Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | // SPDX-License-Identifier: GPL-2.0 /** * PCI Endpoint *Controller* Address Space Management * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I <kishon@ti.com> */ #include <linux/io.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/pci-epc.h> /** * pci_epc_mem_get_order() - determine the allocation order of a memory size * @mem: address space of the endpoint controller * @size: the size for which to get the order * * Reimplement get_order() for mem->page_size since the generic get_order * always gets order with a constant PAGE_SIZE. */ static int pci_epc_mem_get_order(struct pci_epc_mem *mem, size_t size) { int order; unsigned int page_shift = ilog2(mem->window.page_size); size--; size >>= page_shift; #if BITS_PER_LONG == 32 order = fls(size); #else order = fls64(size); #endif return order; } /** * pci_epc_multi_mem_init() - initialize the pci_epc_mem structure * @epc: the EPC device that invoked pci_epc_mem_init * @windows: pointer to windows supported by the device * @num_windows: number of windows device supports * * Invoke to initialize the pci_epc_mem structure used by the * endpoint functions to allocate mapped PCI address. */ int pci_epc_multi_mem_init(struct pci_epc *epc, struct pci_epc_mem_window *windows, unsigned int num_windows) { struct pci_epc_mem *mem = NULL; unsigned long *bitmap = NULL; unsigned int page_shift; size_t page_size; int bitmap_size; int pages; int ret; int i; epc->num_windows = 0; if (!windows || !num_windows) return -EINVAL; epc->windows = kcalloc(num_windows, sizeof(*epc->windows), GFP_KERNEL); if (!epc->windows) return -ENOMEM; for (i = 0; i < num_windows; i++) { page_size = windows[i].page_size; if (page_size < PAGE_SIZE) page_size = PAGE_SIZE; page_shift = ilog2(page_size); pages = windows[i].size >> page_shift; bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) { ret = -ENOMEM; i--; goto err_mem; } bitmap = kzalloc(bitmap_size, GFP_KERNEL); if (!bitmap) { ret = -ENOMEM; kfree(mem); i--; goto err_mem; } mem->window.phys_base = windows[i].phys_base; mem->window.size = windows[i].size; mem->window.page_size = page_size; mem->bitmap = bitmap; mem->pages = pages; mutex_init(&mem->lock); epc->windows[i] = mem; } epc->mem = epc->windows[0]; epc->num_windows = num_windows; return 0; err_mem: for (; i >= 0; i--) { mem = epc->windows[i]; kfree(mem->bitmap); kfree(mem); } kfree(epc->windows); return ret; } EXPORT_SYMBOL_GPL(pci_epc_multi_mem_init); int pci_epc_mem_init(struct pci_epc *epc, phys_addr_t base, size_t size, size_t page_size) { struct pci_epc_mem_window mem_window; mem_window.phys_base = base; mem_window.size = size; mem_window.page_size = page_size; return pci_epc_multi_mem_init(epc, &mem_window, 1); } EXPORT_SYMBOL_GPL(pci_epc_mem_init); /** * pci_epc_mem_exit() - cleanup the pci_epc_mem structure * @epc: the EPC device that invoked pci_epc_mem_exit * * Invoke to cleanup the pci_epc_mem structure allocated in * pci_epc_mem_init(). */ void pci_epc_mem_exit(struct pci_epc *epc) { struct pci_epc_mem *mem; int i; if (!epc->num_windows) return; for (i = 0; i < epc->num_windows; i++) { mem = epc->windows[i]; kfree(mem->bitmap); kfree(mem); } kfree(epc->windows); epc->windows = NULL; epc->mem = NULL; epc->num_windows = 0; } EXPORT_SYMBOL_GPL(pci_epc_mem_exit); /** * pci_epc_mem_alloc_addr() - allocate memory address from EPC addr space * @epc: the EPC device on which memory has to be allocated * @phys_addr: populate the allocated physical address here * @size: the size of the address space that has to be allocated * * Invoke to allocate memory address from the EPC address space. This * is usually done to map the remote RC address into the local system. */ void __iomem *pci_epc_mem_alloc_addr(struct pci_epc *epc, phys_addr_t *phys_addr, size_t size) { void __iomem *virt_addr = NULL; struct pci_epc_mem *mem; unsigned int page_shift; size_t align_size; int pageno; int order; int i; for (i = 0; i < epc->num_windows; i++) { mem = epc->windows[i]; mutex_lock(&mem->lock); align_size = ALIGN(size, mem->window.page_size); order = pci_epc_mem_get_order(mem, align_size); pageno = bitmap_find_free_region(mem->bitmap, mem->pages, order); if (pageno >= 0) { page_shift = ilog2(mem->window.page_size); *phys_addr = mem->window.phys_base + ((phys_addr_t)pageno << page_shift); virt_addr = ioremap(*phys_addr, align_size); if (!virt_addr) { bitmap_release_region(mem->bitmap, pageno, order); mutex_unlock(&mem->lock); continue; } mutex_unlock(&mem->lock); return virt_addr; } mutex_unlock(&mem->lock); } return virt_addr; } EXPORT_SYMBOL_GPL(pci_epc_mem_alloc_addr); static struct pci_epc_mem *pci_epc_get_matching_window(struct pci_epc *epc, phys_addr_t phys_addr) { struct pci_epc_mem *mem; int i; for (i = 0; i < epc->num_windows; i++) { mem = epc->windows[i]; if (phys_addr >= mem->window.phys_base && phys_addr < (mem->window.phys_base + mem->window.size)) return mem; } return NULL; } /** * pci_epc_mem_free_addr() - free the allocated memory address * @epc: the EPC device on which memory was allocated * @phys_addr: the allocated physical address * @virt_addr: virtual address of the allocated mem space * @size: the size of the allocated address space * * Invoke to free the memory allocated using pci_epc_mem_alloc_addr. */ void pci_epc_mem_free_addr(struct pci_epc *epc, phys_addr_t phys_addr, void __iomem *virt_addr, size_t size) { struct pci_epc_mem *mem; unsigned int page_shift; size_t page_size; int pageno; int order; mem = pci_epc_get_matching_window(epc, phys_addr); if (!mem) { pr_err("failed to get matching window\n"); return; } page_size = mem->window.page_size; page_shift = ilog2(page_size); iounmap(virt_addr); pageno = (phys_addr - mem->window.phys_base) >> page_shift; size = ALIGN(size, page_size); order = pci_epc_mem_get_order(mem, size); mutex_lock(&mem->lock); bitmap_release_region(mem->bitmap, pageno, order); mutex_unlock(&mem->lock); } EXPORT_SYMBOL_GPL(pci_epc_mem_free_addr); MODULE_DESCRIPTION("PCI EPC Address Space Management"); MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); MODULE_LICENSE("GPL v2"); |