Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | // SPDX-License-Identifier: GPL-2.0-only /* * Pid namespaces * * Authors: * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM * Many thanks to Oleg Nesterov for comments and help * */ #include <linux/pid.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <linux/syscalls.h> #include <linux/cred.h> #include <linux/err.h> #include <linux/acct.h> #include <linux/slab.h> #include <linux/proc_ns.h> #include <linux/reboot.h> #include <linux/export.h> #include <linux/sched/task.h> #include <linux/sched/signal.h> #include <linux/idr.h> static DEFINE_MUTEX(pid_caches_mutex); static struct kmem_cache *pid_ns_cachep; /* Write once array, filled from the beginning. */ static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; /* * creates the kmem cache to allocate pids from. * @level: pid namespace level */ static struct kmem_cache *create_pid_cachep(unsigned int level) { /* Level 0 is init_pid_ns.pid_cachep */ struct kmem_cache **pkc = &pid_cache[level - 1]; struct kmem_cache *kc; char name[4 + 10 + 1]; unsigned int len; kc = READ_ONCE(*pkc); if (kc) return kc; snprintf(name, sizeof(name), "pid_%u", level + 1); len = sizeof(struct pid) + level * sizeof(struct upid); mutex_lock(&pid_caches_mutex); /* Name collision forces to do allocation under mutex. */ if (!*pkc) *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); mutex_unlock(&pid_caches_mutex); /* current can fail, but someone else can succeed. */ return READ_ONCE(*pkc); } static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); } static void dec_pid_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); } static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, struct pid_namespace *parent_pid_ns) { struct pid_namespace *ns; unsigned int level = parent_pid_ns->level + 1; struct ucounts *ucounts; int err; err = -EINVAL; if (!in_userns(parent_pid_ns->user_ns, user_ns)) goto out; err = -ENOSPC; if (level > MAX_PID_NS_LEVEL) goto out; ucounts = inc_pid_namespaces(user_ns); if (!ucounts) goto out; err = -ENOMEM; ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); if (ns == NULL) goto out_dec; idr_init(&ns->idr); ns->pid_cachep = create_pid_cachep(level); if (ns->pid_cachep == NULL) goto out_free_idr; err = ns_alloc_inum(&ns->ns); if (err) goto out_free_idr; ns->ns.ops = &pidns_operations; refcount_set(&ns->ns.count, 1); ns->level = level; ns->parent = get_pid_ns(parent_pid_ns); ns->user_ns = get_user_ns(user_ns); ns->ucounts = ucounts; ns->pid_allocated = PIDNS_ADDING; return ns; out_free_idr: idr_destroy(&ns->idr); kmem_cache_free(pid_ns_cachep, ns); out_dec: dec_pid_namespaces(ucounts); out: return ERR_PTR(err); } static void delayed_free_pidns(struct rcu_head *p) { struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); dec_pid_namespaces(ns->ucounts); put_user_ns(ns->user_ns); kmem_cache_free(pid_ns_cachep, ns); } static void destroy_pid_namespace(struct pid_namespace *ns) { ns_free_inum(&ns->ns); idr_destroy(&ns->idr); call_rcu(&ns->rcu, delayed_free_pidns); } struct pid_namespace *copy_pid_ns(unsigned long flags, struct user_namespace *user_ns, struct pid_namespace *old_ns) { if (!(flags & CLONE_NEWPID)) return get_pid_ns(old_ns); if (task_active_pid_ns(current) != old_ns) return ERR_PTR(-EINVAL); return create_pid_namespace(user_ns, old_ns); } void put_pid_ns(struct pid_namespace *ns) { struct pid_namespace *parent; while (ns != &init_pid_ns) { parent = ns->parent; if (!refcount_dec_and_test(&ns->ns.count)) break; destroy_pid_namespace(ns); ns = parent; } } EXPORT_SYMBOL_GPL(put_pid_ns); void zap_pid_ns_processes(struct pid_namespace *pid_ns) { int nr; int rc; struct task_struct *task, *me = current; int init_pids = thread_group_leader(me) ? 1 : 2; struct pid *pid; /* Don't allow any more processes into the pid namespace */ disable_pid_allocation(pid_ns); /* * Ignore SIGCHLD causing any terminated children to autoreap. * This speeds up the namespace shutdown, plus see the comment * below. */ spin_lock_irq(&me->sighand->siglock); me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; spin_unlock_irq(&me->sighand->siglock); /* * The last thread in the cgroup-init thread group is terminating. * Find remaining pid_ts in the namespace, signal and wait for them * to exit. * * Note: This signals each threads in the namespace - even those that * belong to the same thread group, To avoid this, we would have * to walk the entire tasklist looking a processes in this * namespace, but that could be unnecessarily expensive if the * pid namespace has just a few processes. Or we need to * maintain a tasklist for each pid namespace. * */ rcu_read_lock(); read_lock(&tasklist_lock); nr = 2; idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { task = pid_task(pid, PIDTYPE_PID); if (task && !__fatal_signal_pending(task)) group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); } read_unlock(&tasklist_lock); rcu_read_unlock(); /* * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. * kernel_wait4() will also block until our children traced from the * parent namespace are detached and become EXIT_DEAD. */ do { clear_thread_flag(TIF_SIGPENDING); rc = kernel_wait4(-1, NULL, __WALL, NULL); } while (rc != -ECHILD); /* * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE * process whose parents processes are outside of the pid * namespace. Such processes are created with setns()+fork(). * * If those EXIT_ZOMBIE processes are not reaped by their * parents before their parents exit, they will be reparented * to pid_ns->child_reaper. Thus pidns->child_reaper needs to * stay valid until they all go away. * * The code relies on the pid_ns->child_reaper ignoring * SIGCHILD to cause those EXIT_ZOMBIE processes to be * autoreaped if reparented. * * Semantically it is also desirable to wait for EXIT_ZOMBIE * processes before allowing the child_reaper to be reaped, as * that gives the invariant that when the init process of a * pid namespace is reaped all of the processes in the pid * namespace are gone. * * Once all of the other tasks are gone from the pid_namespace * free_pid() will awaken this task. */ for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (pid_ns->pid_allocated == init_pids) break; schedule(); } __set_current_state(TASK_RUNNING); if (pid_ns->reboot) current->signal->group_exit_code = pid_ns->reboot; acct_exit_ns(pid_ns); return; } #ifdef CONFIG_CHECKPOINT_RESTORE static int pid_ns_ctl_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct pid_namespace *pid_ns = task_active_pid_ns(current); struct ctl_table tmp = *table; int ret, next; if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) return -EPERM; /* * Writing directly to ns' last_pid field is OK, since this field * is volatile in a living namespace anyway and a code writing to * it should synchronize its usage with external means. */ next = idr_get_cursor(&pid_ns->idr) - 1; tmp.data = &next; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (!ret && write) idr_set_cursor(&pid_ns->idr, next + 1); return ret; } extern int pid_max; static struct ctl_table pid_ns_ctl_table[] = { { .procname = "ns_last_pid", .maxlen = sizeof(int), .mode = 0666, /* permissions are checked in the handler */ .proc_handler = pid_ns_ctl_handler, .extra1 = SYSCTL_ZERO, .extra2 = &pid_max, }, { } }; static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; #endif /* CONFIG_CHECKPOINT_RESTORE */ int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) { if (pid_ns == &init_pid_ns) return 0; switch (cmd) { case LINUX_REBOOT_CMD_RESTART2: case LINUX_REBOOT_CMD_RESTART: pid_ns->reboot = SIGHUP; break; case LINUX_REBOOT_CMD_POWER_OFF: case LINUX_REBOOT_CMD_HALT: pid_ns->reboot = SIGINT; break; default: return -EINVAL; } read_lock(&tasklist_lock); send_sig(SIGKILL, pid_ns->child_reaper, 1); read_unlock(&tasklist_lock); do_exit(0); /* Not reached */ return 0; } static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) { return container_of(ns, struct pid_namespace, ns); } static struct ns_common *pidns_get(struct task_struct *task) { struct pid_namespace *ns; rcu_read_lock(); ns = task_active_pid_ns(task); if (ns) get_pid_ns(ns); rcu_read_unlock(); return ns ? &ns->ns : NULL; } static struct ns_common *pidns_for_children_get(struct task_struct *task) { struct pid_namespace *ns = NULL; task_lock(task); if (task->nsproxy) { ns = task->nsproxy->pid_ns_for_children; get_pid_ns(ns); } task_unlock(task); if (ns) { read_lock(&tasklist_lock); if (!ns->child_reaper) { put_pid_ns(ns); ns = NULL; } read_unlock(&tasklist_lock); } return ns ? &ns->ns : NULL; } static void pidns_put(struct ns_common *ns) { put_pid_ns(to_pid_ns(ns)); } static int pidns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct pid_namespace *active = task_active_pid_ns(current); struct pid_namespace *ancestor, *new = to_pid_ns(ns); if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) return -EPERM; /* * Only allow entering the current active pid namespace * or a child of the current active pid namespace. * * This is required for fork to return a usable pid value and * this maintains the property that processes and their * children can not escape their current pid namespace. */ if (new->level < active->level) return -EINVAL; ancestor = new; while (ancestor->level > active->level) ancestor = ancestor->parent; if (ancestor != active) return -EINVAL; put_pid_ns(nsproxy->pid_ns_for_children); nsproxy->pid_ns_for_children = get_pid_ns(new); return 0; } static struct ns_common *pidns_get_parent(struct ns_common *ns) { struct pid_namespace *active = task_active_pid_ns(current); struct pid_namespace *pid_ns, *p; /* See if the parent is in the current namespace */ pid_ns = p = to_pid_ns(ns)->parent; for (;;) { if (!p) return ERR_PTR(-EPERM); if (p == active) break; p = p->parent; } return &get_pid_ns(pid_ns)->ns; } static struct user_namespace *pidns_owner(struct ns_common *ns) { return to_pid_ns(ns)->user_ns; } const struct proc_ns_operations pidns_operations = { .name = "pid", .type = CLONE_NEWPID, .get = pidns_get, .put = pidns_put, .install = pidns_install, .owner = pidns_owner, .get_parent = pidns_get_parent, }; const struct proc_ns_operations pidns_for_children_operations = { .name = "pid_for_children", .real_ns_name = "pid", .type = CLONE_NEWPID, .get = pidns_for_children_get, .put = pidns_put, .install = pidns_install, .owner = pidns_owner, .get_parent = pidns_get_parent, }; static __init int pid_namespaces_init(void) { pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT); #ifdef CONFIG_CHECKPOINT_RESTORE register_sysctl_paths(kern_path, pid_ns_ctl_table); #endif return 0; } __initcall(pid_namespaces_init); |