Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 | /* * Utility functions for x86 operand and address decoding * * Copyright (C) Intel Corporation 2017 */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/ratelimit.h> #include <linux/mmu_context.h> #include <asm/desc_defs.h> #include <asm/desc.h> #include <asm/inat.h> #include <asm/insn.h> #include <asm/insn-eval.h> #include <asm/ldt.h> #include <asm/vm86.h> #undef pr_fmt #define pr_fmt(fmt) "insn: " fmt enum reg_type { REG_TYPE_RM = 0, REG_TYPE_REG, REG_TYPE_INDEX, REG_TYPE_BASE, }; /** * is_string_insn() - Determine if instruction is a string instruction * @insn: Instruction containing the opcode to inspect * * Returns: * * true if the instruction, determined by the opcode, is any of the * string instructions as defined in the Intel Software Development manual. * False otherwise. */ static bool is_string_insn(struct insn *insn) { /* All string instructions have a 1-byte opcode. */ if (insn->opcode.nbytes != 1) return false; switch (insn->opcode.bytes[0]) { case 0x6c ... 0x6f: /* INS, OUTS */ case 0xa4 ... 0xa7: /* MOVS, CMPS */ case 0xaa ... 0xaf: /* STOS, LODS, SCAS */ return true; default: return false; } } /** * insn_has_rep_prefix() - Determine if instruction has a REP prefix * @insn: Instruction containing the prefix to inspect * * Returns: * * true if the instruction has a REP prefix, false if not. */ bool insn_has_rep_prefix(struct insn *insn) { insn_byte_t p; int i; insn_get_prefixes(insn); for_each_insn_prefix(insn, i, p) { if (p == 0xf2 || p == 0xf3) return true; } return false; } /** * get_seg_reg_override_idx() - obtain segment register override index * @insn: Valid instruction with segment override prefixes * * Inspect the instruction prefixes in @insn and find segment overrides, if any. * * Returns: * * A constant identifying the segment register to use, among CS, SS, DS, * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override * prefixes were found. * * -EINVAL in case of error. */ static int get_seg_reg_override_idx(struct insn *insn) { int idx = INAT_SEG_REG_DEFAULT; int num_overrides = 0, i; insn_byte_t p; insn_get_prefixes(insn); /* Look for any segment override prefixes. */ for_each_insn_prefix(insn, i, p) { insn_attr_t attr; attr = inat_get_opcode_attribute(p); switch (attr) { case INAT_MAKE_PREFIX(INAT_PFX_CS): idx = INAT_SEG_REG_CS; num_overrides++; break; case INAT_MAKE_PREFIX(INAT_PFX_SS): idx = INAT_SEG_REG_SS; num_overrides++; break; case INAT_MAKE_PREFIX(INAT_PFX_DS): idx = INAT_SEG_REG_DS; num_overrides++; break; case INAT_MAKE_PREFIX(INAT_PFX_ES): idx = INAT_SEG_REG_ES; num_overrides++; break; case INAT_MAKE_PREFIX(INAT_PFX_FS): idx = INAT_SEG_REG_FS; num_overrides++; break; case INAT_MAKE_PREFIX(INAT_PFX_GS): idx = INAT_SEG_REG_GS; num_overrides++; break; /* No default action needed. */ } } /* More than one segment override prefix leads to undefined behavior. */ if (num_overrides > 1) return -EINVAL; return idx; } /** * check_seg_overrides() - check if segment override prefixes are allowed * @insn: Valid instruction with segment override prefixes * @regoff: Operand offset, in pt_regs, for which the check is performed * * For a particular register used in register-indirect addressing, determine if * segment override prefixes can be used. Specifically, no overrides are allowed * for rDI if used with a string instruction. * * Returns: * * True if segment override prefixes can be used with the register indicated * in @regoff. False if otherwise. */ static bool check_seg_overrides(struct insn *insn, int regoff) { if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn)) return false; return true; } /** * resolve_default_seg() - resolve default segment register index for an operand * @insn: Instruction with opcode and address size. Must be valid. * @regs: Register values as seen when entering kernel mode * @off: Operand offset, in pt_regs, for which resolution is needed * * Resolve the default segment register index associated with the instruction * operand register indicated by @off. Such index is resolved based on defaults * described in the Intel Software Development Manual. * * Returns: * * If in protected mode, a constant identifying the segment register to use, * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE. * * -EINVAL in case of error. */ static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off) { if (any_64bit_mode(regs)) return INAT_SEG_REG_IGNORE; /* * Resolve the default segment register as described in Section 3.7.4 * of the Intel Software Development Manual Vol. 1: * * + DS for all references involving r[ABCD]X, and rSI. * + If used in a string instruction, ES for rDI. Otherwise, DS. * + AX, CX and DX are not valid register operands in 16-bit address * encodings but are valid for 32-bit and 64-bit encodings. * + -EDOM is reserved to identify for cases in which no register * is used (i.e., displacement-only addressing). Use DS. * + SS for rSP or rBP. * + CS for rIP. */ switch (off) { case offsetof(struct pt_regs, ax): case offsetof(struct pt_regs, cx): case offsetof(struct pt_regs, dx): /* Need insn to verify address size. */ if (insn->addr_bytes == 2) return -EINVAL; fallthrough; case -EDOM: case offsetof(struct pt_regs, bx): case offsetof(struct pt_regs, si): return INAT_SEG_REG_DS; case offsetof(struct pt_regs, di): if (is_string_insn(insn)) return INAT_SEG_REG_ES; return INAT_SEG_REG_DS; case offsetof(struct pt_regs, bp): case offsetof(struct pt_regs, sp): return INAT_SEG_REG_SS; case offsetof(struct pt_regs, ip): return INAT_SEG_REG_CS; default: return -EINVAL; } } /** * resolve_seg_reg() - obtain segment register index * @insn: Instruction with operands * @regs: Register values as seen when entering kernel mode * @regoff: Operand offset, in pt_regs, used to determine segment register * * Determine the segment register associated with the operands and, if * applicable, prefixes and the instruction pointed by @insn. * * The segment register associated to an operand used in register-indirect * addressing depends on: * * a) Whether running in long mode (in such a case segments are ignored, except * if FS or GS are used). * * b) Whether segment override prefixes can be used. Certain instructions and * registers do not allow override prefixes. * * c) Whether segment overrides prefixes are found in the instruction prefixes. * * d) If there are not segment override prefixes or they cannot be used, the * default segment register associated with the operand register is used. * * The function checks first if segment override prefixes can be used with the * operand indicated by @regoff. If allowed, obtain such overridden segment * register index. Lastly, if not prefixes were found or cannot be used, resolve * the segment register index to use based on the defaults described in the * Intel documentation. In long mode, all segment register indexes will be * ignored, except if overrides were found for FS or GS. All these operations * are done using helper functions. * * The operand register, @regoff, is represented as the offset from the base of * pt_regs. * * As stated, the main use of this function is to determine the segment register * index based on the instruction, its operands and prefixes. Hence, @insn * must be valid. However, if @regoff indicates rIP, we don't need to inspect * @insn at all as in this case CS is used in all cases. This case is checked * before proceeding further. * * Please note that this function does not return the value in the segment * register (i.e., the segment selector) but our defined index. The segment * selector needs to be obtained using get_segment_selector() and passing the * segment register index resolved by this function. * * Returns: * * An index identifying the segment register to use, among CS, SS, DS, * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode. * * -EINVAL in case of error. */ static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff) { int idx; /* * In the unlikely event of having to resolve the segment register * index for rIP, do it first. Segment override prefixes should not * be used. Hence, it is not necessary to inspect the instruction, * which may be invalid at this point. */ if (regoff == offsetof(struct pt_regs, ip)) { if (any_64bit_mode(regs)) return INAT_SEG_REG_IGNORE; else return INAT_SEG_REG_CS; } if (!insn) return -EINVAL; if (!check_seg_overrides(insn, regoff)) return resolve_default_seg(insn, regs, regoff); idx = get_seg_reg_override_idx(insn); if (idx < 0) return idx; if (idx == INAT_SEG_REG_DEFAULT) return resolve_default_seg(insn, regs, regoff); /* * In long mode, segment override prefixes are ignored, except for * overrides for FS and GS. */ if (any_64bit_mode(regs)) { if (idx != INAT_SEG_REG_FS && idx != INAT_SEG_REG_GS) idx = INAT_SEG_REG_IGNORE; } return idx; } /** * get_segment_selector() - obtain segment selector * @regs: Register values as seen when entering kernel mode * @seg_reg_idx: Segment register index to use * * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU * registers. This done for only for completeness as in CONFIG_X86_64 segment * registers are ignored. * * Returns: * * Value of the segment selector, including null when running in * long mode. * * -EINVAL on error. */ static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx) { unsigned short sel; #ifdef CONFIG_X86_64 switch (seg_reg_idx) { case INAT_SEG_REG_IGNORE: return 0; case INAT_SEG_REG_CS: return (unsigned short)(regs->cs & 0xffff); case INAT_SEG_REG_SS: return (unsigned short)(regs->ss & 0xffff); case INAT_SEG_REG_DS: savesegment(ds, sel); return sel; case INAT_SEG_REG_ES: savesegment(es, sel); return sel; case INAT_SEG_REG_FS: savesegment(fs, sel); return sel; case INAT_SEG_REG_GS: savesegment(gs, sel); return sel; default: return -EINVAL; } #else /* CONFIG_X86_32 */ struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs; if (v8086_mode(regs)) { switch (seg_reg_idx) { case INAT_SEG_REG_CS: return (unsigned short)(regs->cs & 0xffff); case INAT_SEG_REG_SS: return (unsigned short)(regs->ss & 0xffff); case INAT_SEG_REG_DS: return vm86regs->ds; case INAT_SEG_REG_ES: return vm86regs->es; case INAT_SEG_REG_FS: return vm86regs->fs; case INAT_SEG_REG_GS: return vm86regs->gs; case INAT_SEG_REG_IGNORE: default: return -EINVAL; } } switch (seg_reg_idx) { case INAT_SEG_REG_CS: return (unsigned short)(regs->cs & 0xffff); case INAT_SEG_REG_SS: return (unsigned short)(regs->ss & 0xffff); case INAT_SEG_REG_DS: return (unsigned short)(regs->ds & 0xffff); case INAT_SEG_REG_ES: return (unsigned short)(regs->es & 0xffff); case INAT_SEG_REG_FS: return (unsigned short)(regs->fs & 0xffff); case INAT_SEG_REG_GS: savesegment(gs, sel); return sel; case INAT_SEG_REG_IGNORE: default: return -EINVAL; } #endif /* CONFIG_X86_64 */ } static const int pt_regoff[] = { offsetof(struct pt_regs, ax), offsetof(struct pt_regs, cx), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, bx), offsetof(struct pt_regs, sp), offsetof(struct pt_regs, bp), offsetof(struct pt_regs, si), offsetof(struct pt_regs, di), #ifdef CONFIG_X86_64 offsetof(struct pt_regs, r8), offsetof(struct pt_regs, r9), offsetof(struct pt_regs, r10), offsetof(struct pt_regs, r11), offsetof(struct pt_regs, r12), offsetof(struct pt_regs, r13), offsetof(struct pt_regs, r14), offsetof(struct pt_regs, r15), #else offsetof(struct pt_regs, ds), offsetof(struct pt_regs, es), offsetof(struct pt_regs, fs), offsetof(struct pt_regs, gs), #endif }; int pt_regs_offset(struct pt_regs *regs, int regno) { if ((unsigned)regno < ARRAY_SIZE(pt_regoff)) return pt_regoff[regno]; return -EDOM; } static int get_regno(struct insn *insn, enum reg_type type) { int nr_registers = ARRAY_SIZE(pt_regoff); int regno = 0; /* * Don't possibly decode a 32-bit instructions as * reading a 64-bit-only register. */ if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64) nr_registers -= 8; switch (type) { case REG_TYPE_RM: regno = X86_MODRM_RM(insn->modrm.value); /* * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement * follows the ModRM byte. */ if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5) return -EDOM; if (X86_REX_B(insn->rex_prefix.value)) regno += 8; break; case REG_TYPE_REG: regno = X86_MODRM_REG(insn->modrm.value); if (X86_REX_R(insn->rex_prefix.value)) regno += 8; break; case REG_TYPE_INDEX: regno = X86_SIB_INDEX(insn->sib.value); if (X86_REX_X(insn->rex_prefix.value)) regno += 8; /* * If ModRM.mod != 3 and SIB.index = 4 the scale*index * portion of the address computation is null. This is * true only if REX.X is 0. In such a case, the SIB index * is used in the address computation. */ if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4) return -EDOM; break; case REG_TYPE_BASE: regno = X86_SIB_BASE(insn->sib.value); /* * If ModRM.mod is 0 and SIB.base == 5, the base of the * register-indirect addressing is 0. In this case, a * 32-bit displacement follows the SIB byte. */ if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5) return -EDOM; if (X86_REX_B(insn->rex_prefix.value)) regno += 8; break; default: pr_err_ratelimited("invalid register type: %d\n", type); return -EINVAL; } if (regno >= nr_registers) { WARN_ONCE(1, "decoded an instruction with an invalid register"); return -EINVAL; } return regno; } static int get_reg_offset(struct insn *insn, struct pt_regs *regs, enum reg_type type) { int regno = get_regno(insn, type); if (regno < 0) return regno; return pt_regs_offset(regs, regno); } /** * get_reg_offset_16() - Obtain offset of register indicated by instruction * @insn: Instruction containing ModRM byte * @regs: Register values as seen when entering kernel mode * @offs1: Offset of the first operand register * @offs2: Offset of the second operand register, if applicable * * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte * in @insn. This function is to be used with 16-bit address encodings. The * @offs1 and @offs2 will be written with the offset of the two registers * indicated by the instruction. In cases where any of the registers is not * referenced by the instruction, the value will be set to -EDOM. * * Returns: * * 0 on success, -EINVAL on error. */ static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs, int *offs1, int *offs2) { /* * 16-bit addressing can use one or two registers. Specifics of * encodings are given in Table 2-1. "16-Bit Addressing Forms with the * ModR/M Byte" of the Intel Software Development Manual. */ static const int regoff1[] = { offsetof(struct pt_regs, bx), offsetof(struct pt_regs, bx), offsetof(struct pt_regs, bp), offsetof(struct pt_regs, bp), offsetof(struct pt_regs, si), offsetof(struct pt_regs, di), offsetof(struct pt_regs, bp), offsetof(struct pt_regs, bx), }; static const int regoff2[] = { offsetof(struct pt_regs, si), offsetof(struct pt_regs, di), offsetof(struct pt_regs, si), offsetof(struct pt_regs, di), -EDOM, -EDOM, -EDOM, -EDOM, }; if (!offs1 || !offs2) return -EINVAL; /* Operand is a register, use the generic function. */ if (X86_MODRM_MOD(insn->modrm.value) == 3) { *offs1 = insn_get_modrm_rm_off(insn, regs); *offs2 = -EDOM; return 0; } *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)]; *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)]; /* * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement- * only addressing. This means that no registers are involved in * computing the effective address. Thus, ensure that the first * register offset is invalid. The second register offset is already * invalid under the aforementioned conditions. */ if ((X86_MODRM_MOD(insn->modrm.value) == 0) && (X86_MODRM_RM(insn->modrm.value) == 6)) *offs1 = -EDOM; return 0; } /** * get_desc() - Obtain contents of a segment descriptor * @out: Segment descriptor contents on success * @sel: Segment selector * * Given a segment selector, obtain a pointer to the segment descriptor. * Both global and local descriptor tables are supported. * * Returns: * * True on success, false on failure. * * NULL on error. */ static bool get_desc(struct desc_struct *out, unsigned short sel) { struct desc_ptr gdt_desc = {0, 0}; unsigned long desc_base; #ifdef CONFIG_MODIFY_LDT_SYSCALL if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) { bool success = false; struct ldt_struct *ldt; /* Bits [15:3] contain the index of the desired entry. */ sel >>= 3; mutex_lock(¤t->active_mm->context.lock); ldt = current->active_mm->context.ldt; if (ldt && sel < ldt->nr_entries) { *out = ldt->entries[sel]; success = true; } mutex_unlock(¤t->active_mm->context.lock); return success; } #endif native_store_gdt(&gdt_desc); /* * Segment descriptors have a size of 8 bytes. Thus, the index is * multiplied by 8 to obtain the memory offset of the desired descriptor * from the base of the GDT. As bits [15:3] of the segment selector * contain the index, it can be regarded as multiplied by 8 already. * All that remains is to clear bits [2:0]. */ desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK); if (desc_base > gdt_desc.size) return false; *out = *(struct desc_struct *)(gdt_desc.address + desc_base); return true; } /** * insn_get_seg_base() - Obtain base address of segment descriptor. * @regs: Register values as seen when entering kernel mode * @seg_reg_idx: Index of the segment register pointing to seg descriptor * * Obtain the base address of the segment as indicated by the segment descriptor * pointed by the segment selector. The segment selector is obtained from the * input segment register index @seg_reg_idx. * * Returns: * * In protected mode, base address of the segment. Zero in long mode, * except when FS or GS are used. In virtual-8086 mode, the segment * selector shifted 4 bits to the right. * * -1L in case of error. */ unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx) { struct desc_struct desc; short sel; sel = get_segment_selector(regs, seg_reg_idx); if (sel < 0) return -1L; if (v8086_mode(regs)) /* * Base is simply the segment selector shifted 4 * bits to the right. */ return (unsigned long)(sel << 4); if (any_64bit_mode(regs)) { /* * Only FS or GS will have a base address, the rest of * the segments' bases are forced to 0. */ unsigned long base; if (seg_reg_idx == INAT_SEG_REG_FS) { rdmsrl(MSR_FS_BASE, base); } else if (seg_reg_idx == INAT_SEG_REG_GS) { /* * swapgs was called at the kernel entry point. Thus, * MSR_KERNEL_GS_BASE will have the user-space GS base. */ if (user_mode(regs)) rdmsrl(MSR_KERNEL_GS_BASE, base); else rdmsrl(MSR_GS_BASE, base); } else { base = 0; } return base; } /* In protected mode the segment selector cannot be null. */ if (!sel) return -1L; if (!get_desc(&desc, sel)) return -1L; return get_desc_base(&desc); } /** * get_seg_limit() - Obtain the limit of a segment descriptor * @regs: Register values as seen when entering kernel mode * @seg_reg_idx: Index of the segment register pointing to seg descriptor * * Obtain the limit of the segment as indicated by the segment descriptor * pointed by the segment selector. The segment selector is obtained from the * input segment register index @seg_reg_idx. * * Returns: * * In protected mode, the limit of the segment descriptor in bytes. * In long mode and virtual-8086 mode, segment limits are not enforced. Thus, * limit is returned as -1L to imply a limit-less segment. * * Zero is returned on error. */ static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx) { struct desc_struct desc; unsigned long limit; short sel; sel = get_segment_selector(regs, seg_reg_idx); if (sel < 0) return 0; if (any_64bit_mode(regs) || v8086_mode(regs)) return -1L; if (!sel) return 0; if (!get_desc(&desc, sel)) return 0; /* * If the granularity bit is set, the limit is given in multiples * of 4096. This also means that the 12 least significant bits are * not tested when checking the segment limits. In practice, * this means that the segment ends in (limit << 12) + 0xfff. */ limit = get_desc_limit(&desc); if (desc.g) limit = (limit << 12) + 0xfff; return limit; } /** * insn_get_code_seg_params() - Obtain code segment parameters * @regs: Structure with register values as seen when entering kernel mode * * Obtain address and operand sizes of the code segment. It is obtained from the * selector contained in the CS register in regs. In protected mode, the default * address is determined by inspecting the L and D bits of the segment * descriptor. In virtual-8086 mode, the default is always two bytes for both * address and operand sizes. * * Returns: * * An int containing ORed-in default parameters on success. * * -EINVAL on error. */ int insn_get_code_seg_params(struct pt_regs *regs) { struct desc_struct desc; short sel; if (v8086_mode(regs)) /* Address and operand size are both 16-bit. */ return INSN_CODE_SEG_PARAMS(2, 2); sel = get_segment_selector(regs, INAT_SEG_REG_CS); if (sel < 0) return sel; if (!get_desc(&desc, sel)) return -EINVAL; /* * The most significant byte of the Type field of the segment descriptor * determines whether a segment contains data or code. If this is a data * segment, return error. */ if (!(desc.type & BIT(3))) return -EINVAL; switch ((desc.l << 1) | desc.d) { case 0: /* * Legacy mode. CS.L=0, CS.D=0. Address and operand size are * both 16-bit. */ return INSN_CODE_SEG_PARAMS(2, 2); case 1: /* * Legacy mode. CS.L=0, CS.D=1. Address and operand size are * both 32-bit. */ return INSN_CODE_SEG_PARAMS(4, 4); case 2: /* * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit; * operand size is 32-bit. */ return INSN_CODE_SEG_PARAMS(4, 8); case 3: /* Invalid setting. CS.L=1, CS.D=1 */ fallthrough; default: return -EINVAL; } } /** * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte * @insn: Instruction containing the ModRM byte * @regs: Register values as seen when entering kernel mode * * Returns: * * The register indicated by the r/m part of the ModRM byte. The * register is obtained as an offset from the base of pt_regs. In specific * cases, the returned value can be -EDOM to indicate that the particular value * of ModRM does not refer to a register and shall be ignored. */ int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs) { return get_reg_offset(insn, regs, REG_TYPE_RM); } /** * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte * @insn: Instruction containing the ModRM byte * @regs: Register values as seen when entering kernel mode * * Returns: * * The register indicated by the reg part of the ModRM byte. The * register is obtained as an offset from the base of pt_regs. */ int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs) { return get_reg_offset(insn, regs, REG_TYPE_REG); } /** * insn_get_modrm_reg_ptr() - Obtain register pointer based on ModRM byte * @insn: Instruction containing the ModRM byte * @regs: Register values as seen when entering kernel mode * * Returns: * * The register indicated by the reg part of the ModRM byte. * The register is obtained as a pointer within pt_regs. */ unsigned long *insn_get_modrm_reg_ptr(struct insn *insn, struct pt_regs *regs) { int offset; offset = insn_get_modrm_reg_off(insn, regs); if (offset < 0) return NULL; return (void *)regs + offset; } /** * get_seg_base_limit() - obtain base address and limit of a segment * @insn: Instruction. Must be valid. * @regs: Register values as seen when entering kernel mode * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor * @base: Obtained segment base * @limit: Obtained segment limit * * Obtain the base address and limit of the segment associated with the operand * @regoff and, if any or allowed, override prefixes in @insn. This function is * different from insn_get_seg_base() as the latter does not resolve the segment * associated with the instruction operand. If a limit is not needed (e.g., * when running in long mode), @limit can be NULL. * * Returns: * * 0 on success. @base and @limit will contain the base address and of the * resolved segment, respectively. * * -EINVAL on error. */ static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs, int regoff, unsigned long *base, unsigned long *limit) { int seg_reg_idx; if (!base) return -EINVAL; seg_reg_idx = resolve_seg_reg(insn, regs, regoff); if (seg_reg_idx < 0) return seg_reg_idx; *base = insn_get_seg_base(regs, seg_reg_idx); if (*base == -1L) return -EINVAL; if (!limit) return 0; *limit = get_seg_limit(regs, seg_reg_idx); if (!(*limit)) return -EINVAL; return 0; } /** * get_eff_addr_reg() - Obtain effective address from register operand * @insn: Instruction. Must be valid. * @regs: Register values as seen when entering kernel mode * @regoff: Obtained operand offset, in pt_regs, with the effective address * @eff_addr: Obtained effective address * * Obtain the effective address stored in the register operand as indicated by * the ModRM byte. This function is to be used only with register addressing * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The * register operand, as an offset from the base of pt_regs, is saved in @regoff; * such offset can then be used to resolve the segment associated with the * operand. This function can be used with any of the supported address sizes * in x86. * * Returns: * * 0 on success. @eff_addr will have the effective address stored in the * operand indicated by ModRM. @regoff will have such operand as an offset from * the base of pt_regs. * * -EINVAL on error. */ static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs, int *regoff, long *eff_addr) { int ret; ret = insn_get_modrm(insn); if (ret) return ret; if (X86_MODRM_MOD(insn->modrm.value) != 3) return -EINVAL; *regoff = get_reg_offset(insn, regs, REG_TYPE_RM); if (*regoff < 0) return -EINVAL; /* Ignore bytes that are outside the address size. */ if (insn->addr_bytes == 2) *eff_addr = regs_get_register(regs, *regoff) & 0xffff; else if (insn->addr_bytes == 4) *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff; else /* 64-bit address */ *eff_addr = regs_get_register(regs, *regoff); return 0; } /** * get_eff_addr_modrm() - Obtain referenced effective address via ModRM * @insn: Instruction. Must be valid. * @regs: Register values as seen when entering kernel mode * @regoff: Obtained operand offset, in pt_regs, associated with segment * @eff_addr: Obtained effective address * * Obtain the effective address referenced by the ModRM byte of @insn. After * identifying the registers involved in the register-indirect memory reference, * its value is obtained from the operands in @regs. The computed address is * stored @eff_addr. Also, the register operand that indicates the associated * segment is stored in @regoff, this parameter can later be used to determine * such segment. * * Returns: * * 0 on success. @eff_addr will have the referenced effective address. @regoff * will have a register, as an offset from the base of pt_regs, that can be used * to resolve the associated segment. * * -EINVAL on error. */ static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs, int *regoff, long *eff_addr) { long tmp; int ret; if (insn->addr_bytes != 8 && insn->addr_bytes != 4) return -EINVAL; ret = insn_get_modrm(insn); if (ret) return ret; if (X86_MODRM_MOD(insn->modrm.value) > 2) return -EINVAL; *regoff = get_reg_offset(insn, regs, REG_TYPE_RM); /* * -EDOM means that we must ignore the address_offset. In such a case, * in 64-bit mode the effective address relative to the rIP of the * following instruction. */ if (*regoff == -EDOM) { if (any_64bit_mode(regs)) tmp = regs->ip + insn->length; else tmp = 0; } else if (*regoff < 0) { return -EINVAL; } else { tmp = regs_get_register(regs, *regoff); } if (insn->addr_bytes == 4) { int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value; *eff_addr = addr32 & 0xffffffff; } else { *eff_addr = tmp + insn->displacement.value; } return 0; } /** * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM * @insn: Instruction. Must be valid. * @regs: Register values as seen when entering kernel mode * @regoff: Obtained operand offset, in pt_regs, associated with segment * @eff_addr: Obtained effective address * * Obtain the 16-bit effective address referenced by the ModRM byte of @insn. * After identifying the registers involved in the register-indirect memory * reference, its value is obtained from the operands in @regs. The computed * address is stored @eff_addr. Also, the register operand that indicates * the associated segment is stored in @regoff, this parameter can later be used * to determine such segment. * * Returns: * * 0 on success. @eff_addr will have the referenced effective address. @regoff * will have a register, as an offset from the base of pt_regs, that can be used * to resolve the associated segment. * * -EINVAL on error. */ static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs, int *regoff, short *eff_addr) { int addr_offset1, addr_offset2, ret; short addr1 = 0, addr2 = 0, displacement; if (insn->addr_bytes != 2) return -EINVAL; insn_get_modrm(insn); if (!insn->modrm.nbytes) return -EINVAL; if (X86_MODRM_MOD(insn->modrm.value) > 2) return -EINVAL; ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2); if (ret < 0) return -EINVAL; /* * Don't fail on invalid offset values. They might be invalid because * they cannot be used for this particular value of ModRM. Instead, use * them in the computation only if they contain a valid value. */ if (addr_offset1 != -EDOM) addr1 = regs_get_register(regs, addr_offset1) & 0xffff; if (addr_offset2 != -EDOM) addr2 = regs_get_register(regs, addr_offset2) & 0xffff; displacement = insn->displacement.value & 0xffff; *eff_addr = addr1 + addr2 + displacement; /* * The first operand register could indicate to use of either SS or DS * registers to obtain the segment selector. The second operand * register can only indicate the use of DS. Thus, the first operand * will be used to obtain the segment selector. */ *regoff = addr_offset1; return 0; } /** * get_eff_addr_sib() - Obtain referenced effective address via SIB * @insn: Instruction. Must be valid. * @regs: Register values as seen when entering kernel mode * @regoff: Obtained operand offset, in pt_regs, associated with segment * @eff_addr: Obtained effective address * * Obtain the effective address referenced by the SIB byte of @insn. After * identifying the registers involved in the indexed, register-indirect memory * reference, its value is obtained from the operands in @regs. The computed * address is stored @eff_addr. Also, the register operand that indicates the * associated segment is stored in @regoff, this parameter can later be used to * determine such segment. * * Returns: * * 0 on success. @eff_addr will have the referenced effective address. * @base_offset will have a register, as an offset from the base of pt_regs, * that can be used to resolve the associated segment. * * Negative value on error. */ static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs, int *base_offset, long *eff_addr) { long base, indx; int indx_offset; int ret; if (insn->addr_bytes != 8 && insn->addr_bytes != 4) return -EINVAL; ret = insn_get_modrm(insn); if (ret) return ret; if (!insn->modrm.nbytes) return -EINVAL; if (X86_MODRM_MOD(insn->modrm.value) > 2) return -EINVAL; ret = insn_get_sib(insn); if (ret) return ret; if (!insn->sib.nbytes) return -EINVAL; *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE); indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX); /* * Negative values in the base and index offset means an error when * decoding the SIB byte. Except -EDOM, which means that the registers * should not be used in the address computation. */ if (*base_offset == -EDOM) base = 0; else if (*base_offset < 0) return -EINVAL; else base = regs_get_register(regs, *base_offset); if (indx_offset == -EDOM) indx = 0; else if (indx_offset < 0) return -EINVAL; else indx = regs_get_register(regs, indx_offset); if (insn->addr_bytes == 4) { int addr32, base32, idx32; base32 = base & 0xffffffff; idx32 = indx & 0xffffffff; addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value)); addr32 += insn->displacement.value; *eff_addr = addr32 & 0xffffffff; } else { *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value)); *eff_addr += insn->displacement.value; } return 0; } /** * get_addr_ref_16() - Obtain the 16-bit address referred by instruction * @insn: Instruction containing ModRM byte and displacement * @regs: Register values as seen when entering kernel mode * * This function is to be used with 16-bit address encodings. Obtain the memory * address referred by the instruction's ModRM and displacement bytes. Also, the * segment used as base is determined by either any segment override prefixes in * @insn or the default segment of the registers involved in the address * computation. In protected mode, segment limits are enforced. * * Returns: * * Linear address referenced by the instruction operands on success. * * -1L on error. */ static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs) { unsigned long linear_addr = -1L, seg_base, seg_limit; int ret, regoff; short eff_addr; long tmp; if (insn_get_displacement(insn)) goto out; if (insn->addr_bytes != 2) goto out; if (X86_MODRM_MOD(insn->modrm.value) == 3) { ret = get_eff_addr_reg(insn, regs, ®off, &tmp); if (ret) goto out; eff_addr = tmp; } else { ret = get_eff_addr_modrm_16(insn, regs, ®off, &eff_addr); if (ret) goto out; } ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit); if (ret) goto out; /* * Before computing the linear address, make sure the effective address * is within the limits of the segment. In virtual-8086 mode, segment * limits are not enforced. In such a case, the segment limit is -1L to * reflect this fact. */ if ((unsigned long)(eff_addr & 0xffff) > seg_limit) goto out; linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base; /* Limit linear address to 20 bits */ if (v8086_mode(regs)) linear_addr &= 0xfffff; out: return (void __user *)linear_addr; } /** * get_addr_ref_32() - Obtain a 32-bit linear address * @insn: Instruction with ModRM, SIB bytes and displacement * @regs: Register values as seen when entering kernel mode * * This function is to be used with 32-bit address encodings to obtain the * linear memory address referred by the instruction's ModRM, SIB, * displacement bytes and segment base address, as applicable. If in protected * mode, segment limits are enforced. * * Returns: * * Linear address referenced by instruction and registers on success. * * -1L on error. */ static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs) { unsigned long linear_addr = -1L, seg_base, seg_limit; int eff_addr, regoff; long tmp; int ret; if (insn->addr_bytes != 4) goto out; if (X86_MODRM_MOD(insn->modrm.value) == 3) { ret = get_eff_addr_reg(insn, regs, ®off, &tmp); if (ret) goto out; eff_addr = tmp; } else { if (insn->sib.nbytes) { ret = get_eff_addr_sib(insn, regs, ®off, &tmp); if (ret) goto out; eff_addr = tmp; } else { ret = get_eff_addr_modrm(insn, regs, ®off, &tmp); if (ret) goto out; eff_addr = tmp; } } ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit); if (ret) goto out; /* * In protected mode, before computing the linear address, make sure * the effective address is within the limits of the segment. * 32-bit addresses can be used in long and virtual-8086 modes if an * address override prefix is used. In such cases, segment limits are * not enforced. When in virtual-8086 mode, the segment limit is -1L * to reflect this situation. * * After computed, the effective address is treated as an unsigned * quantity. */ if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit)) goto out; /* * Even though 32-bit address encodings are allowed in virtual-8086 * mode, the address range is still limited to [0x-0xffff]. */ if (v8086_mode(regs) && (eff_addr & ~0xffff)) goto out; /* * Data type long could be 64 bits in size. Ensure that our 32-bit * effective address is not sign-extended when computing the linear * address. */ linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base; /* Limit linear address to 20 bits */ if (v8086_mode(regs)) linear_addr &= 0xfffff; out: return (void __user *)linear_addr; } /** * get_addr_ref_64() - Obtain a 64-bit linear address * @insn: Instruction struct with ModRM and SIB bytes and displacement * @regs: Structure with register values as seen when entering kernel mode * * This function is to be used with 64-bit address encodings to obtain the * linear memory address referred by the instruction's ModRM, SIB, * displacement bytes and segment base address, as applicable. * * Returns: * * Linear address referenced by instruction and registers on success. * * -1L on error. */ #ifndef CONFIG_X86_64 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs) { return (void __user *)-1L; } #else static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs) { unsigned long linear_addr = -1L, seg_base; int regoff, ret; long eff_addr; if (insn->addr_bytes != 8) goto out; if (X86_MODRM_MOD(insn->modrm.value) == 3) { ret = get_eff_addr_reg(insn, regs, ®off, &eff_addr); if (ret) goto out; } else { if (insn->sib.nbytes) { ret = get_eff_addr_sib(insn, regs, ®off, &eff_addr); if (ret) goto out; } else { ret = get_eff_addr_modrm(insn, regs, ®off, &eff_addr); if (ret) goto out; } } ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL); if (ret) goto out; linear_addr = (unsigned long)eff_addr + seg_base; out: return (void __user *)linear_addr; } #endif /* CONFIG_X86_64 */ /** * insn_get_addr_ref() - Obtain the linear address referred by instruction * @insn: Instruction structure containing ModRM byte and displacement * @regs: Structure with register values as seen when entering kernel mode * * Obtain the linear address referred by the instruction's ModRM, SIB and * displacement bytes, and segment base, as applicable. In protected mode, * segment limits are enforced. * * Returns: * * Linear address referenced by instruction and registers on success. * * -1L on error. */ void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs) { if (!insn || !regs) return (void __user *)-1L; if (insn_get_opcode(insn)) return (void __user *)-1L; switch (insn->addr_bytes) { case 2: return get_addr_ref_16(insn, regs); case 4: return get_addr_ref_32(insn, regs); case 8: return get_addr_ref_64(insn, regs); default: return (void __user *)-1L; } } int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip) { unsigned long seg_base = 0; /* * If not in user-space long mode, a custom code segment could be in * use. This is true in protected mode (if the process defined a local * descriptor table), or virtual-8086 mode. In most of the cases * seg_base will be zero as in USER_CS. */ if (!user_64bit_mode(regs)) { seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS); if (seg_base == -1L) return -EINVAL; } *ip = seg_base + regs->ip; return 0; } /** * insn_fetch_from_user() - Copy instruction bytes from user-space memory * @regs: Structure with register values as seen when entering kernel mode * @buf: Array to store the fetched instruction * * Gets the linear address of the instruction and copies the instruction bytes * to the buf. * * Returns: * * - number of instruction bytes copied. * - 0 if nothing was copied. * - -EINVAL if the linear address of the instruction could not be calculated */ int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE]) { unsigned long ip; int not_copied; if (insn_get_effective_ip(regs, &ip)) return -EINVAL; not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE); return MAX_INSN_SIZE - not_copied; } /** * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory * while in atomic code * @regs: Structure with register values as seen when entering kernel mode * @buf: Array to store the fetched instruction * * Gets the linear address of the instruction and copies the instruction bytes * to the buf. This function must be used in atomic context. * * Returns: * * - number of instruction bytes copied. * - 0 if nothing was copied. * - -EINVAL if the linear address of the instruction could not be calculated. */ int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE]) { unsigned long ip; int not_copied; if (insn_get_effective_ip(regs, &ip)) return -EINVAL; not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE); return MAX_INSN_SIZE - not_copied; } /** * insn_decode_from_regs() - Decode an instruction * @insn: Structure to store decoded instruction * @regs: Structure with register values as seen when entering kernel mode * @buf: Buffer containing the instruction bytes * @buf_size: Number of instruction bytes available in buf * * Decodes the instruction provided in buf and stores the decoding results in * insn. Also determines the correct address and operand sizes. * * Returns: * * True if instruction was decoded, False otherwise. */ bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE], int buf_size) { int seg_defs; insn_init(insn, buf, buf_size, user_64bit_mode(regs)); /* * Override the default operand and address sizes with what is specified * in the code segment descriptor. The instruction decoder only sets * the address size it to either 4 or 8 address bytes and does nothing * for the operand bytes. This OK for most of the cases, but we could * have special cases where, for instance, a 16-bit code segment * descriptor is used. * If there is an address override prefix, the instruction decoder * correctly updates these values, even for 16-bit defaults. */ seg_defs = insn_get_code_seg_params(regs); if (seg_defs == -EINVAL) return false; insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs); insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs); if (insn_get_length(insn)) return false; if (buf_size < insn->length) return false; return true; } /** * insn_decode_mmio() - Decode a MMIO instruction * @insn: Structure to store decoded instruction * @bytes: Returns size of memory operand * * Decodes instruction that used for Memory-mapped I/O. * * Returns: * * Type of the instruction. Size of the memory operand is stored in * @bytes. If decode failed, MMIO_DECODE_FAILED returned. */ enum mmio_type insn_decode_mmio(struct insn *insn, int *bytes) { enum mmio_type type = MMIO_DECODE_FAILED; *bytes = 0; if (insn_get_opcode(insn)) return MMIO_DECODE_FAILED; switch (insn->opcode.bytes[0]) { case 0x88: /* MOV m8,r8 */ *bytes = 1; fallthrough; case 0x89: /* MOV m16/m32/m64, r16/m32/m64 */ if (!*bytes) *bytes = insn->opnd_bytes; type = MMIO_WRITE; break; case 0xc6: /* MOV m8, imm8 */ *bytes = 1; fallthrough; case 0xc7: /* MOV m16/m32/m64, imm16/imm32/imm64 */ if (!*bytes) *bytes = insn->opnd_bytes; type = MMIO_WRITE_IMM; break; case 0x8a: /* MOV r8, m8 */ *bytes = 1; fallthrough; case 0x8b: /* MOV r16/r32/r64, m16/m32/m64 */ if (!*bytes) *bytes = insn->opnd_bytes; type = MMIO_READ; break; case 0xa4: /* MOVS m8, m8 */ *bytes = 1; fallthrough; case 0xa5: /* MOVS m16/m32/m64, m16/m32/m64 */ if (!*bytes) *bytes = insn->opnd_bytes; type = MMIO_MOVS; break; case 0x0f: /* Two-byte instruction */ switch (insn->opcode.bytes[1]) { case 0xb6: /* MOVZX r16/r32/r64, m8 */ *bytes = 1; fallthrough; case 0xb7: /* MOVZX r32/r64, m16 */ if (!*bytes) *bytes = 2; type = MMIO_READ_ZERO_EXTEND; break; case 0xbe: /* MOVSX r16/r32/r64, m8 */ *bytes = 1; fallthrough; case 0xbf: /* MOVSX r32/r64, m16 */ if (!*bytes) *bytes = 2; type = MMIO_READ_SIGN_EXTEND; break; } break; } return type; } |