Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.

#include <linux/hwspinlock.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>

/* PMIC global registers definition */
#define SC2730_MODULE_EN		0x1808
#define SC2731_MODULE_EN		0xc08
#define SC27XX_MODULE_ADC_EN		BIT(5)
#define SC2721_ARM_CLK_EN		0xc0c
#define SC2730_ARM_CLK_EN		0x180c
#define SC2731_ARM_CLK_EN		0xc10
#define SC27XX_CLK_ADC_EN		BIT(5)
#define SC27XX_CLK_ADC_CLK_EN		BIT(6)

/* ADC controller registers definition */
#define SC27XX_ADC_CTL			0x0
#define SC27XX_ADC_CH_CFG		0x4
#define SC27XX_ADC_DATA			0x4c
#define SC27XX_ADC_INT_EN		0x50
#define SC27XX_ADC_INT_CLR		0x54
#define SC27XX_ADC_INT_STS		0x58
#define SC27XX_ADC_INT_RAW		0x5c

/* Bits and mask definition for SC27XX_ADC_CTL register */
#define SC27XX_ADC_EN			BIT(0)
#define SC27XX_ADC_CHN_RUN		BIT(1)
#define SC27XX_ADC_12BIT_MODE		BIT(2)
#define SC27XX_ADC_RUN_NUM_MASK		GENMASK(7, 4)
#define SC27XX_ADC_RUN_NUM_SHIFT	4

/* Bits and mask definition for SC27XX_ADC_CH_CFG register */
#define SC27XX_ADC_CHN_ID_MASK		GENMASK(4, 0)
#define SC27XX_ADC_SCALE_MASK		GENMASK(10, 9)
#define SC2721_ADC_SCALE_MASK		BIT(5)
#define SC27XX_ADC_SCALE_SHIFT		9
#define SC2721_ADC_SCALE_SHIFT		5

/* Bits definitions for SC27XX_ADC_INT_EN registers */
#define SC27XX_ADC_IRQ_EN		BIT(0)

/* Bits definitions for SC27XX_ADC_INT_CLR registers */
#define SC27XX_ADC_IRQ_CLR		BIT(0)

/* Bits definitions for SC27XX_ADC_INT_RAW registers */
#define SC27XX_ADC_IRQ_RAW		BIT(0)

/* Mask definition for SC27XX_ADC_DATA register */
#define SC27XX_ADC_DATA_MASK		GENMASK(11, 0)

/* Timeout (ms) for the trylock of hardware spinlocks */
#define SC27XX_ADC_HWLOCK_TIMEOUT	5000

/* Timeout (us) for ADC data conversion according to ADC datasheet */
#define SC27XX_ADC_RDY_TIMEOUT		1000000
#define SC27XX_ADC_POLL_RAW_STATUS	500

/* Maximum ADC channel number */
#define SC27XX_ADC_CHANNEL_MAX		32

/* ADC voltage ratio definition */
#define SC27XX_VOLT_RATIO(n, d)		\
	(((n) << SC27XX_RATIO_NUMERATOR_OFFSET) | (d))
#define SC27XX_RATIO_NUMERATOR_OFFSET	16
#define SC27XX_RATIO_DENOMINATOR_MASK	GENMASK(15, 0)

/* ADC specific channel reference voltage 3.5V */
#define SC27XX_ADC_REFVOL_VDD35		3500000

/* ADC default channel reference voltage is 2.8V */
#define SC27XX_ADC_REFVOL_VDD28		2800000

struct sc27xx_adc_data {
	struct device *dev;
	struct regulator *volref;
	struct regmap *regmap;
	/*
	 * One hardware spinlock to synchronize between the multiple
	 * subsystems which will access the unique ADC controller.
	 */
	struct hwspinlock *hwlock;
	int channel_scale[SC27XX_ADC_CHANNEL_MAX];
	u32 base;
	int irq;
	const struct sc27xx_adc_variant_data *var_data;
};

/*
 * Since different PMICs of SC27xx series can have different
 * address and ratio, we should save ratio config and base
 * in the device data structure.
 */
struct sc27xx_adc_variant_data {
	u32 module_en;
	u32 clk_en;
	u32 scale_shift;
	u32 scale_mask;
	const struct sc27xx_adc_linear_graph *bscale_cal;
	const struct sc27xx_adc_linear_graph *sscale_cal;
	void (*init_scale)(struct sc27xx_adc_data *data);
	int (*get_ratio)(int channel, int scale);
	bool set_volref;
};

struct sc27xx_adc_linear_graph {
	int volt0;
	int adc0;
	int volt1;
	int adc1;
};

/*
 * According to the datasheet, we can convert one ADC value to one voltage value
 * through 2 points in the linear graph. If the voltage is less than 1.2v, we
 * should use the small-scale graph, and if more than 1.2v, we should use the
 * big-scale graph.
 */
static struct sc27xx_adc_linear_graph big_scale_graph = {
	4200, 3310,
	3600, 2832,
};

static struct sc27xx_adc_linear_graph small_scale_graph = {
	1000, 3413,
	100, 341,
};

static const struct sc27xx_adc_linear_graph sc2731_big_scale_graph_calib = {
	4200, 850,
	3600, 728,
};

static const struct sc27xx_adc_linear_graph sc2731_small_scale_graph_calib = {
	1000, 838,
	100, 84,
};

static const struct sc27xx_adc_linear_graph big_scale_graph_calib = {
	4200, 856,
	3600, 733,
};

static const struct sc27xx_adc_linear_graph small_scale_graph_calib = {
	1000, 833,
	100, 80,
};

static int sc27xx_adc_get_calib_data(u32 calib_data, int calib_adc)
{
	return ((calib_data & 0xff) + calib_adc - 128) * 4;
}

/* get the adc nvmem cell calibration data */
static int adc_nvmem_cell_calib_data(struct sc27xx_adc_data *data, const char *cell_name)
{
	struct nvmem_cell *cell;
	void *buf;
	u32 origin_calib_data = 0;
	size_t len;

	if (!data)
		return -EINVAL;

	cell = nvmem_cell_get(data->dev, cell_name);
	if (IS_ERR(cell))
		return PTR_ERR(cell);

	buf = nvmem_cell_read(cell, &len);
	if (IS_ERR(buf)) {
		nvmem_cell_put(cell);
		return PTR_ERR(buf);
	}

	memcpy(&origin_calib_data, buf, min(len, sizeof(u32)));

	kfree(buf);
	nvmem_cell_put(cell);
	return origin_calib_data;
}

static int sc27xx_adc_scale_calibration(struct sc27xx_adc_data *data,
					bool big_scale)
{
	const struct sc27xx_adc_linear_graph *calib_graph;
	struct sc27xx_adc_linear_graph *graph;
	const char *cell_name;
	u32 calib_data = 0;

	if (big_scale) {
		calib_graph = data->var_data->bscale_cal;
		graph = &big_scale_graph;
		cell_name = "big_scale_calib";
	} else {
		calib_graph = data->var_data->sscale_cal;
		graph = &small_scale_graph;
		cell_name = "small_scale_calib";
	}

	calib_data = adc_nvmem_cell_calib_data(data, cell_name);

	/* Only need to calibrate the adc values in the linear graph. */
	graph->adc0 = sc27xx_adc_get_calib_data(calib_data, calib_graph->adc0);
	graph->adc1 = sc27xx_adc_get_calib_data(calib_data >> 8,
						calib_graph->adc1);

	return 0;
}

static int sc2720_adc_get_ratio(int channel, int scale)
{
	switch (channel) {
	case 14:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(68, 900);
		case 1:
			return SC27XX_VOLT_RATIO(68, 1760);
		case 2:
			return SC27XX_VOLT_RATIO(68, 2327);
		case 3:
			return SC27XX_VOLT_RATIO(68, 3654);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	case 16:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(48, 100);
		case 1:
			return SC27XX_VOLT_RATIO(480, 1955);
		case 2:
			return SC27XX_VOLT_RATIO(480, 2586);
		case 3:
			return SC27XX_VOLT_RATIO(48, 406);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	case 21:
	case 22:
	case 23:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(3, 8);
		case 1:
			return SC27XX_VOLT_RATIO(375, 1955);
		case 2:
			return SC27XX_VOLT_RATIO(375, 2586);
		case 3:
			return SC27XX_VOLT_RATIO(300, 3248);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	default:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(1, 1);
		case 1:
			return SC27XX_VOLT_RATIO(1000, 1955);
		case 2:
			return SC27XX_VOLT_RATIO(1000, 2586);
		case 3:
			return SC27XX_VOLT_RATIO(100, 406);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	}
	return SC27XX_VOLT_RATIO(1, 1);
}

static int sc2721_adc_get_ratio(int channel, int scale)
{
	switch (channel) {
	case 1:
	case 2:
	case 3:
	case 4:
		return scale ? SC27XX_VOLT_RATIO(400, 1025) :
			SC27XX_VOLT_RATIO(1, 1);
	case 5:
		return SC27XX_VOLT_RATIO(7, 29);
	case 7:
	case 9:
		return scale ? SC27XX_VOLT_RATIO(100, 125) :
			SC27XX_VOLT_RATIO(1, 1);
	case 14:
		return SC27XX_VOLT_RATIO(68, 900);
	case 16:
		return SC27XX_VOLT_RATIO(48, 100);
	case 19:
		return SC27XX_VOLT_RATIO(1, 3);
	default:
		return SC27XX_VOLT_RATIO(1, 1);
	}
	return SC27XX_VOLT_RATIO(1, 1);
}

static int sc2730_adc_get_ratio(int channel, int scale)
{
	switch (channel) {
	case 14:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(68, 900);
		case 1:
			return SC27XX_VOLT_RATIO(68, 1760);
		case 2:
			return SC27XX_VOLT_RATIO(68, 2327);
		case 3:
			return SC27XX_VOLT_RATIO(68, 3654);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	case 15:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(1, 3);
		case 1:
			return SC27XX_VOLT_RATIO(1000, 5865);
		case 2:
			return SC27XX_VOLT_RATIO(500, 3879);
		case 3:
			return SC27XX_VOLT_RATIO(500, 6090);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	case 16:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(48, 100);
		case 1:
			return SC27XX_VOLT_RATIO(480, 1955);
		case 2:
			return SC27XX_VOLT_RATIO(480, 2586);
		case 3:
			return SC27XX_VOLT_RATIO(48, 406);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	case 21:
	case 22:
	case 23:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(3, 8);
		case 1:
			return SC27XX_VOLT_RATIO(375, 1955);
		case 2:
			return SC27XX_VOLT_RATIO(375, 2586);
		case 3:
			return SC27XX_VOLT_RATIO(300, 3248);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	default:
		switch (scale) {
		case 0:
			return SC27XX_VOLT_RATIO(1, 1);
		case 1:
			return SC27XX_VOLT_RATIO(1000, 1955);
		case 2:
			return SC27XX_VOLT_RATIO(1000, 2586);
		case 3:
			return SC27XX_VOLT_RATIO(1000, 4060);
		default:
			return SC27XX_VOLT_RATIO(1, 1);
		}
	}
	return SC27XX_VOLT_RATIO(1, 1);
}

static int sc2731_adc_get_ratio(int channel, int scale)
{
	switch (channel) {
	case 1:
	case 2:
	case 3:
	case 4:
		return scale ? SC27XX_VOLT_RATIO(400, 1025) :
			SC27XX_VOLT_RATIO(1, 1);
	case 5:
		return SC27XX_VOLT_RATIO(7, 29);
	case 6:
		return SC27XX_VOLT_RATIO(375, 9000);
	case 7:
	case 8:
		return scale ? SC27XX_VOLT_RATIO(100, 125) :
			SC27XX_VOLT_RATIO(1, 1);
	case 19:
		return SC27XX_VOLT_RATIO(1, 3);
	default:
		return SC27XX_VOLT_RATIO(1, 1);
	}
	return SC27XX_VOLT_RATIO(1, 1);
}

/*
 * According to the datasheet set specific value on some channel.
 */
static void sc2720_adc_scale_init(struct sc27xx_adc_data *data)
{
	int i;

	for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
		switch (i) {
		case 5:
			data->channel_scale[i] = 3;
			break;
		case 7:
		case 9:
			data->channel_scale[i] = 2;
			break;
		case 13:
			data->channel_scale[i] = 1;
			break;
		case 19:
		case 30:
		case 31:
			data->channel_scale[i] = 3;
			break;
		default:
			data->channel_scale[i] = 0;
			break;
		}
	}
}

static void sc2730_adc_scale_init(struct sc27xx_adc_data *data)
{
	int i;

	for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
		switch (i) {
		case 5:
		case 10:
		case 19:
		case 30:
		case 31:
			data->channel_scale[i] = 3;
			break;
		case 7:
		case 9:
			data->channel_scale[i] = 2;
			break;
		case 13:
			data->channel_scale[i] = 1;
			break;
		default:
			data->channel_scale[i] = 0;
			break;
		}
	}
}

static void sc2731_adc_scale_init(struct sc27xx_adc_data *data)
{
	int i;
	/*
	 * In the current software design, SC2731 support 2 scales,
	 * channels 5 uses big scale, others use smale.
	 */
	for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
		switch (i) {
		case 5:
			data->channel_scale[i] = 1;
			break;
		default:
			data->channel_scale[i] = 0;
			break;
		}
	}
}

static int sc27xx_adc_read(struct sc27xx_adc_data *data, int channel,
			   int scale, int *val)
{
	int ret, ret_volref;
	u32 tmp, value, status;

	ret = hwspin_lock_timeout_raw(data->hwlock, SC27XX_ADC_HWLOCK_TIMEOUT);
	if (ret) {
		dev_err(data->dev, "timeout to get the hwspinlock\n");
		return ret;
	}

	/*
	 * According to the sc2721 chip data sheet, the reference voltage of
	 * specific channel 30 and channel 31 in ADC module needs to be set from
	 * the default 2.8v to 3.5v.
	 */
	if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
		ret = regulator_set_voltage(data->volref,
					SC27XX_ADC_REFVOL_VDD35,
					SC27XX_ADC_REFVOL_VDD35);
		if (ret) {
			dev_err(data->dev, "failed to set the volref 3.5v\n");
			goto unlock_adc;
		}
	}

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
				 SC27XX_ADC_EN, SC27XX_ADC_EN);
	if (ret)
		goto regulator_restore;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_INT_CLR,
				 SC27XX_ADC_IRQ_CLR, SC27XX_ADC_IRQ_CLR);
	if (ret)
		goto disable_adc;

	/* Configure the channel id and scale */
	tmp = (scale << data->var_data->scale_shift) & data->var_data->scale_mask;
	tmp |= channel & SC27XX_ADC_CHN_ID_MASK;
	ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CH_CFG,
				 SC27XX_ADC_CHN_ID_MASK |
				 data->var_data->scale_mask,
				 tmp);
	if (ret)
		goto disable_adc;

	/* Select 12bit conversion mode, and only sample 1 time */
	tmp = SC27XX_ADC_12BIT_MODE;
	tmp |= (0 << SC27XX_ADC_RUN_NUM_SHIFT) & SC27XX_ADC_RUN_NUM_MASK;
	ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
				 SC27XX_ADC_RUN_NUM_MASK | SC27XX_ADC_12BIT_MODE,
				 tmp);
	if (ret)
		goto disable_adc;

	ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
				 SC27XX_ADC_CHN_RUN, SC27XX_ADC_CHN_RUN);
	if (ret)
		goto disable_adc;

	ret = regmap_read_poll_timeout(data->regmap,
				       data->base + SC27XX_ADC_INT_RAW,
				       status, (status & SC27XX_ADC_IRQ_RAW),
				       SC27XX_ADC_POLL_RAW_STATUS,
				       SC27XX_ADC_RDY_TIMEOUT);
	if (ret) {
		dev_err(data->dev, "read adc timeout, status = 0x%x\n", status);
		goto disable_adc;
	}

	ret = regmap_read(data->regmap, data->base + SC27XX_ADC_DATA, &value);
	if (ret)
		goto disable_adc;

	value &= SC27XX_ADC_DATA_MASK;

disable_adc:
	regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
			   SC27XX_ADC_EN, 0);
regulator_restore:
	if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
		ret_volref = regulator_set_voltage(data->volref,
					    SC27XX_ADC_REFVOL_VDD28,
					    SC27XX_ADC_REFVOL_VDD28);
		if (ret_volref) {
			dev_err(data->dev, "failed to set the volref 2.8v,ret_volref = 0x%x\n",
					 ret_volref);
			ret = ret || ret_volref;
		}
	}
unlock_adc:
	hwspin_unlock_raw(data->hwlock);

	if (!ret)
		*val = value;

	return ret;
}

static void sc27xx_adc_volt_ratio(struct sc27xx_adc_data *data, int channel, int scale,
				  struct u32_fract *fract)
{
	u32 ratio;

	ratio = data->var_data->get_ratio(channel, scale);
	fract->numerator = ratio >> SC27XX_RATIO_NUMERATOR_OFFSET;
	fract->denominator = ratio & SC27XX_RATIO_DENOMINATOR_MASK;
}

static int adc_to_volt(struct sc27xx_adc_linear_graph *graph,
			      int raw_adc)
{
	int tmp;

	tmp = (graph->volt0 - graph->volt1) * (raw_adc - graph->adc1);
	tmp /= (graph->adc0 - graph->adc1);
	tmp += graph->volt1;

	return tmp;
}

static int sc27xx_adc_to_volt(struct sc27xx_adc_linear_graph *graph,
			      int raw_adc)
{
	int tmp;

	tmp = adc_to_volt(graph, raw_adc);

	return tmp < 0 ? 0 : tmp;
}

static int sc27xx_adc_convert_volt(struct sc27xx_adc_data *data, int channel,
				   int scale, int raw_adc)
{
	struct u32_fract fract;
	u32 volt;

	/*
	 * Convert ADC values to voltage values according to the linear graph,
	 * and channel 5 and channel 1 has been calibrated, so we can just
	 * return the voltage values calculated by the linear graph. But other
	 * channels need be calculated to the real voltage values with the
	 * voltage ratio.
	 */
	switch (channel) {
	case 5:
		return sc27xx_adc_to_volt(&big_scale_graph, raw_adc);

	case 1:
		return sc27xx_adc_to_volt(&small_scale_graph, raw_adc);

	default:
		volt = sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
		break;
	}

	sc27xx_adc_volt_ratio(data, channel, scale, &fract);

	return DIV_ROUND_CLOSEST(volt * fract.denominator, fract.numerator);
}

static int sc27xx_adc_read_processed(struct sc27xx_adc_data *data,
				     int channel, int scale, int *val)
{
	int ret, raw_adc;

	ret = sc27xx_adc_read(data, channel, scale, &raw_adc);
	if (ret)
		return ret;

	*val = sc27xx_adc_convert_volt(data, channel, scale, raw_adc);
	return 0;
}

static int sc27xx_adc_read_raw(struct iio_dev *indio_dev,
			       struct iio_chan_spec const *chan,
			       int *val, int *val2, long mask)
{
	struct sc27xx_adc_data *data = iio_priv(indio_dev);
	int scale = data->channel_scale[chan->channel];
	int ret, tmp;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&indio_dev->mlock);
		ret = sc27xx_adc_read(data, chan->channel, scale, &tmp);
		mutex_unlock(&indio_dev->mlock);

		if (ret)
			return ret;

		*val = tmp;
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_PROCESSED:
		mutex_lock(&indio_dev->mlock);
		ret = sc27xx_adc_read_processed(data, chan->channel, scale,
						&tmp);
		mutex_unlock(&indio_dev->mlock);

		if (ret)
			return ret;

		*val = tmp;
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_SCALE:
		*val = scale;
		return IIO_VAL_INT;

	default:
		return -EINVAL;
	}
}

static int sc27xx_adc_write_raw(struct iio_dev *indio_dev,
				struct iio_chan_spec const *chan,
				int val, int val2, long mask)
{
	struct sc27xx_adc_data *data = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		data->channel_scale[chan->channel] = val;
		return IIO_VAL_INT;

	default:
		return -EINVAL;
	}
}

static const struct iio_info sc27xx_info = {
	.read_raw = &sc27xx_adc_read_raw,
	.write_raw = &sc27xx_adc_write_raw,
};

#define SC27XX_ADC_CHANNEL(index, mask) {			\
	.type = IIO_VOLTAGE,					\
	.channel = index,					\
	.info_mask_separate = mask | BIT(IIO_CHAN_INFO_SCALE),	\
	.datasheet_name = "CH##index",				\
	.indexed = 1,						\
}

static const struct iio_chan_spec sc27xx_channels[] = {
	SC27XX_ADC_CHANNEL(0, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(1, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(2, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(3, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(4, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(5, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(6, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(7, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(8, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(9, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(10, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(11, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(12, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(13, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(14, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(15, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(16, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(17, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(18, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(19, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(20, BIT(IIO_CHAN_INFO_RAW)),
	SC27XX_ADC_CHANNEL(21, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(22, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(23, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(24, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(25, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(26, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(27, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(28, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(29, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(30, BIT(IIO_CHAN_INFO_PROCESSED)),
	SC27XX_ADC_CHANNEL(31, BIT(IIO_CHAN_INFO_PROCESSED)),
};

static int sc27xx_adc_enable(struct sc27xx_adc_data *data)
{
	int ret;

	ret = regmap_update_bits(data->regmap, data->var_data->module_en,
				 SC27XX_MODULE_ADC_EN, SC27XX_MODULE_ADC_EN);
	if (ret)
		return ret;

	/* Enable ADC work clock and controller clock */
	ret = regmap_update_bits(data->regmap, data->var_data->clk_en,
				 SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN,
				 SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN);
	if (ret)
		goto disable_adc;

	/* ADC channel scales' calibration from nvmem device */
	ret = sc27xx_adc_scale_calibration(data, true);
	if (ret)
		goto disable_clk;

	ret = sc27xx_adc_scale_calibration(data, false);
	if (ret)
		goto disable_clk;

	return 0;

disable_clk:
	regmap_update_bits(data->regmap, data->var_data->clk_en,
			   SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
disable_adc:
	regmap_update_bits(data->regmap, data->var_data->module_en,
			   SC27XX_MODULE_ADC_EN, 0);

	return ret;
}

static void sc27xx_adc_disable(void *_data)
{
	struct sc27xx_adc_data *data = _data;

	/* Disable ADC work clock and controller clock */
	regmap_update_bits(data->regmap, data->var_data->clk_en,
			   SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);

	regmap_update_bits(data->regmap, data->var_data->module_en,
			   SC27XX_MODULE_ADC_EN, 0);
}

static const struct sc27xx_adc_variant_data sc2731_data = {
	.module_en = SC2731_MODULE_EN,
	.clk_en = SC2731_ARM_CLK_EN,
	.scale_shift = SC27XX_ADC_SCALE_SHIFT,
	.scale_mask = SC27XX_ADC_SCALE_MASK,
	.bscale_cal = &sc2731_big_scale_graph_calib,
	.sscale_cal = &sc2731_small_scale_graph_calib,
	.init_scale = sc2731_adc_scale_init,
	.get_ratio = sc2731_adc_get_ratio,
	.set_volref = false,
};

static const struct sc27xx_adc_variant_data sc2730_data = {
	.module_en = SC2730_MODULE_EN,
	.clk_en = SC2730_ARM_CLK_EN,
	.scale_shift = SC27XX_ADC_SCALE_SHIFT,
	.scale_mask = SC27XX_ADC_SCALE_MASK,
	.bscale_cal = &big_scale_graph_calib,
	.sscale_cal = &small_scale_graph_calib,
	.init_scale = sc2730_adc_scale_init,
	.get_ratio = sc2730_adc_get_ratio,
	.set_volref = false,
};

static const struct sc27xx_adc_variant_data sc2721_data = {
	.module_en = SC2731_MODULE_EN,
	.clk_en = SC2721_ARM_CLK_EN,
	.scale_shift = SC2721_ADC_SCALE_SHIFT,
	.scale_mask = SC2721_ADC_SCALE_MASK,
	.bscale_cal = &sc2731_big_scale_graph_calib,
	.sscale_cal = &sc2731_small_scale_graph_calib,
	.init_scale = sc2731_adc_scale_init,
	.get_ratio = sc2721_adc_get_ratio,
	.set_volref = true,
};

static const struct sc27xx_adc_variant_data sc2720_data = {
	.module_en = SC2731_MODULE_EN,
	.clk_en = SC2721_ARM_CLK_EN,
	.scale_shift = SC27XX_ADC_SCALE_SHIFT,
	.scale_mask = SC27XX_ADC_SCALE_MASK,
	.bscale_cal = &big_scale_graph_calib,
	.sscale_cal = &small_scale_graph_calib,
	.init_scale = sc2720_adc_scale_init,
	.get_ratio = sc2720_adc_get_ratio,
	.set_volref = false,
};

static int sc27xx_adc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct sc27xx_adc_data *sc27xx_data;
	const struct sc27xx_adc_variant_data *pdata;
	struct iio_dev *indio_dev;
	int ret;

	pdata = of_device_get_match_data(dev);
	if (!pdata) {
		dev_err(dev, "No matching driver data found\n");
		return -EINVAL;
	}

	indio_dev = devm_iio_device_alloc(dev, sizeof(*sc27xx_data));
	if (!indio_dev)
		return -ENOMEM;

	sc27xx_data = iio_priv(indio_dev);

	sc27xx_data->regmap = dev_get_regmap(dev->parent, NULL);
	if (!sc27xx_data->regmap) {
		dev_err(dev, "failed to get ADC regmap\n");
		return -ENODEV;
	}

	ret = of_property_read_u32(np, "reg", &sc27xx_data->base);
	if (ret) {
		dev_err(dev, "failed to get ADC base address\n");
		return ret;
	}

	sc27xx_data->irq = platform_get_irq(pdev, 0);
	if (sc27xx_data->irq < 0)
		return sc27xx_data->irq;

	ret = of_hwspin_lock_get_id(np, 0);
	if (ret < 0) {
		dev_err(dev, "failed to get hwspinlock id\n");
		return ret;
	}

	sc27xx_data->hwlock = devm_hwspin_lock_request_specific(dev, ret);
	if (!sc27xx_data->hwlock) {
		dev_err(dev, "failed to request hwspinlock\n");
		return -ENXIO;
	}

	sc27xx_data->dev = dev;
	if (pdata->set_volref) {
		sc27xx_data->volref = devm_regulator_get(dev, "vref");
		if (IS_ERR(sc27xx_data->volref)) {
			ret = PTR_ERR(sc27xx_data->volref);
			return dev_err_probe(dev, ret, "failed to get ADC volref\n");
		}
	}

	sc27xx_data->var_data = pdata;
	sc27xx_data->var_data->init_scale(sc27xx_data);

	ret = sc27xx_adc_enable(sc27xx_data);
	if (ret) {
		dev_err(dev, "failed to enable ADC module\n");
		return ret;
	}

	ret = devm_add_action_or_reset(dev, sc27xx_adc_disable, sc27xx_data);
	if (ret) {
		dev_err(dev, "failed to add ADC disable action\n");
		return ret;
	}

	indio_dev->name = dev_name(dev);
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &sc27xx_info;
	indio_dev->channels = sc27xx_channels;
	indio_dev->num_channels = ARRAY_SIZE(sc27xx_channels);
	ret = devm_iio_device_register(dev, indio_dev);
	if (ret)
		dev_err(dev, "could not register iio (ADC)");

	return ret;
}

static const struct of_device_id sc27xx_adc_of_match[] = {
	{ .compatible = "sprd,sc2731-adc", .data = &sc2731_data},
	{ .compatible = "sprd,sc2730-adc", .data = &sc2730_data},
	{ .compatible = "sprd,sc2721-adc", .data = &sc2721_data},
	{ .compatible = "sprd,sc2720-adc", .data = &sc2720_data},
	{ }
};
MODULE_DEVICE_TABLE(of, sc27xx_adc_of_match);

static struct platform_driver sc27xx_adc_driver = {
	.probe = sc27xx_adc_probe,
	.driver = {
		.name = "sc27xx-adc",
		.of_match_table = sc27xx_adc_of_match,
	},
};

module_platform_driver(sc27xx_adc_driver);

MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
MODULE_DESCRIPTION("Spreadtrum SC27XX ADC Driver");
MODULE_LICENSE("GPL v2");