Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 2013 - 2018 Intel Corporation. */ #ifndef _IAVF_TXRX_H_ #define _IAVF_TXRX_H_ /* Interrupt Throttling and Rate Limiting Goodies */ #define IAVF_DEFAULT_IRQ_WORK 256 /* The datasheet for the X710 and XL710 indicate that the maximum value for * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing * the register value which is divided by 2 lets use the actual values and * avoid an excessive amount of translation. */ #define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ #define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */ #define IAVF_MIN_ITR 2 /* reg uses 2 usec resolution */ #define IAVF_ITR_100K 10 /* all values below must be even */ #define IAVF_ITR_50K 20 #define IAVF_ITR_20K 50 #define IAVF_ITR_18K 60 #define IAVF_ITR_8K 122 #define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */ #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC) #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK) #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC)) #define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) #define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) /* 0x40 is the enable bit for interrupt rate limiting, and must be set if * the value of the rate limit is non-zero */ #define INTRL_ENA BIT(6) #define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) #define IAVF_INTRL_8K 125 /* 8000 ints/sec */ #define IAVF_INTRL_62K 16 /* 62500 ints/sec */ #define IAVF_INTRL_83K 12 /* 83333 ints/sec */ #define IAVF_QUEUE_END_OF_LIST 0x7FF /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum iavf_dyn_idx_t { IAVF_IDX_ITR0 = 0, IAVF_IDX_ITR1 = 1, IAVF_IDX_ITR2 = 2, IAVF_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ }; /* these are indexes into ITRN registers */ #define IAVF_RX_ITR IAVF_IDX_ITR0 #define IAVF_TX_ITR IAVF_IDX_ITR1 #define IAVF_PE_ITR IAVF_IDX_ITR2 /* Supported RSS offloads */ #define IAVF_DEFAULT_RSS_HENA ( \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \ BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD)) #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) /* Supported Rx Buffer Sizes (a multiple of 128) */ #define IAVF_RXBUFFER_256 256 #define IAVF_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ #define IAVF_RXBUFFER_2048 2048 #define IAVF_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ #define IAVF_MAX_RXBUFFER 9728 /* largest size for single descriptor */ /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, * this adds up to 512 bytes of extra data meaning the smallest allocation * we could have is 1K. * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) */ #define IAVF_RX_HDR_SIZE IAVF_RXBUFFER_256 #define IAVF_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) #define iavf_rx_desc iavf_32byte_rx_desc #define IAVF_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) /* Attempt to maximize the headroom available for incoming frames. We * use a 2K buffer for receives and need 1536/1534 to store the data for * the frame. This leaves us with 512 bytes of room. From that we need * to deduct the space needed for the shared info and the padding needed * to IP align the frame. * * Note: For cache line sizes 256 or larger this value is going to end * up negative. In these cases we should fall back to the legacy * receive path. */ #if (PAGE_SIZE < 8192) #define IAVF_2K_TOO_SMALL_WITH_PADDING \ ((NET_SKB_PAD + IAVF_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IAVF_RXBUFFER_2048)) static inline int iavf_compute_pad(int rx_buf_len) { int page_size, pad_size; page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; return pad_size; } static inline int iavf_skb_pad(void) { int rx_buf_len; /* If a 2K buffer cannot handle a standard Ethernet frame then * optimize padding for a 3K buffer instead of a 1.5K buffer. * * For a 3K buffer we need to add enough padding to allow for * tailroom due to NET_IP_ALIGN possibly shifting us out of * cache-line alignment. */ if (IAVF_2K_TOO_SMALL_WITH_PADDING) rx_buf_len = IAVF_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); else rx_buf_len = IAVF_RXBUFFER_1536; /* if needed make room for NET_IP_ALIGN */ rx_buf_len -= NET_IP_ALIGN; return iavf_compute_pad(rx_buf_len); } #define IAVF_SKB_PAD iavf_skb_pad() #else #define IAVF_2K_TOO_SMALL_WITH_PADDING false #define IAVF_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #endif /** * iavf_test_staterr - tests bits in Rx descriptor status and error fields * @rx_desc: pointer to receive descriptor (in le64 format) * @stat_err_bits: value to mask * * This function does some fast chicanery in order to return the * value of the mask which is really only used for boolean tests. * The status_error_len doesn't need to be shifted because it begins * at offset zero. */ static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc, const u64 stat_err_bits) { return !!(rx_desc->wb.qword1.status_error_len & cpu_to_le64(stat_err_bits)); } /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define IAVF_RX_INCREMENT(r, i) \ do { \ (i)++; \ if ((i) == (r)->count) \ i = 0; \ r->next_to_clean = i; \ } while (0) #define IAVF_RX_NEXT_DESC(r, i, n) \ do { \ (i)++; \ if ((i) == (r)->count) \ i = 0; \ (n) = IAVF_RX_DESC((r), (i)); \ } while (0) #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \ do { \ IAVF_RX_NEXT_DESC((r), (i), (n)); \ prefetch((n)); \ } while (0) #define IAVF_MAX_BUFFER_TXD 8 #define IAVF_MIN_TX_LEN 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define IAVF_MAX_READ_REQ_SIZE 4096 #define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1) #define IAVF_MAX_DATA_PER_TXD_ALIGNED \ (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1)) /** * iavf_txd_use_count - estimate the number of descriptors needed for Tx * @size: transmit request size in bytes * * Due to hardware alignment restrictions (4K alignment), we need to * assume that we can have no more than 12K of data per descriptor, even * though each descriptor can take up to 16K - 1 bytes of aligned memory. * Thus, we need to divide by 12K. But division is slow! Instead, * we decompose the operation into shifts and one relatively cheap * multiply operation. * * To divide by 12K, we first divide by 4K, then divide by 3: * To divide by 4K, shift right by 12 bits * To divide by 3, multiply by 85, then divide by 256 * (Divide by 256 is done by shifting right by 8 bits) * Finally, we add one to round up. Because 256 isn't an exact multiple of * 3, we'll underestimate near each multiple of 12K. This is actually more * accurate as we have 4K - 1 of wiggle room that we can fit into the last * segment. For our purposes this is accurate out to 1M which is orders of * magnitude greater than our largest possible GSO size. * * This would then be implemented as: * return (((size >> 12) * 85) >> 8) + 1; * * Since multiplication and division are commutative, we can reorder * operations into: * return ((size * 85) >> 20) + 1; */ static inline unsigned int iavf_txd_use_count(unsigned int size) { return ((size * 85) >> 20) + 1; } /* Tx Descriptors needed, worst case */ #define DESC_NEEDED (MAX_SKB_FRAGS + 6) #define IAVF_MIN_DESC_PENDING 4 #define IAVF_TX_FLAGS_HW_VLAN BIT(1) #define IAVF_TX_FLAGS_SW_VLAN BIT(2) #define IAVF_TX_FLAGS_TSO BIT(3) #define IAVF_TX_FLAGS_IPV4 BIT(4) #define IAVF_TX_FLAGS_IPV6 BIT(5) #define IAVF_TX_FLAGS_FCCRC BIT(6) #define IAVF_TX_FLAGS_FSO BIT(7) #define IAVF_TX_FLAGS_FD_SB BIT(9) #define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10) #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(11) #define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29 #define IAVF_TX_FLAGS_VLAN_SHIFT 16 struct iavf_tx_buffer { struct iavf_tx_desc *next_to_watch; union { struct sk_buff *skb; void *raw_buf; }; unsigned int bytecount; unsigned short gso_segs; DEFINE_DMA_UNMAP_ADDR(dma); DEFINE_DMA_UNMAP_LEN(len); u32 tx_flags; }; struct iavf_rx_buffer { dma_addr_t dma; struct page *page; #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) __u32 page_offset; #else __u16 page_offset; #endif __u16 pagecnt_bias; }; struct iavf_queue_stats { u64 packets; u64 bytes; }; struct iavf_tx_queue_stats { u64 restart_queue; u64 tx_busy; u64 tx_done_old; u64 tx_linearize; u64 tx_force_wb; int prev_pkt_ctr; u64 tx_lost_interrupt; }; struct iavf_rx_queue_stats { u64 non_eop_descs; u64 alloc_page_failed; u64 alloc_buff_failed; u64 page_reuse_count; u64 realloc_count; }; enum iavf_ring_state_t { __IAVF_TX_FDIR_INIT_DONE, __IAVF_TX_XPS_INIT_DONE, __IAVF_RING_STATE_NBITS /* must be last */ }; /* some useful defines for virtchannel interface, which * is the only remaining user of header split */ #define IAVF_RX_DTYPE_NO_SPLIT 0 #define IAVF_RX_DTYPE_HEADER_SPLIT 1 #define IAVF_RX_DTYPE_SPLIT_ALWAYS 2 #define IAVF_RX_SPLIT_L2 0x1 #define IAVF_RX_SPLIT_IP 0x2 #define IAVF_RX_SPLIT_TCP_UDP 0x4 #define IAVF_RX_SPLIT_SCTP 0x8 /* struct that defines a descriptor ring, associated with a VSI */ struct iavf_ring { struct iavf_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ struct net_device *netdev; /* netdev ring maps to */ union { struct iavf_tx_buffer *tx_bi; struct iavf_rx_buffer *rx_bi; }; DECLARE_BITMAP(state, __IAVF_RING_STATE_NBITS); u16 queue_index; /* Queue number of ring */ u8 dcb_tc; /* Traffic class of ring */ u8 __iomem *tail; /* high bit set means dynamic, use accessors routines to read/write. * hardware only supports 2us resolution for the ITR registers. * these values always store the USER setting, and must be converted * before programming to a register. */ u16 itr_setting; u16 count; /* Number of descriptors */ u16 reg_idx; /* HW register index of the ring */ u16 rx_buf_len; /* used in interrupt processing */ u16 next_to_use; u16 next_to_clean; u8 atr_sample_rate; u8 atr_count; bool ring_active; /* is ring online or not */ bool arm_wb; /* do something to arm write back */ u8 packet_stride; u16 flags; #define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0) #define IAVF_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) #define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 BIT(3) #define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2 BIT(4) #define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2 BIT(5) /* stats structs */ struct iavf_queue_stats stats; struct u64_stats_sync syncp; union { struct iavf_tx_queue_stats tx_stats; struct iavf_rx_queue_stats rx_stats; }; unsigned int size; /* length of descriptor ring in bytes */ dma_addr_t dma; /* physical address of ring */ struct iavf_vsi *vsi; /* Backreference to associated VSI */ struct iavf_q_vector *q_vector; /* Backreference to associated vector */ struct rcu_head rcu; /* to avoid race on free */ u16 next_to_alloc; struct sk_buff *skb; /* When iavf_clean_rx_ring_irq() must * return before it sees the EOP for * the current packet, we save that skb * here and resume receiving this * packet the next time * iavf_clean_rx_ring_irq() is called * for this ring. */ } ____cacheline_internodealigned_in_smp; static inline bool ring_uses_build_skb(struct iavf_ring *ring) { return !!(ring->flags & IAVF_RXR_FLAGS_BUILD_SKB_ENABLED); } static inline void set_ring_build_skb_enabled(struct iavf_ring *ring) { ring->flags |= IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; } static inline void clear_ring_build_skb_enabled(struct iavf_ring *ring) { ring->flags &= ~IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; } #define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002 #define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002 #define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e #define IAVF_ITR_ADAPTIVE_LATENCY 0x8000 #define IAVF_ITR_ADAPTIVE_BULK 0x0000 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY)) struct iavf_ring_container { struct iavf_ring *ring; /* pointer to linked list of ring(s) */ unsigned long next_update; /* jiffies value of next update */ unsigned int total_bytes; /* total bytes processed this int */ unsigned int total_packets; /* total packets processed this int */ u16 count; u16 target_itr; /* target ITR setting for ring(s) */ u16 current_itr; /* current ITR setting for ring(s) */ }; /* iterator for handling rings in ring container */ #define iavf_for_each_ring(pos, head) \ for (pos = (head).ring; pos != NULL; pos = pos->next) static inline unsigned int iavf_rx_pg_order(struct iavf_ring *ring) { #if (PAGE_SIZE < 8192) if (ring->rx_buf_len > (PAGE_SIZE / 2)) return 1; #endif return 0; } #define iavf_rx_pg_size(_ring) (PAGE_SIZE << iavf_rx_pg_order(_ring)) bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count); netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); void iavf_clean_tx_ring(struct iavf_ring *tx_ring); void iavf_clean_rx_ring(struct iavf_ring *rx_ring); int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring); int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring); void iavf_free_tx_resources(struct iavf_ring *tx_ring); void iavf_free_rx_resources(struct iavf_ring *rx_ring); int iavf_napi_poll(struct napi_struct *napi, int budget); void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector); u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw); void iavf_detect_recover_hung(struct iavf_vsi *vsi); int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size); bool __iavf_chk_linearize(struct sk_buff *skb); /** * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed * @skb: send buffer * * Returns number of data descriptors needed for this skb. Returns 0 to indicate * there is not enough descriptors available in this ring since we need at least * one descriptor. **/ static inline int iavf_xmit_descriptor_count(struct sk_buff *skb) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; unsigned int nr_frags = skb_shinfo(skb)->nr_frags; int count = 0, size = skb_headlen(skb); for (;;) { count += iavf_txd_use_count(size); if (!nr_frags--) break; size = skb_frag_size(frag++); } return count; } /** * iavf_maybe_stop_tx - 1st level check for Tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns 0 if stop is not needed **/ static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) { if (likely(IAVF_DESC_UNUSED(tx_ring) >= size)) return 0; return __iavf_maybe_stop_tx(tx_ring, size); } /** * iavf_chk_linearize - Check if there are more than 8 fragments per packet * @skb: send buffer * @count: number of buffers used * * Note: Our HW can't scatter-gather more than 8 fragments to build * a packet on the wire and so we need to figure out the cases where we * need to linearize the skb. **/ static inline bool iavf_chk_linearize(struct sk_buff *skb, int count) { /* Both TSO and single send will work if count is less than 8 */ if (likely(count < IAVF_MAX_BUFFER_TXD)) return false; if (skb_is_gso(skb)) return __iavf_chk_linearize(skb); /* we can support up to 8 data buffers for a single send */ return count != IAVF_MAX_BUFFER_TXD; } /** * txring_txq - helper to convert from a ring to a queue * @ring: Tx ring to find the netdev equivalent of **/ static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring) { return netdev_get_tx_queue(ring->netdev, ring->queue_index); } #endif /* _IAVF_TXRX_H_ */ |