Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
[
    {
        "BriefDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend",
        "MetricExpr": "topdown\\-fe\\-bound / (topdown\\-fe\\-bound + topdown\\-bad\\-spec + topdown\\-retiring + topdown\\-be\\-bound) - INT_MISC.UOP_DROPPING / SLOTS",
        "MetricGroup": "PGO;TopdownL1;tma_L1_group",
        "MetricName": "tma_frontend_bound",
        "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Machine_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues",
        "MetricExpr": "(5 * IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE - INT_MISC.UOP_DROPPING) / SLOTS",
        "MetricGroup": "Frontend;TopdownL2;tma_L2_group;tma_frontend_bound_group",
        "MetricName": "tma_fetch_latency",
        "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues.  For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to instruction cache misses",
        "MetricExpr": "ICACHE_16B.IFDATA_STALL / CLKS",
        "MetricGroup": "BigFoot;FetchLat;IcMiss;TopdownL3;tma_fetch_latency_group",
        "MetricName": "tma_icache_misses",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to instruction cache misses. Sample with: FRONTEND_RETIRED.L2_MISS_PS;FRONTEND_RETIRED.L1I_MISS_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to Instruction TLB (ITLB) misses",
        "MetricExpr": "ICACHE_64B.IFTAG_STALL / CLKS",
        "MetricGroup": "BigFoot;FetchLat;MemoryTLB;TopdownL3;tma_fetch_latency_group",
        "MetricName": "tma_itlb_misses",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Instruction TLB (ITLB) misses. Sample with: FRONTEND_RETIRED.STLB_MISS_PS;FRONTEND_RETIRED.ITLB_MISS_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers",
        "MetricExpr": "INT_MISC.CLEAR_RESTEER_CYCLES / CLKS + tma_unknown_branches",
        "MetricGroup": "FetchLat;TopdownL3;tma_fetch_latency_group",
        "MetricName": "tma_branch_resteers",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers. Branch Resteers estimates the Frontend delay in fetching operations from corrected path; following all sorts of miss-predicted branches. For example; branchy code with lots of miss-predictions might get categorized under Branch Resteers. Note the value of this node may overlap with its siblings. Sample with: BR_MISP_RETIRED.ALL_BRANCHES",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Branch Misprediction at execution stage",
        "MetricExpr": "(BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT)) * INT_MISC.CLEAR_RESTEER_CYCLES / CLKS",
        "MetricGroup": "BadSpec;BrMispredicts;TopdownL4;tma_branch_resteers_group",
        "MetricName": "tma_mispredicts_resteers",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Branch Misprediction at execution stage.  Sample with: INT_MISC.CLEAR_RESTEER_CYCLES",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Machine Clears",
        "MetricExpr": "(1 - (BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT))) * INT_MISC.CLEAR_RESTEER_CYCLES / CLKS",
        "MetricGroup": "BadSpec;MachineClears;TopdownL4;tma_branch_resteers_group",
        "MetricName": "tma_clears_resteers",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Machine Clears.  Sample with: INT_MISC.CLEAR_RESTEER_CYCLES",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to new branch address clears",
        "MetricExpr": "10 * BACLEARS.ANY / CLKS",
        "MetricGroup": "BigFoot;FetchLat;TopdownL4;tma_branch_resteers_group",
        "MetricName": "tma_unknown_branches",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to new branch address clears. These are fetched branches the Branch Prediction Unit was unable to recognize (First fetch or hitting BPU capacity limit). Sample with: BACLEARS.ANY",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to switches from DSB to MITE pipelines",
        "MetricExpr": "DSB2MITE_SWITCHES.PENALTY_CYCLES / CLKS",
        "MetricGroup": "DSBmiss;FetchLat;TopdownL3;tma_fetch_latency_group",
        "MetricName": "tma_dsb_switches",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to switches from DSB to MITE pipelines. The DSB (decoded i-cache) is a Uop Cache where the front-end directly delivers Uops (micro operations) avoiding heavy x86 decoding. The DSB pipeline has shorter latency and delivered higher bandwidth than the MITE (legacy instruction decode pipeline). Switching between the two pipelines can cause penalties hence this metric measures the exposed penalty. Sample with: FRONTEND_RETIRED.DSB_MISS_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles CPU was stalled due to Length Changing Prefixes (LCPs)",
        "MetricExpr": "ILD_STALL.LCP / CLKS",
        "MetricGroup": "FetchLat;TopdownL3;tma_fetch_latency_group",
        "MetricName": "tma_lcp",
        "PublicDescription": "This metric represents fraction of cycles CPU was stalled due to Length Changing Prefixes (LCPs). Using proper compiler flags or Intel Compiler by default will certainly avoid this. #Link: Optimization Guide about LCP BKMs.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates the fraction of cycles when the CPU was stalled due to switches of uop delivery to the Microcode Sequencer (MS)",
        "MetricExpr": "3 * IDQ.MS_SWITCHES / CLKS",
        "MetricGroup": "FetchLat;MicroSeq;TopdownL3;tma_fetch_latency_group",
        "MetricName": "tma_ms_switches",
        "PublicDescription": "This metric estimates the fraction of cycles when the CPU was stalled due to switches of uop delivery to the Microcode Sequencer (MS). Commonly used instructions are optimized for delivery by the DSB (decoded i-cache) or MITE (legacy instruction decode) pipelines. Certain operations cannot be handled natively by the execution pipeline; and must be performed by microcode (small programs injected into the execution stream). Switching to the MS too often can negatively impact performance. The MS is designated to deliver long uop flows required by CISC instructions like CPUID; or uncommon conditions like Floating Point Assists when dealing with Denormals. Sample with: IDQ.MS_SWITCHES",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues",
        "MetricExpr": "max(0, tma_frontend_bound - tma_fetch_latency)",
        "MetricGroup": "FetchBW;Frontend;TopdownL2;tma_L2_group;tma_frontend_bound_group",
        "MetricName": "tma_fetch_bandwidth",
        "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues.  For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to the MITE pipeline (the legacy decode pipeline)",
        "MetricExpr": "(IDQ.MITE_CYCLES_ANY - IDQ.MITE_CYCLES_OK) / CORE_CLKS / 2",
        "MetricGroup": "DSBmiss;FetchBW;TopdownL3;tma_fetch_bandwidth_group",
        "MetricName": "tma_mite",
        "PublicDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to the MITE pipeline (the legacy decode pipeline). This pipeline is used for code that was not pre-cached in the DSB or LSD. For example; inefficiencies due to asymmetric decoders; use of long immediate or LCP can manifest as MITE fetch bandwidth bottleneck. Sample with: FRONTEND_RETIRED.ANY_DSB_MISS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles where decoder-0 was the only active decoder",
        "MetricExpr": "(cpu@INST_DECODED.DECODERS\\,cmask\\=1@ - cpu@INST_DECODED.DECODERS\\,cmask\\=2@) / CORE_CLKS",
        "MetricGroup": "DSBmiss;FetchBW;TopdownL4;tma_mite_group",
        "MetricName": "tma_decoder0_alone",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles where (only) 4 uops were delivered by the MITE pipeline",
        "MetricExpr": "(cpu@IDQ.MITE_UOPS\\,cmask\\=4@ - cpu@IDQ.MITE_UOPS\\,cmask\\=5@) / CLKS",
        "MetricGroup": "DSBmiss;FetchBW;TopdownL4;tma_mite_group",
        "MetricName": "tma_mite_4wide",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to DSB (decoded uop cache) fetch pipeline",
        "MetricExpr": "(IDQ.DSB_CYCLES_ANY - IDQ.DSB_CYCLES_OK) / CORE_CLKS / 2",
        "MetricGroup": "DSB;FetchBW;TopdownL3;tma_fetch_bandwidth_group",
        "MetricName": "tma_dsb",
        "PublicDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to DSB (decoded uop cache) fetch pipeline.  For example; inefficient utilization of the DSB cache structure or bank conflict when reading from it; are categorized here.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to LSD (Loop Stream Detector) unit",
        "MetricExpr": "(LSD.CYCLES_ACTIVE - LSD.CYCLES_OK) / CORE_CLKS / 2",
        "MetricGroup": "FetchBW;LSD;TopdownL3;tma_fetch_bandwidth_group",
        "MetricName": "tma_lsd",
        "PublicDescription": "This metric represents Core fraction of cycles in which CPU was likely limited due to LSD (Loop Stream Detector) unit.  LSD typically does well sustaining Uop supply. However; in some rare cases; optimal uop-delivery could not be reached for small loops whose size (in terms of number of uops) does not suit well the LSD structure.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This category represents fraction of slots wasted due to incorrect speculations",
        "MetricExpr": "max(1 - (tma_frontend_bound + tma_backend_bound + tma_retiring), 0)",
        "MetricGroup": "TopdownL1;tma_L1_group",
        "MetricName": "tma_bad_speculation",
        "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction",
        "MetricExpr": "(BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT)) * tma_bad_speculation",
        "MetricGroup": "BadSpec;BrMispredicts;TopdownL2;tma_L2_group;tma_bad_speculation_group",
        "MetricName": "tma_branch_mispredicts",
        "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction.  These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears",
        "MetricExpr": "max(0, tma_bad_speculation - tma_branch_mispredicts)",
        "MetricGroup": "BadSpec;MachineClears;TopdownL2;tma_L2_group;tma_bad_speculation_group",
        "MetricName": "tma_machine_clears",
        "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears.  These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend",
        "MetricExpr": "topdown\\-be\\-bound / (topdown\\-fe\\-bound + topdown\\-bad\\-spec + topdown\\-retiring + topdown\\-be\\-bound) + (5 * cpu@INT_MISC.RECOVERY_CYCLES\\,cmask\\=1\\,edge@) / SLOTS",
        "MetricGroup": "TopdownL1;tma_L1_group",
        "MetricName": "tma_backend_bound",
        "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound. Sample with: TOPDOWN.BACKEND_BOUND_SLOTS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck",
        "MetricExpr": "((CYCLE_ACTIVITY.STALLS_MEM_ANY + EXE_ACTIVITY.BOUND_ON_STORES) / (CYCLE_ACTIVITY.STALLS_TOTAL + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) + EXE_ACTIVITY.BOUND_ON_STORES)) * tma_backend_bound",
        "MetricGroup": "Backend;TopdownL2;tma_L2_group;tma_backend_bound_group",
        "MetricName": "tma_memory_bound",
        "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck.  Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates how often the CPU was stalled without loads missing the L1 data cache",
        "MetricExpr": "max((CYCLE_ACTIVITY.STALLS_MEM_ANY - CYCLE_ACTIVITY.STALLS_L1D_MISS) / CLKS, 0)",
        "MetricGroup": "CacheMisses;MemoryBound;TmaL3mem;TopdownL3;tma_memory_bound_group",
        "MetricName": "tma_l1_bound",
        "PublicDescription": "This metric estimates how often the CPU was stalled without loads missing the L1 data cache.  The L1 data cache typically has the shortest latency.  However; in certain cases like loads blocked on older stores; a load might suffer due to high latency even though it is being satisfied by the L1. Another example is loads who miss in the TLB. These cases are characterized by execution unit stalls; while some non-completed demand load lives in the machine without having that demand load missing the L1 cache. Sample with: MEM_LOAD_RETIRED.L1_HIT_PS;MEM_LOAD_RETIRED.FB_HIT_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric roughly estimates the fraction of cycles where the Data TLB (DTLB) was missed by load accesses",
        "MetricExpr": "min(7 * cpu@DTLB_LOAD_MISSES.STLB_HIT\\,cmask\\=1@ + DTLB_LOAD_MISSES.WALK_ACTIVE, max(CYCLE_ACTIVITY.CYCLES_MEM_ANY - CYCLE_ACTIVITY.CYCLES_L1D_MISS, 0)) / CLKS",
        "MetricGroup": "MemoryTLB;TopdownL4;tma_l1_bound_group",
        "MetricName": "tma_dtlb_load",
        "PublicDescription": "This metric roughly estimates the fraction of cycles where the Data TLB (DTLB) was missed by load accesses. TLBs (Translation Look-aside Buffers) are processor caches for recently used entries out of the Page Tables that are used to map virtual- to physical-addresses by the operating system. This metric approximates the potential delay of demand loads missing the first-level data TLB (assuming worst case scenario with back to back misses to different pages). This includes hitting in the second-level TLB (STLB) as well as performing a hardware page walk on an STLB miss. Sample with: MEM_INST_RETIRED.STLB_MISS_LOADS_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric roughly estimates the fraction of cycles where the (first level) DTLB was missed by load accesses, that later on hit in second-level TLB (STLB)",
        "MetricExpr": "tma_dtlb_load - tma_load_stlb_miss",
        "MetricGroup": "MemoryTLB;TopdownL5;tma_dtlb_load_group",
        "MetricName": "tma_load_stlb_hit",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates the fraction of cycles where the Second-level TLB (STLB) was missed by load accesses, performing a hardware page walk",
        "MetricExpr": "DTLB_LOAD_MISSES.WALK_ACTIVE / CLKS",
        "MetricGroup": "MemoryTLB;TopdownL5;tma_dtlb_load_group",
        "MetricName": "tma_load_stlb_miss",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric roughly estimates fraction of cycles when the memory subsystem had loads blocked since they could not forward data from earlier (in program order) overlapping stores",
        "MetricExpr": "13 * LD_BLOCKS.STORE_FORWARD / CLKS",
        "MetricGroup": "TopdownL4;tma_l1_bound_group",
        "MetricName": "tma_store_fwd_blk",
        "PublicDescription": "This metric roughly estimates fraction of cycles when the memory subsystem had loads blocked since they could not forward data from earlier (in program order) overlapping stores. To streamline memory operations in the pipeline; a load can avoid waiting for memory if a prior in-flight store is writing the data that the load wants to read (store forwarding process). However; in some cases the load may be blocked for a significant time pending the store forward. For example; when the prior store is writing a smaller region than the load is reading.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU spent handling cache misses due to lock operations",
        "MetricExpr": "(16 * max(0, MEM_INST_RETIRED.LOCK_LOADS - L2_RQSTS.ALL_RFO) + (MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES) * (10 * L2_RQSTS.RFO_HIT + min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO))) / CLKS",
        "MetricGroup": "Offcore;TopdownL4;tma_l1_bound_group",
        "MetricName": "tma_lock_latency",
        "PublicDescription": "This metric represents fraction of cycles the CPU spent handling cache misses due to lock operations. Due to the microarchitecture handling of locks; they are classified as L1_Bound regardless of what memory source satisfied them. Sample with: MEM_INST_RETIRED.LOCK_LOADS_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles handling memory load split accesses - load that cross 64-byte cache line boundary",
        "MetricExpr": "Load_Miss_Real_Latency * LD_BLOCKS.NO_SR / CLKS",
        "MetricGroup": "TopdownL4;tma_l1_bound_group",
        "MetricName": "tma_split_loads",
        "PublicDescription": "This metric estimates fraction of cycles handling memory load split accesses - load that cross 64-byte cache line boundary.  Sample with: MEM_INST_RETIRED.SPLIT_LOADS_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates how often memory load accesses were aliased by preceding stores (in program order) with a 4K address offset",
        "MetricExpr": "LD_BLOCKS_PARTIAL.ADDRESS_ALIAS / CLKS",
        "MetricGroup": "TopdownL4;tma_l1_bound_group",
        "MetricName": "tma_4k_aliasing",
        "PublicDescription": "This metric estimates how often memory load accesses were aliased by preceding stores (in program order) with a 4K address offset. False match is possible; which incur a few cycles load re-issue. However; the short re-issue duration is often hidden by the out-of-order core and HW optimizations; hence a user may safely ignore a high value of this metric unless it manages to propagate up into parent nodes of the hierarchy (e.g. to L1_Bound).",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric does a *rough estimation* of how often L1D Fill Buffer unavailability limited additional L1D miss memory access requests to proceed",
        "MetricExpr": "L1D_PEND_MISS.FB_FULL / CLKS",
        "MetricGroup": "MemoryBW;TopdownL4;tma_l1_bound_group",
        "MetricName": "tma_fb_full",
        "PublicDescription": "This metric does a *rough estimation* of how often L1D Fill Buffer unavailability limited additional L1D miss memory access requests to proceed. The higher the metric value; the deeper the memory hierarchy level the misses are satisfied from (metric values >1 are valid). Often it hints on approaching bandwidth limits (to L2 cache; L3 cache or external memory).",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates how often the CPU was stalled due to L2 cache accesses by loads",
        "MetricExpr": "((MEM_LOAD_RETIRED.L2_HIT * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS))) / ((MEM_LOAD_RETIRED.L2_HIT * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS))) + L1D_PEND_MISS.FB_FULL_PERIODS)) * ((CYCLE_ACTIVITY.STALLS_L1D_MISS - CYCLE_ACTIVITY.STALLS_L2_MISS) / CLKS)",
        "MetricGroup": "CacheMisses;MemoryBound;TmaL3mem;TopdownL3;tma_memory_bound_group",
        "MetricName": "tma_l2_bound",
        "PublicDescription": "This metric estimates how often the CPU was stalled due to L2 cache accesses by loads.  Avoiding cache misses (i.e. L1 misses/L2 hits) can improve the latency and increase performance. Sample with: MEM_LOAD_RETIRED.L2_HIT_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates how often the CPU was stalled due to loads accesses to L3 cache or contended with a sibling Core",
        "MetricExpr": "(CYCLE_ACTIVITY.STALLS_L2_MISS - CYCLE_ACTIVITY.STALLS_L3_MISS) / CLKS",
        "MetricGroup": "CacheMisses;MemoryBound;TmaL3mem;TopdownL3;tma_memory_bound_group",
        "MetricName": "tma_l3_bound",
        "PublicDescription": "This metric estimates how often the CPU was stalled due to loads accesses to L3 cache or contended with a sibling Core.  Avoiding cache misses (i.e. L2 misses/L3 hits) can improve the latency and increase performance. Sample with: MEM_LOAD_RETIRED.L3_HIT_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to contested accesses",
        "MetricExpr": "((49 * Average_Frequency) * (MEM_LOAD_L3_HIT_RETIRED.XSNP_FWD * (OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HITM / (OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HITM + OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HIT_WITH_FWD))) + (48 * Average_Frequency) * MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS) * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) / 2) / CLKS",
        "MetricGroup": "DataSharing;Offcore;Snoop;TopdownL4;tma_l3_bound_group",
        "MetricName": "tma_contested_accesses",
        "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to contested accesses. Contested accesses occur when data written by one Logical Processor are read by another Logical Processor on a different Physical Core. Examples of contested accesses include synchronizations such as locks; true data sharing such as modified locked variables; and false sharing. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_FWD;MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to data-sharing accesses",
        "MetricExpr": "(48 * Average_Frequency) * (MEM_LOAD_L3_HIT_RETIRED.XSNP_NO_FWD + MEM_LOAD_L3_HIT_RETIRED.XSNP_FWD * (1 - (OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HITM / (OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HITM + OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HIT_WITH_FWD)))) * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) / 2) / CLKS",
        "MetricGroup": "Offcore;Snoop;TopdownL4;tma_l3_bound_group",
        "MetricName": "tma_data_sharing",
        "PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to data-sharing accesses. Data shared by multiple Logical Processors (even just read shared) may cause increased access latency due to cache coherency. Excessive data sharing can drastically harm multithreaded performance. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_NO_FWD",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles with demand load accesses that hit the L3 cache under unloaded scenarios (possibly L3 latency limited)",
        "MetricExpr": "(17.5 * Average_Frequency) * MEM_LOAD_RETIRED.L3_HIT * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) / 2) / CLKS",
        "MetricGroup": "MemoryLat;TopdownL4;tma_l3_bound_group",
        "MetricName": "tma_l3_hit_latency",
        "PublicDescription": "This metric represents fraction of cycles with demand load accesses that hit the L3 cache under unloaded scenarios (possibly L3 latency limited).  Avoiding private cache misses (i.e. L2 misses/L3 hits) will improve the latency; reduce contention with sibling physical cores and increase performance.  Note the value of this node may overlap with its siblings. Sample with: MEM_LOAD_RETIRED.L3_HIT_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric measures fraction of cycles where the Super Queue (SQ) was full taking into account all request-types and both hardware SMT threads (Logical Processors)",
        "MetricExpr": "L1D_PEND_MISS.L2_STALL / CLKS",
        "MetricGroup": "MemoryBW;Offcore;TopdownL4;tma_l3_bound_group",
        "MetricName": "tma_sq_full",
        "PublicDescription": "This metric measures fraction of cycles where the Super Queue (SQ) was full taking into account all request-types and both hardware SMT threads (Logical Processors). The Super Queue is used for requests to access the L2 cache or to go out to the Uncore.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates how often the CPU was stalled on accesses to external memory (DRAM) by loads",
        "MetricExpr": "(CYCLE_ACTIVITY.STALLS_L3_MISS / CLKS + ((CYCLE_ACTIVITY.STALLS_L1D_MISS - CYCLE_ACTIVITY.STALLS_L2_MISS) / CLKS) - tma_l2_bound)",
        "MetricGroup": "MemoryBound;TmaL3mem;TopdownL3;tma_memory_bound_group",
        "MetricName": "tma_dram_bound",
        "PublicDescription": "This metric estimates how often the CPU was stalled on accesses to external memory (DRAM) by loads. Better caching can improve the latency and increase performance. Sample with: MEM_LOAD_RETIRED.L3_MISS_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles where the core's performance was likely hurt due to approaching bandwidth limits of external memory (DRAM)",
        "MetricExpr": "min(CPU_CLK_UNHALTED.THREAD, cpu@OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD\\,cmask\\=4@) / CLKS",
        "MetricGroup": "MemoryBW;Offcore;TopdownL4;tma_dram_bound_group",
        "MetricName": "tma_mem_bandwidth",
        "PublicDescription": "This metric estimates fraction of cycles where the core's performance was likely hurt due to approaching bandwidth limits of external memory (DRAM).  The underlying heuristic assumes that a similar off-core traffic is generated by all IA cores. This metric does not aggregate non-data-read requests by this logical processor; requests from other IA Logical Processors/Physical Cores/sockets; or other non-IA devices like GPU; hence the maximum external memory bandwidth limits may or may not be approached when this metric is flagged (see Uncore counters for that).",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles where the performance was likely hurt due to latency from external memory (DRAM)",
        "MetricExpr": "min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DATA_RD) / CLKS - tma_mem_bandwidth",
        "MetricGroup": "MemoryLat;Offcore;TopdownL4;tma_dram_bound_group",
        "MetricName": "tma_mem_latency",
        "PublicDescription": "This metric estimates fraction of cycles where the performance was likely hurt due to latency from external memory (DRAM).  This metric does not aggregate requests from other Logical Processors/Physical Cores/sockets (see Uncore counters for that).",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates how often CPU was stalled  due to RFO store memory accesses; RFO store issue a read-for-ownership request before the write",
        "MetricExpr": "EXE_ACTIVITY.BOUND_ON_STORES / CLKS",
        "MetricGroup": "MemoryBound;TmaL3mem;TopdownL3;tma_memory_bound_group",
        "MetricName": "tma_store_bound",
        "PublicDescription": "This metric estimates how often CPU was stalled  due to RFO store memory accesses; RFO store issue a read-for-ownership request before the write. Even though store accesses do not typically stall out-of-order CPUs; there are few cases where stores can lead to actual stalls. This metric will be flagged should RFO stores be a bottleneck. Sample with: MEM_INST_RETIRED.ALL_STORES_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles the CPU spent handling L1D store misses",
        "MetricExpr": "((L2_RQSTS.RFO_HIT * 10 * (1 - (MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES))) + (1 - (MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES)) * min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO)) / CLKS",
        "MetricGroup": "MemoryLat;Offcore;TopdownL4;tma_store_bound_group",
        "MetricName": "tma_store_latency",
        "PublicDescription": "This metric estimates fraction of cycles the CPU spent handling L1D store misses. Store accesses usually less impact out-of-order core performance; however; holding resources for longer time can lead into undesired implications (e.g. contention on L1D fill-buffer entries - see FB_Full)",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric roughly estimates how often CPU was handling synchronizations due to False Sharing",
        "MetricExpr": "(54 * Average_Frequency) * OCR.DEMAND_RFO.L3_HIT.SNOOP_HITM / CLKS",
        "MetricGroup": "DataSharing;Offcore;Snoop;TopdownL4;tma_store_bound_group",
        "MetricName": "tma_false_sharing",
        "PublicDescription": "This metric roughly estimates how often CPU was handling synchronizations due to False Sharing. False Sharing is a multithreading hiccup; where multiple Logical Processors contend on different data-elements mapped into the same cache line.  Sample with: OCR.DEMAND_RFO.L3_HIT.SNOOP_HITM",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents rate of split store accesses",
        "MetricExpr": "MEM_INST_RETIRED.SPLIT_STORES / CORE_CLKS",
        "MetricGroup": "TopdownL4;tma_store_bound_group",
        "MetricName": "tma_split_stores",
        "PublicDescription": "This metric represents rate of split store accesses.  Consider aligning your data to the 64-byte cache line granularity. Sample with: MEM_INST_RETIRED.SPLIT_STORES_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates how often CPU was stalled  due to Streaming store memory accesses; Streaming store optimize out a read request required by RFO stores",
        "MetricExpr": "9 * OCR.STREAMING_WR.ANY_RESPONSE / CLKS",
        "MetricGroup": "MemoryBW;Offcore;TopdownL4;tma_store_bound_group",
        "MetricName": "tma_streaming_stores",
        "PublicDescription": "This metric estimates how often CPU was stalled  due to Streaming store memory accesses; Streaming store optimize out a read request required by RFO stores. Even though store accesses do not typically stall out-of-order CPUs; there are few cases where stores can lead to actual stalls. This metric will be flagged should Streaming stores be a bottleneck. Sample with: OCR.STREAMING_WR.ANY_RESPONSE",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric roughly estimates the fraction of cycles spent handling first-level data TLB store misses",
        "MetricExpr": "(7 * cpu@DTLB_STORE_MISSES.STLB_HIT\\,cmask\\=1@ + DTLB_STORE_MISSES.WALK_ACTIVE) / CORE_CLKS",
        "MetricGroup": "MemoryTLB;TopdownL4;tma_store_bound_group",
        "MetricName": "tma_dtlb_store",
        "PublicDescription": "This metric roughly estimates the fraction of cycles spent handling first-level data TLB store misses.  As with ordinary data caching; focus on improving data locality and reducing working-set size to reduce DTLB overhead.  Additionally; consider using profile-guided optimization (PGO) to collocate frequently-used data on the same page.  Try using larger page sizes for large amounts of frequently-used data. Sample with: MEM_INST_RETIRED.STLB_MISS_STORES_PS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric roughly estimates the fraction of cycles where the TLB was missed by store accesses, hitting in the second-level TLB (STLB)",
        "MetricExpr": "tma_dtlb_store - tma_store_stlb_miss",
        "MetricGroup": "MemoryTLB;TopdownL5;tma_dtlb_store_group",
        "MetricName": "tma_store_stlb_hit",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates the fraction of cycles where the STLB was missed by store accesses, performing a hardware page walk",
        "MetricExpr": "DTLB_STORE_MISSES.WALK_ACTIVE / CORE_CLKS",
        "MetricGroup": "MemoryTLB;TopdownL5;tma_dtlb_store_group",
        "MetricName": "tma_store_stlb_miss",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck",
        "MetricExpr": "max(0, tma_backend_bound - tma_memory_bound)",
        "MetricGroup": "Backend;Compute;TopdownL2;tma_L2_group;tma_backend_bound_group",
        "MetricName": "tma_core_bound",
        "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck.  Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles where the Divider unit was active",
        "MetricExpr": "ARITH.DIVIDER_ACTIVE / CLKS",
        "MetricGroup": "TopdownL3;tma_core_bound_group",
        "MetricName": "tma_divider",
        "PublicDescription": "This metric represents fraction of cycles where the Divider unit was active. Divide and square root instructions are performed by the Divider unit and can take considerably longer latency than integer or Floating Point addition; subtraction; or multiplication. Sample with: ARITH.DIVIDER_ACTIVE",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles the CPU performance was potentially limited due to Core computation issues (non divider-related)",
        "MetricExpr": "(cpu@EXE_ACTIVITY.3_PORTS_UTIL\\,umask\\=0x80@ + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL)) / CLKS if (ARITH.DIVIDER_ACTIVE < (CYCLE_ACTIVITY.STALLS_TOTAL - CYCLE_ACTIVITY.STALLS_MEM_ANY)) else (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) / CLKS",
        "MetricGroup": "PortsUtil;TopdownL3;tma_core_bound_group",
        "MetricName": "tma_ports_utilization",
        "PublicDescription": "This metric estimates fraction of cycles the CPU performance was potentially limited due to Core computation issues (non divider-related).  Two distinct categories can be attributed into this metric: (1) heavy data-dependency among contiguous instructions would manifest in this metric - such cases are often referred to as low Instruction Level Parallelism (ILP). (2) Contention on some hardware execution unit other than Divider. For example; when there are too many multiply operations.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles CPU executed no uops on any execution port (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
        "MetricExpr": "cpu@EXE_ACTIVITY.3_PORTS_UTIL\\,umask\\=0x80@ / CLKS + tma_serializing_operation * (CYCLE_ACTIVITY.STALLS_TOTAL - CYCLE_ACTIVITY.STALLS_MEM_ANY) / CLKS",
        "MetricGroup": "PortsUtil;TopdownL4;tma_ports_utilization_group",
        "MetricName": "tma_ports_utilized_0",
        "PublicDescription": "This metric represents fraction of cycles CPU executed no uops on any execution port (Logical Processor cycles since ICL, Physical Core cycles otherwise). Long-latency instructions like divides may contribute to this metric.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU issue-pipeline was stalled due to serializing operations",
        "MetricExpr": "RESOURCE_STALLS.SCOREBOARD / CLKS",
        "MetricGroup": "TopdownL5;tma_ports_utilized_0_group",
        "MetricName": "tma_serializing_operation",
        "PublicDescription": "This metric represents fraction of cycles the CPU issue-pipeline was stalled due to serializing operations. Instructions like CPUID; WRMSR or LFENCE serialize the out-of-order execution which may limit performance. Sample with: RESOURCE_STALLS.SCOREBOARD",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to PAUSE Instructions",
        "MetricExpr": "140 * MISC_RETIRED.PAUSE_INST / CLKS",
        "MetricGroup": "TopdownL6;tma_serializing_operation_group",
        "MetricName": "tma_slow_pause",
        "PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to PAUSE Instructions. Sample with: MISC_RETIRED.PAUSE_INST",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "The Mixing_Vectors metric gives the percentage of injected blend uops out of all uops issued",
        "MetricExpr": "CLKS * UOPS_ISSUED.VECTOR_WIDTH_MISMATCH / UOPS_ISSUED.ANY",
        "MetricGroup": "TopdownL5;tma_ports_utilized_0_group",
        "MetricName": "tma_mixing_vectors",
        "PublicDescription": "The Mixing_Vectors metric gives the percentage of injected blend uops out of all uops issued. Usually a Mixing_Vectors over 5% is worth investigating. Read more in Appendix B1 of the Optimizations Guide for this topic.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles where the CPU executed total of 1 uop per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
        "MetricExpr": "EXE_ACTIVITY.1_PORTS_UTIL / CLKS",
        "MetricGroup": "PortsUtil;TopdownL4;tma_ports_utilization_group",
        "MetricName": "tma_ports_utilized_1",
        "PublicDescription": "This metric represents fraction of cycles where the CPU executed total of 1 uop per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise). This can be due to heavy data-dependency among software instructions; or over oversubscribing a particular hardware resource. In some other cases with high 1_Port_Utilized and L1_Bound; this metric can point to L1 data-cache latency bottleneck that may not necessarily manifest with complete execution starvation (due to the short L1 latency e.g. walking a linked list) - looking at the assembly can be helpful. Sample with: EXE_ACTIVITY.1_PORTS_UTIL",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles CPU executed total of 2 uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
        "MetricExpr": "EXE_ACTIVITY.2_PORTS_UTIL / CLKS",
        "MetricGroup": "PortsUtil;TopdownL4;tma_ports_utilization_group",
        "MetricName": "tma_ports_utilized_2",
        "PublicDescription": "This metric represents fraction of cycles CPU executed total of 2 uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise).  Loop Vectorization -most compilers feature auto-Vectorization options today- reduces pressure on the execution ports as multiple elements are calculated with same uop. Sample with: EXE_ACTIVITY.2_PORTS_UTIL",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of cycles CPU executed total of 3 or more uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise)",
        "MetricExpr": "UOPS_EXECUTED.CYCLES_GE_3 / CLKS",
        "MetricGroup": "PortsUtil;TopdownL4;tma_ports_utilization_group",
        "MetricName": "tma_ports_utilized_3m",
        "PublicDescription": "This metric represents fraction of cycles CPU executed total of 3 or more uops per cycle on all execution ports (Logical Processor cycles since ICL, Physical Core cycles otherwise). Sample with: UOPS_EXECUTED.CYCLES_GE_3",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution ports for ALU operations.",
        "MetricExpr": "(UOPS_DISPATCHED.PORT_0 + UOPS_DISPATCHED.PORT_1 + UOPS_DISPATCHED.PORT_5 + UOPS_DISPATCHED.PORT_6) / (4 * CORE_CLKS)",
        "MetricGroup": "TopdownL5;tma_ports_utilized_3m_group",
        "MetricName": "tma_alu_op_utilization",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 0 ([SNB+] ALU; [HSW+] ALU and 2nd branch) Sample with: UOPS_DISPATCHED.PORT_0",
        "MetricExpr": "UOPS_DISPATCHED.PORT_0 / CORE_CLKS",
        "MetricGroup": "Compute;TopdownL6;tma_alu_op_utilization_group",
        "MetricName": "tma_port_0",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 1 (ALU) Sample with: UOPS_DISPATCHED.PORT_1",
        "MetricExpr": "UOPS_DISPATCHED.PORT_1 / CORE_CLKS",
        "MetricGroup": "TopdownL6;tma_alu_op_utilization_group",
        "MetricName": "tma_port_1",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 5 ([SNB+] Branches and ALU; [HSW+] ALU) Sample with: UOPS_DISPATCHED.PORT_5",
        "MetricExpr": "UOPS_DISPATCHED.PORT_5 / CORE_CLKS",
        "MetricGroup": "TopdownL6;tma_alu_op_utilization_group",
        "MetricName": "tma_port_5",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port 6 ([HSW+]Primary Branch and simple ALU) Sample with: UOPS_DISPATCHED.PORT_6",
        "MetricExpr": "UOPS_DISPATCHED.PORT_6 / CORE_CLKS",
        "MetricGroup": "TopdownL6;tma_alu_op_utilization_group",
        "MetricName": "tma_port_6",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port for Load operations Sample with: UOPS_DISPATCHED.PORT_2_3",
        "MetricExpr": "UOPS_DISPATCHED.PORT_2_3 / (2 * CORE_CLKS)",
        "MetricGroup": "TopdownL5;tma_ports_utilized_3m_group",
        "MetricName": "tma_load_op_utilization",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port for Store operations Sample with: UOPS_DISPATCHED.PORT_7_8",
        "MetricExpr": "(UOPS_DISPATCHED.PORT_4_9 + UOPS_DISPATCHED.PORT_7_8) / (4 * CORE_CLKS)",
        "MetricGroup": "TopdownL5;tma_ports_utilized_3m_group",
        "MetricName": "tma_store_op_utilization",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired",
        "MetricExpr": "topdown\\-retiring / (topdown\\-fe\\-bound + topdown\\-bad\\-spec + topdown\\-retiring + topdown\\-be\\-bound) + 0*SLOTS",
        "MetricGroup": "TopdownL1;tma_L1_group",
        "MetricName": "tma_retiring",
        "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category.  Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved.  Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance.  For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided.  Sample with: UOPS_RETIRED.SLOTS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation)",
        "MetricExpr": "max(0, tma_retiring - tma_heavy_operations)",
        "MetricGroup": "Retire;TopdownL2;tma_L2_group;tma_retiring_group",
        "MetricName": "tma_light_operations",
        "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents overall arithmetic floating-point (FP) operations fraction the CPU has executed (retired)",
        "MetricExpr": "tma_x87_use + tma_fp_scalar + tma_fp_vector",
        "MetricGroup": "HPC;TopdownL3;tma_light_operations_group",
        "MetricName": "tma_fp_arith",
        "PublicDescription": "This metric represents overall arithmetic floating-point (FP) operations fraction the CPU has executed (retired). Note this metric's value may exceed its parent due to use of \"Uops\" CountDomain and FMA double-counting.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric serves as an approximation of legacy x87 usage",
        "MetricExpr": "tma_retiring * UOPS_EXECUTED.X87 / UOPS_EXECUTED.THREAD",
        "MetricGroup": "Compute;TopdownL4;tma_fp_arith_group",
        "MetricName": "tma_x87_use",
        "PublicDescription": "This metric serves as an approximation of legacy x87 usage. It accounts for instructions beyond X87 FP arithmetic operations; hence may be used as a thermometer to avoid X87 high usage and preferably upgrade to modern ISA. See Tip under Tuning Hint.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric approximates arithmetic floating-point (FP) scalar uops fraction the CPU has retired",
        "MetricExpr": "(FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) / (tma_retiring * SLOTS)",
        "MetricGroup": "Compute;Flops;TopdownL4;tma_fp_arith_group",
        "MetricName": "tma_fp_scalar",
        "PublicDescription": "This metric approximates arithmetic floating-point (FP) scalar uops fraction the CPU has retired. May overcount due to FMA double counting.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric approximates arithmetic floating-point (FP) vector uops fraction the CPU has retired aggregated across all vector widths",
        "MetricExpr": "(FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE) / (tma_retiring * SLOTS)",
        "MetricGroup": "Compute;Flops;TopdownL4;tma_fp_arith_group",
        "MetricName": "tma_fp_vector",
        "PublicDescription": "This metric approximates arithmetic floating-point (FP) vector uops fraction the CPU has retired aggregated across all vector widths. May overcount due to FMA double counting.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric approximates arithmetic FP vector uops fraction the CPU has retired for 128-bit wide vectors",
        "MetricExpr": "(FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE) / (tma_retiring * SLOTS)",
        "MetricGroup": "Compute;Flops;TopdownL5;tma_fp_vector_group",
        "MetricName": "tma_fp_vector_128b",
        "PublicDescription": "This metric approximates arithmetic FP vector uops fraction the CPU has retired for 128-bit wide vectors. May overcount due to FMA double counting.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric approximates arithmetic FP vector uops fraction the CPU has retired for 256-bit wide vectors",
        "MetricExpr": "(FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE) / (tma_retiring * SLOTS)",
        "MetricGroup": "Compute;Flops;TopdownL5;tma_fp_vector_group",
        "MetricName": "tma_fp_vector_256b",
        "PublicDescription": "This metric approximates arithmetic FP vector uops fraction the CPU has retired for 256-bit wide vectors. May overcount due to FMA double counting.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric approximates arithmetic FP vector uops fraction the CPU has retired for 512-bit wide vectors",
        "MetricExpr": "(FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE) / (tma_retiring * SLOTS)",
        "MetricGroup": "Compute;Flops;TopdownL5;tma_fp_vector_group",
        "MetricName": "tma_fp_vector_512b",
        "PublicDescription": "This metric approximates arithmetic FP vector uops fraction the CPU has retired for 512-bit wide vectors. May overcount due to FMA double counting.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots where the CPU was retiring memory operations -- uops for memory load or store accesses.",
        "MetricExpr": "tma_light_operations * MEM_INST_RETIRED.ANY / INST_RETIRED.ANY",
        "MetricGroup": "Pipeline;TopdownL3;tma_light_operations_group",
        "MetricName": "tma_memory_operations",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots where the CPU was retiring branch instructions.",
        "MetricExpr": "tma_light_operations * BR_INST_RETIRED.ALL_BRANCHES / (tma_retiring * SLOTS)",
        "MetricGroup": "Pipeline;TopdownL3;tma_light_operations_group",
        "MetricName": "tma_branch_instructions",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots where the CPU was retiring NOP (no op) instructions",
        "MetricExpr": "tma_light_operations * INST_RETIRED.NOP / (tma_retiring * SLOTS)",
        "MetricGroup": "Pipeline;TopdownL3;tma_light_operations_group",
        "MetricName": "tma_nop_instructions",
        "PublicDescription": "This metric represents fraction of slots where the CPU was retiring NOP (no op) instructions. Compilers often use NOPs for certain address alignments - e.g. start address of a function or loop body. Sample with: INST_RETIRED.NOP",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents the remaining light uops fraction the CPU has executed - remaining means not covered by other sibling nodes. May undercount due to FMA double counting",
        "MetricExpr": "max(0, tma_light_operations - (tma_fp_arith + tma_memory_operations + tma_branch_instructions + tma_nop_instructions))",
        "MetricGroup": "Pipeline;TopdownL3;tma_light_operations_group",
        "MetricName": "tma_other_light_ops",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or microcoded sequences",
        "MetricExpr": "tma_microcode_sequencer + tma_retiring * (UOPS_DECODED.DEC0 - cpu@UOPS_DECODED.DEC0\\,cmask\\=1@) / IDQ.MITE_UOPS",
        "MetricGroup": "Retire;TopdownL2;tma_L2_group;tma_retiring_group",
        "MetricName": "tma_heavy_operations",
        "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or microcoded sequences. This highly-correlates with the uop length of these instructions/sequences.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots where the CPU was retiring instructions that that are decoder into two or up to ([SNB+] four; [ADL+] five) uops",
        "MetricExpr": "tma_heavy_operations - tma_microcode_sequencer",
        "MetricGroup": "TopdownL3;tma_heavy_operations_group",
        "MetricName": "tma_few_uops_instructions",
        "PublicDescription": "This metric represents fraction of slots where the CPU was retiring instructions that that are decoder into two or up to ([SNB+] four; [ADL+] five) uops. This highly-correlates with the number of uops in such instructions.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric represents fraction of slots the CPU was retiring uops fetched by the Microcode Sequencer (MS) unit",
        "MetricExpr": "((tma_retiring * SLOTS) / UOPS_ISSUED.ANY) * IDQ.MS_UOPS / SLOTS",
        "MetricGroup": "MicroSeq;TopdownL3;tma_heavy_operations_group",
        "MetricName": "tma_microcode_sequencer",
        "PublicDescription": "This metric represents fraction of slots the CPU was retiring uops fetched by the Microcode Sequencer (MS) unit.  The MS is used for CISC instructions not supported by the default decoders (like repeat move strings; or CPUID); or by microcode assists used to address some operation modes (like in Floating Point assists). These cases can often be avoided. Sample with: IDQ.MS_UOPS",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of slots the CPU retired uops delivered by the Microcode_Sequencer as a result of Assists",
        "MetricExpr": "100 * ASSISTS.ANY / SLOTS",
        "MetricGroup": "TopdownL4;tma_microcode_sequencer_group",
        "MetricName": "tma_assists",
        "PublicDescription": "This metric estimates fraction of slots the CPU retired uops delivered by the Microcode_Sequencer as a result of Assists. Assists are long sequences of uops that are required in certain corner-cases for operations that cannot be handled natively by the execution pipeline. For example; when working with very small floating point values (so-called Denormals); the FP units are not set up to perform these operations natively. Instead; a sequence of instructions to perform the computation on the Denormals is injected into the pipeline. Since these microcode sequences might be dozens of uops long; Assists can be extremely deleterious to performance and they can be avoided in many cases. Sample with: ASSISTS.ANY",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "This metric estimates fraction of cycles the CPU retired uops originated from CISC (complex instruction set computer) instruction",
        "MetricExpr": "max(0, tma_microcode_sequencer - tma_assists)",
        "MetricGroup": "TopdownL4;tma_microcode_sequencer_group",
        "MetricName": "tma_cisc",
        "PublicDescription": "This metric estimates fraction of cycles the CPU retired uops originated from CISC (complex instruction set computer) instruction. A CISC instruction has multiple uops that are required to perform the instruction's functionality as in the case of read-modify-write as an example. Since these instructions require multiple uops they may or may not imply sub-optimal use of machine resources.",
        "ScaleUnit": "100%"
    },
    {
        "BriefDescription": "Total pipeline cost of Branch Misprediction related bottlenecks",
        "MetricExpr": "100 * (tma_branch_mispredicts + tma_fetch_latency * tma_mispredicts_resteers / (tma_branch_resteers + tma_dsb_switches + tma_icache_misses + tma_itlb_misses + tma_lcp + tma_ms_switches))",
        "MetricGroup": "Bad;BadSpec;BrMispredicts",
        "MetricName": "Mispredictions"
    },
    {
        "BriefDescription": "Total pipeline cost of (external) Memory Bandwidth related bottlenecks",
        "MetricExpr": "100 * tma_memory_bound * ((tma_dram_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_mem_bandwidth / (tma_mem_bandwidth + tma_mem_latency)) + (tma_l3_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_sq_full / (tma_contested_accesses + tma_data_sharing + tma_l3_hit_latency + tma_sq_full))) + (tma_l1_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_fb_full / (tma_4k_aliasing + tma_dtlb_load + tma_fb_full + tma_lock_latency + tma_split_loads + tma_store_fwd_blk)) ",
        "MetricGroup": "Mem;MemoryBW;Offcore",
        "MetricName": "Memory_Bandwidth"
    },
    {
        "BriefDescription": "Total pipeline cost of Memory Latency related bottlenecks (external memory and off-core caches)",
        "MetricExpr": "100 * tma_memory_bound * ((tma_dram_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_mem_latency / (tma_mem_bandwidth + tma_mem_latency)) + (tma_l3_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_l3_hit_latency / (tma_contested_accesses + tma_data_sharing + tma_l3_hit_latency + tma_sq_full)) + (tma_l2_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)))",
        "MetricGroup": "Mem;MemoryLat;Offcore",
        "MetricName": "Memory_Latency"
    },
    {
        "BriefDescription": "Total pipeline cost of Memory Address Translation related bottlenecks (data-side TLBs)",
        "MetricExpr": "100 * tma_memory_bound * ((tma_l1_bound / max(tma_memory_bound, tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_dtlb_load / max(tma_l1_bound, tma_4k_aliasing + tma_dtlb_load + tma_fb_full + tma_lock_latency + tma_split_loads + tma_store_fwd_blk)) + (tma_store_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_dtlb_store / (tma_dtlb_store + tma_false_sharing + tma_split_stores + tma_store_latency + tma_streaming_stores))) ",
        "MetricGroup": "Mem;MemoryTLB;Offcore",
        "MetricName": "Memory_Data_TLBs"
    },
    {
        "BriefDescription": "Total pipeline cost of branch related instructions (used for program control-flow including function calls)",
        "MetricExpr": "100 * ((BR_INST_RETIRED.COND + 3 * BR_INST_RETIRED.NEAR_CALL + (BR_INST_RETIRED.NEAR_TAKEN - BR_INST_RETIRED.COND_TAKEN - 2 * BR_INST_RETIRED.NEAR_CALL)) / SLOTS)",
        "MetricGroup": "Ret",
        "MetricName": "Branching_Overhead"
    },
    {
        "BriefDescription": "Total pipeline cost of instruction fetch related bottlenecks by large code footprint programs (i-side cache; TLB and BTB misses)",
        "MetricExpr": "100 * tma_fetch_latency * (tma_itlb_misses + tma_icache_misses + tma_unknown_branches) / (tma_branch_resteers + tma_dsb_switches + tma_icache_misses + tma_itlb_misses + tma_lcp + tma_ms_switches)",
        "MetricGroup": "BigFoot;Fed;Frontend;IcMiss;MemoryTLB",
        "MetricName": "Big_Code"
    },
    {
        "BriefDescription": "Total pipeline cost of instruction fetch bandwidth related bottlenecks",
        "MetricExpr": "100 * (tma_frontend_bound - tma_fetch_latency * tma_mispredicts_resteers / (tma_branch_resteers + tma_dsb_switches + tma_icache_misses + tma_itlb_misses + tma_lcp + tma_ms_switches)) - Big_Code",
        "MetricGroup": "Fed;FetchBW;Frontend",
        "MetricName": "Instruction_Fetch_BW"
    },
    {
        "BriefDescription": "Instructions Per Cycle (per Logical Processor)",
        "MetricExpr": "INST_RETIRED.ANY / CLKS",
        "MetricGroup": "Ret;Summary",
        "MetricName": "IPC"
    },
    {
        "BriefDescription": "Uops Per Instruction",
        "MetricExpr": "(tma_retiring * SLOTS) / INST_RETIRED.ANY",
        "MetricGroup": "Pipeline;Ret;Retire",
        "MetricName": "UPI"
    },
    {
        "BriefDescription": "Instruction per taken branch",
        "MetricExpr": "(tma_retiring * SLOTS) / BR_INST_RETIRED.NEAR_TAKEN",
        "MetricGroup": "Branches;Fed;FetchBW",
        "MetricName": "UpTB"
    },
    {
        "BriefDescription": "Cycles Per Instruction (per Logical Processor)",
        "MetricExpr": "1 / IPC",
        "MetricGroup": "Mem;Pipeline",
        "MetricName": "CPI"
    },
    {
        "BriefDescription": "Per-Logical Processor actual clocks when the Logical Processor is active.",
        "MetricExpr": "CPU_CLK_UNHALTED.THREAD",
        "MetricGroup": "Pipeline",
        "MetricName": "CLKS"
    },
    {
        "BriefDescription": "Total issue-pipeline slots (per-Physical Core till ICL; per-Logical Processor ICL onward)",
        "MetricExpr": "TOPDOWN.SLOTS",
        "MetricGroup": "tma_L1_group",
        "MetricName": "SLOTS"
    },
    {
        "BriefDescription": "Fraction of Physical Core issue-slots utilized by this Logical Processor",
        "MetricExpr": "SLOTS / (TOPDOWN.SLOTS / 2) if #SMT_on else 1",
        "MetricGroup": "SMT;tma_L1_group",
        "MetricName": "Slots_Utilization"
    },
    {
        "BriefDescription": "The ratio of Executed- by Issued-Uops",
        "MetricExpr": "UOPS_EXECUTED.THREAD / UOPS_ISSUED.ANY",
        "MetricGroup": "Cor;Pipeline",
        "MetricName": "Execute_per_Issue",
        "PublicDescription": "The ratio of Executed- by Issued-Uops. Ratio > 1 suggests high rate of uop micro-fusions. Ratio < 1 suggest high rate of \"execute\" at rename stage."
    },
    {
        "BriefDescription": "Instructions Per Cycle across hyper-threads (per physical core)",
        "MetricExpr": "INST_RETIRED.ANY / CORE_CLKS",
        "MetricGroup": "Ret;SMT;tma_L1_group",
        "MetricName": "CoreIPC"
    },
    {
        "BriefDescription": "Floating Point Operations Per Cycle",
        "MetricExpr": "(1 * (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * (FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE) + 16 * FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE) / CORE_CLKS",
        "MetricGroup": "Flops;Ret",
        "MetricName": "FLOPc"
    },
    {
        "BriefDescription": "Actual per-core usage of the Floating Point non-X87 execution units (regardless of precision or vector-width)",
        "MetricExpr": "((FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + (FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE)) / (2 * CORE_CLKS)",
        "MetricGroup": "Cor;Flops;HPC",
        "MetricName": "FP_Arith_Utilization",
        "PublicDescription": "Actual per-core usage of the Floating Point non-X87 execution units (regardless of precision or vector-width). Values > 1 are possible due to ([BDW+] Fused-Multiply Add (FMA) counting - common; [ADL+] use all of ADD/MUL/FMA in Scalar or 128/256-bit vectors - less common)."
    },
    {
        "BriefDescription": "Instruction-Level-Parallelism (average number of uops executed when there is execution) per-core",
        "MetricExpr": "UOPS_EXECUTED.THREAD / ((UOPS_EXECUTED.CORE_CYCLES_GE_1 / 2) if #SMT_on else UOPS_EXECUTED.CORE_CYCLES_GE_1)",
        "MetricGroup": "Backend;Cor;Pipeline;PortsUtil",
        "MetricName": "ILP"
    },
    {
        "BriefDescription": "Probability of Core Bound bottleneck hidden by SMT-profiling artifacts",
        "MetricExpr": "(1 - tma_core_bound / tma_ports_utilization if tma_core_bound < tma_ports_utilization else 1) if SMT_2T_Utilization > 0.5 else 0",
        "MetricGroup": "Cor;SMT",
        "MetricName": "Core_Bound_Likely"
    },
    {
        "BriefDescription": "Core actual clocks when any Logical Processor is active on the Physical Core",
        "MetricExpr": "CPU_CLK_UNHALTED.DISTRIBUTED",
        "MetricGroup": "SMT",
        "MetricName": "CORE_CLKS"
    },
    {
        "BriefDescription": "Instructions per Load (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / MEM_INST_RETIRED.ALL_LOADS",
        "MetricGroup": "InsType",
        "MetricName": "IpLoad"
    },
    {
        "BriefDescription": "Instructions per Store (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / MEM_INST_RETIRED.ALL_STORES",
        "MetricGroup": "InsType",
        "MetricName": "IpStore"
    },
    {
        "BriefDescription": "Instructions per Branch (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / BR_INST_RETIRED.ALL_BRANCHES",
        "MetricGroup": "Branches;Fed;InsType",
        "MetricName": "IpBranch"
    },
    {
        "BriefDescription": "Instructions per (near) call (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / BR_INST_RETIRED.NEAR_CALL",
        "MetricGroup": "Branches;Fed;PGO",
        "MetricName": "IpCall"
    },
    {
        "BriefDescription": "Instruction per taken branch",
        "MetricExpr": "INST_RETIRED.ANY / BR_INST_RETIRED.NEAR_TAKEN",
        "MetricGroup": "Branches;Fed;FetchBW;Frontend;PGO",
        "MetricName": "IpTB"
    },
    {
        "BriefDescription": "Branch instructions per taken branch. ",
        "MetricExpr": "BR_INST_RETIRED.ALL_BRANCHES / BR_INST_RETIRED.NEAR_TAKEN",
        "MetricGroup": "Branches;Fed;PGO",
        "MetricName": "BpTkBranch"
    },
    {
        "BriefDescription": "Instructions per Floating Point (FP) Operation (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / (1 * (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * (FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE) + 16 * FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE)",
        "MetricGroup": "Flops;InsType",
        "MetricName": "IpFLOP"
    },
    {
        "BriefDescription": "Instructions per FP Arithmetic instruction (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / ((FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + (FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE))",
        "MetricGroup": "Flops;InsType",
        "MetricName": "IpArith",
        "PublicDescription": "Instructions per FP Arithmetic instruction (lower number means higher occurrence rate). May undercount due to FMA double counting. Approximated prior to BDW."
    },
    {
        "BriefDescription": "Instructions per FP Arithmetic Scalar Single-Precision instruction (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / FP_ARITH_INST_RETIRED.SCALAR_SINGLE",
        "MetricGroup": "Flops;FpScalar;InsType",
        "MetricName": "IpArith_Scalar_SP",
        "PublicDescription": "Instructions per FP Arithmetic Scalar Single-Precision instruction (lower number means higher occurrence rate). May undercount due to FMA double counting."
    },
    {
        "BriefDescription": "Instructions per FP Arithmetic Scalar Double-Precision instruction (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / FP_ARITH_INST_RETIRED.SCALAR_DOUBLE",
        "MetricGroup": "Flops;FpScalar;InsType",
        "MetricName": "IpArith_Scalar_DP",
        "PublicDescription": "Instructions per FP Arithmetic Scalar Double-Precision instruction (lower number means higher occurrence rate). May undercount due to FMA double counting."
    },
    {
        "BriefDescription": "Instructions per FP Arithmetic AVX/SSE 128-bit instruction (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / (FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE)",
        "MetricGroup": "Flops;FpVector;InsType",
        "MetricName": "IpArith_AVX128",
        "PublicDescription": "Instructions per FP Arithmetic AVX/SSE 128-bit instruction (lower number means higher occurrence rate). May undercount due to FMA double counting."
    },
    {
        "BriefDescription": "Instructions per FP Arithmetic AVX* 256-bit instruction (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / (FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE)",
        "MetricGroup": "Flops;FpVector;InsType",
        "MetricName": "IpArith_AVX256",
        "PublicDescription": "Instructions per FP Arithmetic AVX* 256-bit instruction (lower number means higher occurrence rate). May undercount due to FMA double counting."
    },
    {
        "BriefDescription": "Instructions per FP Arithmetic AVX 512-bit instruction (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / (FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE)",
        "MetricGroup": "Flops;FpVector;InsType",
        "MetricName": "IpArith_AVX512",
        "PublicDescription": "Instructions per FP Arithmetic AVX 512-bit instruction (lower number means higher occurrence rate). May undercount due to FMA double counting."
    },
    {
        "BriefDescription": "Instructions per Software prefetch instruction (of any type: NTA/T0/T1/T2/Prefetch) (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / cpu@SW_PREFETCH_ACCESS.T0\\,umask\\=0xF@",
        "MetricGroup": "Prefetches",
        "MetricName": "IpSWPF"
    },
    {
        "BriefDescription": "Total number of retired Instructions Sample with: INST_RETIRED.PREC_DIST",
        "MetricExpr": "INST_RETIRED.ANY",
        "MetricGroup": "Summary;tma_L1_group",
        "MetricName": "Instructions"
    },
    {
        "BriefDescription": "Average number of Uops retired in cycles where at least one uop has retired.",
        "MetricExpr": "(tma_retiring * SLOTS) / cpu@UOPS_RETIRED.SLOTS\\,cmask\\=1@",
        "MetricGroup": "Pipeline;Ret",
        "MetricName": "Retire"
    },
    {
        "BriefDescription": "",
        "MetricExpr": "UOPS_EXECUTED.THREAD / cpu@UOPS_EXECUTED.THREAD\\,cmask\\=1@",
        "MetricGroup": "Cor;Pipeline;PortsUtil;SMT",
        "MetricName": "Execute"
    },
    {
        "BriefDescription": "Average number of Uops issued by front-end when it issued something",
        "MetricExpr": "UOPS_ISSUED.ANY / cpu@UOPS_ISSUED.ANY\\,cmask\\=1@",
        "MetricGroup": "Fed;FetchBW",
        "MetricName": "Fetch_UpC"
    },
    {
        "BriefDescription": "Fraction of Uops delivered by the LSD (Loop Stream Detector; aka Loop Cache)",
        "MetricExpr": "LSD.UOPS / (IDQ.DSB_UOPS + LSD.UOPS + IDQ.MITE_UOPS + IDQ.MS_UOPS)",
        "MetricGroup": "Fed;LSD",
        "MetricName": "LSD_Coverage"
    },
    {
        "BriefDescription": "Fraction of Uops delivered by the DSB (aka Decoded ICache; or Uop Cache)",
        "MetricExpr": "IDQ.DSB_UOPS / (IDQ.DSB_UOPS + LSD.UOPS + IDQ.MITE_UOPS + IDQ.MS_UOPS)",
        "MetricGroup": "DSB;Fed;FetchBW",
        "MetricName": "DSB_Coverage"
    },
    {
        "BriefDescription": "Average number of cycles of a switch from the DSB fetch-unit to MITE fetch unit - see DSB_Switches tree node for details.",
        "MetricExpr": "DSB2MITE_SWITCHES.PENALTY_CYCLES / cpu@DSB2MITE_SWITCHES.PENALTY_CYCLES\\,cmask\\=1\\,edge@",
        "MetricGroup": "DSBmiss",
        "MetricName": "DSB_Switch_Cost"
    },
    {
        "BriefDescription": "Total penalty related to DSB (uop cache) misses - subset of the Instruction_Fetch_BW Bottleneck.",
        "MetricExpr": "100 * (tma_fetch_latency * tma_dsb_switches / (tma_branch_resteers + tma_dsb_switches + tma_icache_misses + tma_itlb_misses + tma_lcp + tma_ms_switches) + tma_fetch_bandwidth * tma_mite / (tma_dsb + tma_lsd + tma_mite))",
        "MetricGroup": "DSBmiss;Fed",
        "MetricName": "DSB_Misses"
    },
    {
        "BriefDescription": "Number of Instructions per non-speculative DSB miss (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / FRONTEND_RETIRED.ANY_DSB_MISS",
        "MetricGroup": "DSBmiss;Fed",
        "MetricName": "IpDSB_Miss_Ret"
    },
    {
        "BriefDescription": "Number of Instructions per non-speculative Branch Misprediction (JEClear) (lower number means higher occurrence rate)",
        "MetricExpr": "INST_RETIRED.ANY / BR_MISP_RETIRED.ALL_BRANCHES",
        "MetricGroup": "Bad;BadSpec;BrMispredicts",
        "MetricName": "IpMispredict"
    },
    {
        "BriefDescription": "Branch Misprediction Cost: Fraction of TMA slots wasted per non-speculative branch misprediction (retired JEClear)",
        "MetricExpr": " (tma_branch_mispredicts + tma_fetch_latency * tma_mispredicts_resteers / (tma_branch_resteers + tma_dsb_switches + tma_icache_misses + tma_itlb_misses + tma_lcp + tma_ms_switches)) * SLOTS / BR_MISP_RETIRED.ALL_BRANCHES",
        "MetricGroup": "Bad;BrMispredicts",
        "MetricName": "Branch_Misprediction_Cost"
    },
    {
        "BriefDescription": "Fraction of branches that are non-taken conditionals",
        "MetricExpr": "BR_INST_RETIRED.COND_NTAKEN / BR_INST_RETIRED.ALL_BRANCHES",
        "MetricGroup": "Bad;Branches;CodeGen;PGO",
        "MetricName": "Cond_NT"
    },
    {
        "BriefDescription": "Fraction of branches that are taken conditionals",
        "MetricExpr": "BR_INST_RETIRED.COND_TAKEN / BR_INST_RETIRED.ALL_BRANCHES",
        "MetricGroup": "Bad;Branches;CodeGen;PGO",
        "MetricName": "Cond_TK"
    },
    {
        "BriefDescription": "Fraction of branches that are CALL or RET",
        "MetricExpr": "(BR_INST_RETIRED.NEAR_CALL + BR_INST_RETIRED.NEAR_RETURN) / BR_INST_RETIRED.ALL_BRANCHES",
        "MetricGroup": "Bad;Branches",
        "MetricName": "CallRet"
    },
    {
        "BriefDescription": "Fraction of branches that are unconditional (direct or indirect) jumps",
        "MetricExpr": "(BR_INST_RETIRED.NEAR_TAKEN - BR_INST_RETIRED.COND_TAKEN - 2 * BR_INST_RETIRED.NEAR_CALL) / BR_INST_RETIRED.ALL_BRANCHES",
        "MetricGroup": "Bad;Branches",
        "MetricName": "Jump"
    },
    {
        "BriefDescription": "Fraction of branches of other types (not individually covered by other metrics in Info.Branches group)",
        "MetricExpr": "1 - (Cond_NT + Cond_TK + CallRet + Jump)",
        "MetricGroup": "Bad;Branches",
        "MetricName": "Other_Branches"
    },
    {
        "BriefDescription": "Actual Average Latency for L1 data-cache miss demand load operations (in core cycles)",
        "MetricExpr": "L1D_PEND_MISS.PENDING / (MEM_LOAD_RETIRED.L1_MISS + MEM_LOAD_RETIRED.FB_HIT)",
        "MetricGroup": "Mem;MemoryBound;MemoryLat",
        "MetricName": "Load_Miss_Real_Latency"
    },
    {
        "BriefDescription": "Memory-Level-Parallelism (average number of L1 miss demand load when there is at least one such miss. Per-Logical Processor)",
        "MetricExpr": "L1D_PEND_MISS.PENDING / L1D_PEND_MISS.PENDING_CYCLES",
        "MetricGroup": "Mem;MemoryBW;MemoryBound",
        "MetricName": "MLP"
    },
    {
        "BriefDescription": "L1 cache true misses per kilo instruction for retired demand loads",
        "MetricExpr": "1000 * MEM_LOAD_RETIRED.L1_MISS / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem",
        "MetricName": "L1MPKI"
    },
    {
        "BriefDescription": "L1 cache true misses per kilo instruction for all demand loads (including speculative)",
        "MetricExpr": "1000 * L2_RQSTS.ALL_DEMAND_DATA_RD / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem",
        "MetricName": "L1MPKI_Load"
    },
    {
        "BriefDescription": "L2 cache true misses per kilo instruction for retired demand loads",
        "MetricExpr": "1000 * MEM_LOAD_RETIRED.L2_MISS / INST_RETIRED.ANY",
        "MetricGroup": "Backend;CacheMisses;Mem",
        "MetricName": "L2MPKI"
    },
    {
        "BriefDescription": "L2 cache ([RKL+] true) misses per kilo instruction for all request types (including speculative)",
        "MetricExpr": "1000 * L2_RQSTS.MISS / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem;Offcore",
        "MetricName": "L2MPKI_All"
    },
    {
        "BriefDescription": "L2 cache ([RKL+] true) misses per kilo instruction for all demand loads  (including speculative)",
        "MetricExpr": "1000 * L2_RQSTS.DEMAND_DATA_RD_MISS / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem",
        "MetricName": "L2MPKI_Load"
    },
    {
        "BriefDescription": "L2 cache hits per kilo instruction for all request types (including speculative)",
        "MetricExpr": "1000 * (L2_RQSTS.REFERENCES - L2_RQSTS.MISS) / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem",
        "MetricName": "L2HPKI_All"
    },
    {
        "BriefDescription": "L2 cache hits per kilo instruction for all demand loads  (including speculative)",
        "MetricExpr": "1000 * L2_RQSTS.DEMAND_DATA_RD_HIT / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem",
        "MetricName": "L2HPKI_Load"
    },
    {
        "BriefDescription": "L3 cache true misses per kilo instruction for retired demand loads",
        "MetricExpr": "1000 * MEM_LOAD_RETIRED.L3_MISS / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem",
        "MetricName": "L3MPKI"
    },
    {
        "BriefDescription": "Fill Buffer (FB) hits per kilo instructions for retired demand loads (L1D misses that merge into ongoing miss-handling entries)",
        "MetricExpr": "1000 * MEM_LOAD_RETIRED.FB_HIT / INST_RETIRED.ANY",
        "MetricGroup": "CacheMisses;Mem",
        "MetricName": "FB_HPKI"
    },
    {
        "BriefDescription": "Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses",
        "MetricConstraint": "NO_NMI_WATCHDOG",
        "MetricExpr": "(ITLB_MISSES.WALK_PENDING + DTLB_LOAD_MISSES.WALK_PENDING + DTLB_STORE_MISSES.WALK_PENDING) / (2 * CORE_CLKS)",
        "MetricGroup": "Mem;MemoryTLB",
        "MetricName": "Page_Walks_Utilization"
    },
    {
        "BriefDescription": "Average per-core data fill bandwidth to the L1 data cache [GB / sec]",
        "MetricExpr": "64 * L1D.REPLACEMENT / 1000000000 / duration_time",
        "MetricGroup": "Mem;MemoryBW",
        "MetricName": "L1D_Cache_Fill_BW"
    },
    {
        "BriefDescription": "Average per-core data fill bandwidth to the L2 cache [GB / sec]",
        "MetricExpr": "64 * L2_LINES_IN.ALL / 1000000000 / duration_time",
        "MetricGroup": "Mem;MemoryBW",
        "MetricName": "L2_Cache_Fill_BW"
    },
    {
        "BriefDescription": "Average per-core data fill bandwidth to the L3 cache [GB / sec]",
        "MetricExpr": "64 * LONGEST_LAT_CACHE.MISS / 1000000000 / duration_time",
        "MetricGroup": "Mem;MemoryBW",
        "MetricName": "L3_Cache_Fill_BW"
    },
    {
        "BriefDescription": "Average per-core data access bandwidth to the L3 cache [GB / sec]",
        "MetricExpr": "64 * OFFCORE_REQUESTS.ALL_REQUESTS / 1000000000 / duration_time",
        "MetricGroup": "Mem;MemoryBW;Offcore",
        "MetricName": "L3_Cache_Access_BW"
    },
    {
        "BriefDescription": "Average per-thread data fill bandwidth to the L1 data cache [GB / sec]",
        "MetricExpr": "L1D_Cache_Fill_BW",
        "MetricGroup": "Mem;MemoryBW",
        "MetricName": "L1D_Cache_Fill_BW_1T"
    },
    {
        "BriefDescription": "Average per-thread data fill bandwidth to the L2 cache [GB / sec]",
        "MetricExpr": "L2_Cache_Fill_BW",
        "MetricGroup": "Mem;MemoryBW",
        "MetricName": "L2_Cache_Fill_BW_1T"
    },
    {
        "BriefDescription": "Average per-thread data fill bandwidth to the L3 cache [GB / sec]",
        "MetricExpr": "L3_Cache_Fill_BW",
        "MetricGroup": "Mem;MemoryBW",
        "MetricName": "L3_Cache_Fill_BW_1T"
    },
    {
        "BriefDescription": "Average per-thread data access bandwidth to the L3 cache [GB / sec]",
        "MetricExpr": "L3_Cache_Access_BW",
        "MetricGroup": "Mem;MemoryBW;Offcore",
        "MetricName": "L3_Cache_Access_BW_1T"
    },
    {
        "BriefDescription": "Average CPU Utilization",
        "MetricExpr": "CPU_CLK_UNHALTED.REF_TSC / msr@tsc@",
        "MetricGroup": "HPC;Summary",
        "MetricName": "CPU_Utilization"
    },
    {
        "BriefDescription": "Measured Average Frequency for unhalted processors [GHz]",
        "MetricExpr": "Turbo_Utilization * msr@tsc@ / 1000000000 / duration_time",
        "MetricGroup": "Power;Summary",
        "MetricName": "Average_Frequency"
    },
    {
        "BriefDescription": "Giga Floating Point Operations Per Second",
        "MetricExpr": "((1 * (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * (FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE) + 16 * FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE) / 1000000000) / duration_time",
        "MetricGroup": "Cor;Flops;HPC",
        "MetricName": "GFLOPs",
        "PublicDescription": "Giga Floating Point Operations Per Second. Aggregate across all supported options of: FP precisions, scalar and vector instructions, vector-width and AMX engine."
    },
    {
        "BriefDescription": "Average Frequency Utilization relative nominal frequency",
        "MetricExpr": "CLKS / CPU_CLK_UNHALTED.REF_TSC",
        "MetricGroup": "Power",
        "MetricName": "Turbo_Utilization"
    },
    {
        "BriefDescription": "Fraction of Core cycles where the core was running with power-delivery for baseline license level 0",
        "MetricExpr": "CORE_POWER.LVL0_TURBO_LICENSE / CORE_CLKS",
        "MetricGroup": "Power",
        "MetricName": "Power_License0_Utilization",
        "PublicDescription": "Fraction of Core cycles where the core was running with power-delivery for baseline license level 0.  This includes non-AVX codes, SSE, AVX 128-bit, and low-current AVX 256-bit codes."
    },
    {
        "BriefDescription": "Fraction of Core cycles where the core was running with power-delivery for license level 1",
        "MetricExpr": "CORE_POWER.LVL1_TURBO_LICENSE / CORE_CLKS",
        "MetricGroup": "Power",
        "MetricName": "Power_License1_Utilization",
        "PublicDescription": "Fraction of Core cycles where the core was running with power-delivery for license level 1.  This includes high current AVX 256-bit instructions as well as low current AVX 512-bit instructions."
    },
    {
        "BriefDescription": "Fraction of Core cycles where the core was running with power-delivery for license level 2 (introduced in SKX)",
        "MetricExpr": "CORE_POWER.LVL2_TURBO_LICENSE / CORE_CLKS",
        "MetricGroup": "Power",
        "MetricName": "Power_License2_Utilization",
        "PublicDescription": "Fraction of Core cycles where the core was running with power-delivery for license level 2 (introduced in SKX).  This includes high current AVX 512-bit instructions."
    },
    {
        "BriefDescription": "Fraction of cycles where both hardware Logical Processors were active",
        "MetricExpr": "1 - CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / CPU_CLK_UNHALTED.REF_DISTRIBUTED if #SMT_on else 0",
        "MetricGroup": "SMT",
        "MetricName": "SMT_2T_Utilization"
    },
    {
        "BriefDescription": "Fraction of cycles spent in the Operating System (OS) Kernel mode",
        "MetricExpr": "CPU_CLK_UNHALTED.THREAD_P:k / CPU_CLK_UNHALTED.THREAD",
        "MetricGroup": "OS",
        "MetricName": "Kernel_Utilization"
    },
    {
        "BriefDescription": "Cycles Per Instruction for the Operating System (OS) Kernel mode",
        "MetricExpr": "CPU_CLK_UNHALTED.THREAD_P:k / INST_RETIRED.ANY_P:k",
        "MetricGroup": "OS",
        "MetricName": "Kernel_CPI"
    },
    {
        "BriefDescription": "Average external Memory Bandwidth Use for reads and writes [GB / sec]",
        "MetricExpr": "64 * (arb@event\\=0x81\\,umask\\=0x1@ + arb@event\\=0x84\\,umask\\=0x1@) / 1000000 / duration_time / 1000",
        "MetricGroup": "HPC;Mem;MemoryBW;SoC",
        "MetricName": "DRAM_BW_Use"
    },
    {
        "BriefDescription": "Average number of parallel requests to external memory. Accounts for all requests",
        "MetricExpr": "UNC_ARB_TRK_OCCUPANCY.ALL / arb@event\\=0x81\\,umask\\=0x1@",
        "MetricGroup": "Mem;SoC",
        "MetricName": "MEM_Parallel_Requests"
    },
    {
        "BriefDescription": "Instructions per Far Branch ( Far Branches apply upon transition from application to operating system, handling interrupts, exceptions) [lower number means higher occurrence rate]",
        "MetricExpr": "INST_RETIRED.ANY / BR_INST_RETIRED.FAR_BRANCH:u",
        "MetricGroup": "Branches;OS",
        "MetricName": "IpFarBranch"
    },
    {
        "BriefDescription": "C6 residency percent per core",
        "MetricExpr": "(cstate_core@c6\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C6_Core_Residency"
    },
    {
        "BriefDescription": "C7 residency percent per core",
        "MetricExpr": "(cstate_core@c7\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C7_Core_Residency"
    },
    {
        "BriefDescription": "C2 residency percent per package",
        "MetricExpr": "(cstate_pkg@c2\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C2_Pkg_Residency"
    },
    {
        "BriefDescription": "C3 residency percent per package",
        "MetricExpr": "(cstate_pkg@c3\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C3_Pkg_Residency"
    },
    {
        "BriefDescription": "C6 residency percent per package",
        "MetricExpr": "(cstate_pkg@c6\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C6_Pkg_Residency"
    },
    {
        "BriefDescription": "C7 residency percent per package",
        "MetricExpr": "(cstate_pkg@c7\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C7_Pkg_Residency"
    },
    {
        "BriefDescription": "C8 residency percent per package",
        "MetricExpr": "(cstate_pkg@c8\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C8_Pkg_Residency"
    },
    {
        "BriefDescription": "C9 residency percent per package",
        "MetricExpr": "(cstate_pkg@c9\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C9_Pkg_Residency"
    },
    {
        "BriefDescription": "C10 residency percent per package",
        "MetricExpr": "(cstate_pkg@c10\\-residency@ / msr@tsc@) * 100",
        "MetricGroup": "Power",
        "MetricName": "C10_Pkg_Residency"
    }
]