Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | // SPDX-License-Identifier: GPL-2.0-only /* * Code to handle transition of Linux booting another kernel. * * Copyright (C) 2002-2003 Eric Biederman <ebiederm@xmission.com> * GameCube/ppc32 port Copyright (C) 2004 Albert Herranz * Copyright (C) 2005 IBM Corporation. */ #include <linux/kexec.h> #include <linux/reboot.h> #include <linux/threads.h> #include <linux/memblock.h> #include <linux/of.h> #include <linux/irq.h> #include <linux/ftrace.h> #include <asm/kdump.h> #include <asm/machdep.h> #include <asm/pgalloc.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/firmware.h> void machine_kexec_mask_interrupts(void) { unsigned int i; struct irq_desc *desc; for_each_irq_desc(i, desc) { struct irq_chip *chip; chip = irq_desc_get_chip(desc); if (!chip) continue; if (chip->irq_eoi && irqd_irq_inprogress(&desc->irq_data)) chip->irq_eoi(&desc->irq_data); if (chip->irq_mask) chip->irq_mask(&desc->irq_data); if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data)) chip->irq_disable(&desc->irq_data); } } void machine_crash_shutdown(struct pt_regs *regs) { default_machine_crash_shutdown(regs); } void machine_kexec_cleanup(struct kimage *image) { } void arch_crash_save_vmcoreinfo(void) { #ifdef CONFIG_NUMA VMCOREINFO_SYMBOL(node_data); VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); #endif #ifndef CONFIG_NUMA VMCOREINFO_SYMBOL(contig_page_data); #endif #if defined(CONFIG_PPC64) && defined(CONFIG_SPARSEMEM_VMEMMAP) VMCOREINFO_SYMBOL(vmemmap_list); VMCOREINFO_SYMBOL(mmu_vmemmap_psize); VMCOREINFO_SYMBOL(mmu_psize_defs); VMCOREINFO_STRUCT_SIZE(vmemmap_backing); VMCOREINFO_OFFSET(vmemmap_backing, list); VMCOREINFO_OFFSET(vmemmap_backing, phys); VMCOREINFO_OFFSET(vmemmap_backing, virt_addr); VMCOREINFO_STRUCT_SIZE(mmu_psize_def); VMCOREINFO_OFFSET(mmu_psize_def, shift); #endif vmcoreinfo_append_str("KERNELOFFSET=%lx\n", kaslr_offset()); } /* * Do not allocate memory (or fail in any way) in machine_kexec(). * We are past the point of no return, committed to rebooting now. */ void machine_kexec(struct kimage *image) { int save_ftrace_enabled; save_ftrace_enabled = __ftrace_enabled_save(); this_cpu_disable_ftrace(); if (ppc_md.machine_kexec) ppc_md.machine_kexec(image); else default_machine_kexec(image); this_cpu_enable_ftrace(); __ftrace_enabled_restore(save_ftrace_enabled); /* Fall back to normal restart if we're still alive. */ machine_restart(NULL); for(;;); } void __init reserve_crashkernel(void) { unsigned long long crash_size, crash_base, total_mem_sz; int ret; total_mem_sz = memory_limit ? memory_limit : memblock_phys_mem_size(); /* use common parsing */ ret = parse_crashkernel(boot_command_line, total_mem_sz, &crash_size, &crash_base); if (ret == 0 && crash_size > 0) { crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; } if (crashk_res.end == crashk_res.start) { crashk_res.start = crashk_res.end = 0; return; } /* We might have got these values via the command line or the * device tree, either way sanitise them now. */ crash_size = resource_size(&crashk_res); #ifndef CONFIG_NONSTATIC_KERNEL if (crashk_res.start != KDUMP_KERNELBASE) printk("Crash kernel location must be 0x%x\n", KDUMP_KERNELBASE); crashk_res.start = KDUMP_KERNELBASE; #else if (!crashk_res.start) { #ifdef CONFIG_PPC64 /* * On the LPAR platform place the crash kernel to mid of * RMA size (512MB or more) to ensure the crash kernel * gets enough space to place itself and some stack to be * in the first segment. At the same time normal kernel * also get enough space to allocate memory for essential * system resource in the first segment. Keep the crash * kernel starts at 128MB offset on other platforms. */ if (firmware_has_feature(FW_FEATURE_LPAR)) crashk_res.start = ppc64_rma_size / 2; else crashk_res.start = min(0x8000000ULL, (ppc64_rma_size / 2)); #else crashk_res.start = KDUMP_KERNELBASE; #endif } crash_base = PAGE_ALIGN(crashk_res.start); if (crash_base != crashk_res.start) { printk("Crash kernel base must be aligned to 0x%lx\n", PAGE_SIZE); crashk_res.start = crash_base; } #endif crash_size = PAGE_ALIGN(crash_size); crashk_res.end = crashk_res.start + crash_size - 1; /* The crash region must not overlap the current kernel */ if (overlaps_crashkernel(__pa(_stext), _end - _stext)) { printk(KERN_WARNING "Crash kernel can not overlap current kernel\n"); crashk_res.start = crashk_res.end = 0; return; } /* Crash kernel trumps memory limit */ if (memory_limit && memory_limit <= crashk_res.end) { memory_limit = crashk_res.end + 1; total_mem_sz = memory_limit; printk("Adjusted memory limit for crashkernel, now 0x%llx\n", memory_limit); } printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crashk_res.start >> 20), (unsigned long)(total_mem_sz >> 20)); if (!memblock_is_region_memory(crashk_res.start, crash_size) || memblock_reserve(crashk_res.start, crash_size)) { pr_err("Failed to reserve memory for crashkernel!\n"); crashk_res.start = crashk_res.end = 0; return; } } int __init overlaps_crashkernel(unsigned long start, unsigned long size) { return (start + size) > crashk_res.start && start <= crashk_res.end; } /* Values we need to export to the second kernel via the device tree. */ static phys_addr_t kernel_end; static phys_addr_t crashk_base; static phys_addr_t crashk_size; static unsigned long long mem_limit; static struct property kernel_end_prop = { .name = "linux,kernel-end", .length = sizeof(phys_addr_t), .value = &kernel_end, }; static struct property crashk_base_prop = { .name = "linux,crashkernel-base", .length = sizeof(phys_addr_t), .value = &crashk_base }; static struct property crashk_size_prop = { .name = "linux,crashkernel-size", .length = sizeof(phys_addr_t), .value = &crashk_size, }; static struct property memory_limit_prop = { .name = "linux,memory-limit", .length = sizeof(unsigned long long), .value = &mem_limit, }; #define cpu_to_be_ulong __PASTE(cpu_to_be, BITS_PER_LONG) static void __init export_crashk_values(struct device_node *node) { /* There might be existing crash kernel properties, but we can't * be sure what's in them, so remove them. */ of_remove_property(node, of_find_property(node, "linux,crashkernel-base", NULL)); of_remove_property(node, of_find_property(node, "linux,crashkernel-size", NULL)); if (crashk_res.start != 0) { crashk_base = cpu_to_be_ulong(crashk_res.start), of_add_property(node, &crashk_base_prop); crashk_size = cpu_to_be_ulong(resource_size(&crashk_res)); of_add_property(node, &crashk_size_prop); } /* * memory_limit is required by the kexec-tools to limit the * crash regions to the actual memory used. */ mem_limit = cpu_to_be_ulong(memory_limit); of_update_property(node, &memory_limit_prop); } static int __init kexec_setup(void) { struct device_node *node; node = of_find_node_by_path("/chosen"); if (!node) return -ENOENT; /* remove any stale properties so ours can be found */ of_remove_property(node, of_find_property(node, kernel_end_prop.name, NULL)); /* information needed by userspace when using default_machine_kexec */ kernel_end = cpu_to_be_ulong(__pa(_end)); of_add_property(node, &kernel_end_prop); export_crashk_values(node); of_node_put(node); return 0; } late_initcall(kexec_setup); |