
#define ioread16be(p)		({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
#define ioread32be(p)		({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })

#define iowrite16be(v,p)	({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
#define iowrite32be(v,p)	({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })

#ifndef ioport_map
#define ioport_map ioport_map
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
#endif
#ifndef ioport_unmap
#define ioport_unmap ioport_unmap
extern void ioport_unmap(void __iomem *addr);
#endif

struct pci_dev;

#define pci_iounmap pci_iounmap
extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);

/*
 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 * access
 */
#define xlate_dev_mem_ptr(p)	__va(p)

#include <asm-generic/io.h>

#ifdef CONFIG_MMU
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
					unsigned long flags);
#define arch_memremap_can_ram_remap arch_memremap_can_ram_remap
#endif

/*
 * Register ISA memory and port locations for glibc iopl/inb/outb
 * emulation.
 */
extern void register_isa_ports(unsigned int mmio, unsigned int io,
			       unsigned int io_shift);

#endif	/* __KERNEL__ */
#endif	/* __ASM_ARM_IO_H */