Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | // SPDX-License-Identifier: GPL-2.0 /* * This is a maximally equidistributed combined Tausworthe generator * based on code from GNU Scientific Library 1.5 (30 Jun 2004) * * lfsr113 version: * * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n) * * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13)) * s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27)) * s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21)) * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12)) * * The period of this generator is about 2^113 (see erratum paper). * * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe * Generators", Mathematics of Computation, 65, 213 (1996), 203--213: * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps * * There is an erratum in the paper "Tables of Maximally Equidistributed * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps * * ... the k_j most significant bits of z_j must be non-zero, * for each j. (Note: this restriction also applies to the * computer code given in [4], but was mistakenly not mentioned * in that paper.) * * This affects the seeding procedure by imposing the requirement * s1 > 1, s2 > 7, s3 > 15, s4 > 127. */ #include <linux/types.h> #include <linux/percpu.h> #include <linux/export.h> #include <linux/jiffies.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/bitops.h> #include <linux/slab.h> #include <asm/unaligned.h> /** * prandom_u32_state - seeded pseudo-random number generator. * @state: pointer to state structure holding seeded state. * * This is used for pseudo-randomness with no outside seeding. * For more random results, use prandom_u32(). */ u32 prandom_u32_state(struct rnd_state *state) { #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b) state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U); state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U); state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U); state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U); return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4); } EXPORT_SYMBOL(prandom_u32_state); /** * prandom_bytes_state - get the requested number of pseudo-random bytes * * @state: pointer to state structure holding seeded state. * @buf: where to copy the pseudo-random bytes to * @bytes: the requested number of bytes * * This is used for pseudo-randomness with no outside seeding. * For more random results, use prandom_bytes(). */ void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes) { u8 *ptr = buf; while (bytes >= sizeof(u32)) { put_unaligned(prandom_u32_state(state), (u32 *) ptr); ptr += sizeof(u32); bytes -= sizeof(u32); } if (bytes > 0) { u32 rem = prandom_u32_state(state); do { *ptr++ = (u8) rem; bytes--; rem >>= BITS_PER_BYTE; } while (bytes > 0); } } EXPORT_SYMBOL(prandom_bytes_state); static void prandom_warmup(struct rnd_state *state) { /* Calling RNG ten times to satisfy recurrence condition */ prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); } void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state) { int i; for_each_possible_cpu(i) { struct rnd_state *state = per_cpu_ptr(pcpu_state, i); u32 seeds[4]; get_random_bytes(&seeds, sizeof(seeds)); state->s1 = __seed(seeds[0], 2U); state->s2 = __seed(seeds[1], 8U); state->s3 = __seed(seeds[2], 16U); state->s4 = __seed(seeds[3], 128U); prandom_warmup(state); } } EXPORT_SYMBOL(prandom_seed_full_state); #ifdef CONFIG_RANDOM32_SELFTEST static struct prandom_test1 { u32 seed; u32 result; } test1[] = { { 1U, 3484351685U }, { 2U, 2623130059U }, { 3U, 3125133893U }, { 4U, 984847254U }, }; static struct prandom_test2 { u32 seed; u32 iteration; u32 result; } test2[] = { /* Test cases against taus113 from GSL library. */ { 931557656U, 959U, 2975593782U }, { 1339693295U, 876U, 3887776532U }, { 1545556285U, 961U, 1615538833U }, { 601730776U, 723U, 1776162651U }, { 1027516047U, 687U, 511983079U }, { 416526298U, 700U, 916156552U }, { 1395522032U, 652U, 2222063676U }, { 366221443U, 617U, 2992857763U }, { 1539836965U, 714U, 3783265725U }, { 556206671U, 994U, 799626459U }, { 684907218U, 799U, 367789491U }, { 2121230701U, 931U, 2115467001U }, { 1668516451U, 644U, 3620590685U }, { 768046066U, 883U, 2034077390U }, { 1989159136U, 833U, 1195767305U }, { 536585145U, 996U, 3577259204U }, { 1008129373U, 642U, 1478080776U }, { 1740775604U, 939U, 1264980372U }, { 1967883163U, 508U, 10734624U }, { 1923019697U, 730U, 3821419629U }, { 442079932U, 560U, 3440032343U }, { 1961302714U, 845U, 841962572U }, { 2030205964U, 962U, 1325144227U }, { 1160407529U, 507U, 240940858U }, { 635482502U, 779U, 4200489746U }, { 1252788931U, 699U, 867195434U }, { 1961817131U, 719U, 668237657U }, { 1071468216U, 983U, 917876630U }, { 1281848367U, 932U, 1003100039U }, { 582537119U, 780U, 1127273778U }, { 1973672777U, 853U, 1071368872U }, { 1896756996U, 762U, 1127851055U }, { 847917054U, 500U, 1717499075U }, { 1240520510U, 951U, 2849576657U }, { 1685071682U, 567U, 1961810396U }, { 1516232129U, 557U, 3173877U }, { 1208118903U, 612U, 1613145022U }, { 1817269927U, 693U, 4279122573U }, { 1510091701U, 717U, 638191229U }, { 365916850U, 807U, 600424314U }, { 399324359U, 702U, 1803598116U }, { 1318480274U, 779U, 2074237022U }, { 697758115U, 840U, 1483639402U }, { 1696507773U, 840U, 577415447U }, { 2081979121U, 981U, 3041486449U }, { 955646687U, 742U, 3846494357U }, { 1250683506U, 749U, 836419859U }, { 595003102U, 534U, 366794109U }, { 47485338U, 558U, 3521120834U }, { 619433479U, 610U, 3991783875U }, { 704096520U, 518U, 4139493852U }, { 1712224984U, 606U, 2393312003U }, { 1318233152U, 922U, 3880361134U }, { 855572992U, 761U, 1472974787U }, { 64721421U, 703U, 683860550U }, { 678931758U, 840U, 380616043U }, { 692711973U, 778U, 1382361947U }, { 677703619U, 530U, 2826914161U }, { 92393223U, 586U, 1522128471U }, { 1222592920U, 743U, 3466726667U }, { 358288986U, 695U, 1091956998U }, { 1935056945U, 958U, 514864477U }, { 735675993U, 990U, 1294239989U }, { 1560089402U, 897U, 2238551287U }, { 70616361U, 829U, 22483098U }, { 368234700U, 731U, 2913875084U }, { 20221190U, 879U, 1564152970U }, { 539444654U, 682U, 1835141259U }, { 1314987297U, 840U, 1801114136U }, { 2019295544U, 645U, 3286438930U }, { 469023838U, 716U, 1637918202U }, { 1843754496U, 653U, 2562092152U }, { 400672036U, 809U, 4264212785U }, { 404722249U, 965U, 2704116999U }, { 600702209U, 758U, 584979986U }, { 519953954U, 667U, 2574436237U }, { 1658071126U, 694U, 2214569490U }, { 420480037U, 749U, 3430010866U }, { 690103647U, 969U, 3700758083U }, { 1029424799U, 937U, 3787746841U }, { 2012608669U, 506U, 3362628973U }, { 1535432887U, 998U, 42610943U }, { 1330635533U, 857U, 3040806504U }, { 1223800550U, 539U, 3954229517U }, { 1322411537U, 680U, 3223250324U }, { 1877847898U, 945U, 2915147143U }, { 1646356099U, 874U, 965988280U }, { 805687536U, 744U, 4032277920U }, { 1948093210U, 633U, 1346597684U }, { 392609744U, 783U, 1636083295U }, { 690241304U, 770U, 1201031298U }, { 1360302965U, 696U, 1665394461U }, { 1220090946U, 780U, 1316922812U }, { 447092251U, 500U, 3438743375U }, { 1613868791U, 592U, 828546883U }, { 523430951U, 548U, 2552392304U }, { 726692899U, 810U, 1656872867U }, { 1364340021U, 836U, 3710513486U }, { 1986257729U, 931U, 935013962U }, { 407983964U, 921U, 728767059U }, }; static void prandom_state_selftest_seed(struct rnd_state *state, u32 seed) { #define LCG(x) ((x) * 69069U) /* super-duper LCG */ state->s1 = __seed(LCG(seed), 2U); state->s2 = __seed(LCG(state->s1), 8U); state->s3 = __seed(LCG(state->s2), 16U); state->s4 = __seed(LCG(state->s3), 128U); } static int __init prandom_state_selftest(void) { int i, j, errors = 0, runs = 0; bool error = false; for (i = 0; i < ARRAY_SIZE(test1); i++) { struct rnd_state state; prandom_state_selftest_seed(&state, test1[i].seed); prandom_warmup(&state); if (test1[i].result != prandom_u32_state(&state)) error = true; } if (error) pr_warn("prandom: seed boundary self test failed\n"); else pr_info("prandom: seed boundary self test passed\n"); for (i = 0; i < ARRAY_SIZE(test2); i++) { struct rnd_state state; prandom_state_selftest_seed(&state, test2[i].seed); prandom_warmup(&state); for (j = 0; j < test2[i].iteration - 1; j++) prandom_u32_state(&state); if (test2[i].result != prandom_u32_state(&state)) errors++; runs++; cond_resched(); } if (errors) pr_warn("prandom: %d/%d self tests failed\n", errors, runs); else pr_info("prandom: %d self tests passed\n", runs); return 0; } core_initcall(prandom_state_selftest); #endif |