Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Overview: * Platform independent driver for NDFC (NanD Flash Controller) * integrated into EP440 cores * * Ported to an OF platform driver by Sean MacLennan * * The NDFC supports multiple chips, but this driver only supports a * single chip since I do not have access to any boards with * multiple chips. * * Author: Thomas Gleixner * * Copyright 2006 IBM * Copyright 2008 PIKA Technologies * Sean MacLennan <smaclennan@pikatech.com> */ #include <linux/module.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/mtd/ndfc.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <asm/io.h> #define NDFC_MAX_CS 4 struct ndfc_controller { struct platform_device *ofdev; void __iomem *ndfcbase; struct nand_chip chip; int chip_select; struct nand_controller ndfc_control; }; static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS]; static void ndfc_select_chip(struct nand_chip *nchip, int chip) { uint32_t ccr; struct ndfc_controller *ndfc = nand_get_controller_data(nchip); ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); if (chip >= 0) { ccr &= ~NDFC_CCR_BS_MASK; ccr |= NDFC_CCR_BS(chip + ndfc->chip_select); } else ccr |= NDFC_CCR_RESET_CE; out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); } static void ndfc_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl) { struct ndfc_controller *ndfc = nand_get_controller_data(chip); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD); else writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE); } static int ndfc_ready(struct nand_chip *chip) { struct ndfc_controller *ndfc = nand_get_controller_data(chip); return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY; } static void ndfc_enable_hwecc(struct nand_chip *chip, int mode) { uint32_t ccr; struct ndfc_controller *ndfc = nand_get_controller_data(chip); ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); ccr |= NDFC_CCR_RESET_ECC; out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); wmb(); } static int ndfc_calculate_ecc(struct nand_chip *chip, const u_char *dat, u_char *ecc_code) { struct ndfc_controller *ndfc = nand_get_controller_data(chip); uint32_t ecc; uint8_t *p = (uint8_t *)&ecc; wmb(); ecc = in_be32(ndfc->ndfcbase + NDFC_ECC); /* The NDFC uses Smart Media (SMC) bytes order */ ecc_code[0] = p[1]; ecc_code[1] = p[2]; ecc_code[2] = p[3]; return 0; } /* * Speedups for buffer read/write/verify * * NDFC allows 32bit read/write of data. So we can speed up the buffer * functions. No further checking, as nand_base will always read/write * page aligned. */ static void ndfc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) { struct ndfc_controller *ndfc = nand_get_controller_data(chip); uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) *p++ = in_be32(ndfc->ndfcbase + NDFC_DATA); } static void ndfc_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) { struct ndfc_controller *ndfc = nand_get_controller_data(chip); uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); } /* * Initialize chip structure */ static int ndfc_chip_init(struct ndfc_controller *ndfc, struct device_node *node) { struct device_node *flash_np; struct nand_chip *chip = &ndfc->chip; struct mtd_info *mtd = nand_to_mtd(chip); int ret; chip->legacy.IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; chip->legacy.IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA; chip->legacy.cmd_ctrl = ndfc_hwcontrol; chip->legacy.dev_ready = ndfc_ready; chip->legacy.select_chip = ndfc_select_chip; chip->legacy.chip_delay = 50; chip->controller = &ndfc->ndfc_control; chip->legacy.read_buf = ndfc_read_buf; chip->legacy.write_buf = ndfc_write_buf; chip->ecc.correct = rawnand_sw_hamming_correct; chip->ecc.hwctl = ndfc_enable_hwecc; chip->ecc.calculate = ndfc_calculate_ecc; chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; chip->ecc.size = 256; chip->ecc.bytes = 3; chip->ecc.strength = 1; nand_set_controller_data(chip, ndfc); mtd->dev.parent = &ndfc->ofdev->dev; flash_np = of_get_next_child(node, NULL); if (!flash_np) return -ENODEV; nand_set_flash_node(chip, flash_np); mtd->name = kasprintf(GFP_KERNEL, "%s.%pOFn", dev_name(&ndfc->ofdev->dev), flash_np); if (!mtd->name) { ret = -ENOMEM; goto err; } ret = nand_scan(chip, 1); if (ret) goto err; ret = mtd_device_register(mtd, NULL, 0); err: of_node_put(flash_np); if (ret) kfree(mtd->name); return ret; } static int ndfc_probe(struct platform_device *ofdev) { struct ndfc_controller *ndfc; const __be32 *reg; u32 ccr; u32 cs; int err, len; /* Read the reg property to get the chip select */ reg = of_get_property(ofdev->dev.of_node, "reg", &len); if (reg == NULL || len != 12) { dev_err(&ofdev->dev, "unable read reg property (%d)\n", len); return -ENOENT; } cs = be32_to_cpu(reg[0]); if (cs >= NDFC_MAX_CS) { dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs); return -EINVAL; } ndfc = &ndfc_ctrl[cs]; ndfc->chip_select = cs; nand_controller_init(&ndfc->ndfc_control); ndfc->ofdev = ofdev; dev_set_drvdata(&ofdev->dev, ndfc); ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0); if (!ndfc->ndfcbase) { dev_err(&ofdev->dev, "failed to get memory\n"); return -EIO; } ccr = NDFC_CCR_BS(ndfc->chip_select); /* It is ok if ccr does not exist - just default to 0 */ reg = of_get_property(ofdev->dev.of_node, "ccr", NULL); if (reg) ccr |= be32_to_cpup(reg); out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); /* Set the bank settings if given */ reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL); if (reg) { int offset = NDFC_BCFG0 + (ndfc->chip_select << 2); out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg)); } err = ndfc_chip_init(ndfc, ofdev->dev.of_node); if (err) { iounmap(ndfc->ndfcbase); return err; } return 0; } static int ndfc_remove(struct platform_device *ofdev) { struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); struct nand_chip *chip = &ndfc->chip; struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = mtd_device_unregister(mtd); WARN_ON(ret); nand_cleanup(chip); kfree(mtd->name); return 0; } static const struct of_device_id ndfc_match[] = { { .compatible = "ibm,ndfc", }, {} }; MODULE_DEVICE_TABLE(of, ndfc_match); static struct platform_driver ndfc_driver = { .driver = { .name = "ndfc", .of_match_table = ndfc_match, }, .probe = ndfc_probe, .remove = ndfc_remove, }; module_platform_driver(ndfc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); MODULE_DESCRIPTION("OF Platform driver for NDFC"); |