Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | // SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "otx_cptvf.h" #include "otx_cptvf_algs.h" /* Completion code size and initial value */ #define COMPLETION_CODE_SIZE 8 #define COMPLETION_CODE_INIT 0 /* SG list header size in bytes */ #define SG_LIST_HDR_SIZE 8 /* Default timeout when waiting for free pending entry in us */ #define CPT_PENTRY_TIMEOUT 1000 #define CPT_PENTRY_STEP 50 /* Default threshold for stopping and resuming sender requests */ #define CPT_IQ_STOP_MARGIN 128 #define CPT_IQ_RESUME_MARGIN 512 #define CPT_DMA_ALIGN 128 void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req) { int i; pr_debug("Gather list size %d\n", req->incnt); for (i = 0; i < req->incnt; i++) { pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, req->in[i].size, req->in[i].vptr, (void *) req->in[i].dma_addr); pr_debug("Buffer hexdump (%d bytes)\n", req->in[i].size); print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, req->in[i].vptr, req->in[i].size, false); } pr_debug("Scatter list size %d\n", req->outcnt); for (i = 0; i < req->outcnt; i++) { pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, req->out[i].size, req->out[i].vptr, (void *) req->out[i].dma_addr); pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size); print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, req->out[i].vptr, req->out[i].size, false); } } static inline struct otx_cpt_pending_entry *get_free_pending_entry( struct otx_cpt_pending_queue *q, int qlen) { struct otx_cpt_pending_entry *ent = NULL; ent = &q->head[q->rear]; if (unlikely(ent->busy)) return NULL; q->rear++; if (unlikely(q->rear == qlen)) q->rear = 0; return ent; } static inline u32 modulo_inc(u32 index, u32 length, u32 inc) { if (WARN_ON(inc > length)) inc = length; index += inc; if (unlikely(index >= length)) index -= length; return index; } static inline void free_pentry(struct otx_cpt_pending_entry *pentry) { pentry->completion_addr = NULL; pentry->info = NULL; pentry->callback = NULL; pentry->areq = NULL; pentry->resume_sender = false; pentry->busy = false; } static inline int setup_sgio_components(struct pci_dev *pdev, struct otx_cpt_buf_ptr *list, int buf_count, u8 *buffer) { struct otx_cpt_sglist_component *sg_ptr = NULL; int ret = 0, i, j; int components; if (unlikely(!list)) { dev_err(&pdev->dev, "Input list pointer is NULL\n"); return -EFAULT; } for (i = 0; i < buf_count; i++) { if (likely(list[i].vptr)) { list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr, list[i].size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) { dev_err(&pdev->dev, "Dma mapping failed\n"); ret = -EIO; goto sg_cleanup; } } } components = buf_count / 4; sg_ptr = (struct otx_cpt_sglist_component *)buffer; for (i = 0; i < components; i++) { sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr); sg_ptr++; } components = buf_count % 4; switch (components) { case 3: sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); /* Fall through */ case 2: sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); /* Fall through */ case 1: sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); break; default: break; } return ret; sg_cleanup: for (j = 0; j < i; j++) { if (list[j].dma_addr) { dma_unmap_single(&pdev->dev, list[i].dma_addr, list[i].size, DMA_BIDIRECTIONAL); } list[j].dma_addr = 0; } return ret; } static inline int setup_sgio_list(struct pci_dev *pdev, struct otx_cpt_info_buffer **pinfo, struct otx_cpt_req_info *req, gfp_t gfp) { u32 dlen, align_dlen, info_len, rlen; struct otx_cpt_info_buffer *info; u16 g_sz_bytes, s_sz_bytes; int align = CPT_DMA_ALIGN; u32 total_mem_len; if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT || req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) { dev_err(&pdev->dev, "Error too many sg components\n"); return -EINVAL; } g_sz_bytes = ((req->incnt + 3) / 4) * sizeof(struct otx_cpt_sglist_component); s_sz_bytes = ((req->outcnt + 3) / 4) * sizeof(struct otx_cpt_sglist_component); dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE; align_dlen = ALIGN(dlen, align); info_len = ALIGN(sizeof(*info), align); rlen = ALIGN(sizeof(union otx_cpt_res_s), align); total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE; info = kzalloc(total_mem_len, gfp); if (unlikely(!info)) { dev_err(&pdev->dev, "Memory allocation failed\n"); return -ENOMEM; } *pinfo = info; info->dlen = dlen; info->in_buffer = (u8 *)info + info_len; ((u16 *)info->in_buffer)[0] = req->outcnt; ((u16 *)info->in_buffer)[1] = req->incnt; ((u16 *)info->in_buffer)[2] = 0; ((u16 *)info->in_buffer)[3] = 0; *(u64 *)info->in_buffer = cpu_to_be64p((u64 *)info->in_buffer); /* Setup gather (input) components */ if (setup_sgio_components(pdev, req->in, req->incnt, &info->in_buffer[8])) { dev_err(&pdev->dev, "Failed to setup gather list\n"); return -EFAULT; } if (setup_sgio_components(pdev, req->out, req->outcnt, &info->in_buffer[8 + g_sz_bytes])) { dev_err(&pdev->dev, "Failed to setup scatter list\n"); return -EFAULT; } info->dma_len = total_mem_len - info_len; info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer, info->dma_len, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) { dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n"); return -EIO; } /* * Get buffer for union otx_cpt_res_s response * structure and its physical address */ info->completion_addr = (u64 *)(info->in_buffer + align_dlen); info->comp_baddr = info->dptr_baddr + align_dlen; /* Create and initialize RPTR */ info->out_buffer = (u8 *)info->completion_addr + rlen; info->rptr_baddr = info->comp_baddr + rlen; *((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT); return 0; } static void cpt_fill_inst(union otx_cpt_inst_s *inst, struct otx_cpt_info_buffer *info, struct otx_cpt_iq_cmd *cmd) { inst->u[0] = 0x0; inst->s.doneint = true; inst->s.res_addr = (u64)info->comp_baddr; inst->u[2] = 0x0; inst->s.wq_ptr = 0; inst->s.ei0 = cmd->cmd.u64; inst->s.ei1 = cmd->dptr; inst->s.ei2 = cmd->rptr; inst->s.ei3 = cmd->cptr.u64; } /* * On OcteonTX platform the parameter db_count is used as a count for ringing * door bell. The valid values for db_count are: * 0 - 1 CPT instruction will be enqueued however CPT will not be informed * 1 - 1 CPT instruction will be enqueued and CPT will be informed */ static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf) { struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo; struct otx_cpt_cmd_queue *queue; struct otx_cpt_cmd_chunk *curr; u8 *ent; queue = &qinfo->queue[0]; /* * cpt_send_cmd is currently called only from critical section * therefore no locking is required for accessing instruction queue */ ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE]; memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE); if (++queue->idx >= queue->qhead->size / 64) { curr = queue->qhead; if (list_is_last(&curr->nextchunk, &queue->chead)) queue->qhead = queue->base; else queue->qhead = list_next_entry(queue->qhead, nextchunk); queue->idx = 0; } /* make sure all memory stores are done before ringing doorbell */ smp_wmb(); otx_cptvf_write_vq_doorbell(cptvf, 1); } static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req, struct otx_cpt_pending_queue *pqueue, struct otx_cptvf *cptvf) { struct otx_cptvf_request *cpt_req = &req->req; struct otx_cpt_pending_entry *pentry = NULL; union otx_cpt_ctrl_info *ctrl = &req->ctrl; struct otx_cpt_info_buffer *info = NULL; union otx_cpt_res_s *result = NULL; struct otx_cpt_iq_cmd iq_cmd; union otx_cpt_inst_s cptinst; int retry, ret = 0; u8 resume_sender; gfp_t gfp; gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; ret = setup_sgio_list(pdev, &info, req, gfp); if (unlikely(ret)) { dev_err(&pdev->dev, "Setting up SG list failed"); goto request_cleanup; } cpt_req->dlen = info->dlen; result = (union otx_cpt_res_s *) info->completion_addr; result->s.compcode = COMPLETION_CODE_INIT; spin_lock_bh(&pqueue->lock); pentry = get_free_pending_entry(pqueue, pqueue->qlen); retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP; while (unlikely(!pentry) && retry--) { spin_unlock_bh(&pqueue->lock); udelay(CPT_PENTRY_STEP); spin_lock_bh(&pqueue->lock); pentry = get_free_pending_entry(pqueue, pqueue->qlen); } if (unlikely(!pentry)) { ret = -ENOSPC; spin_unlock_bh(&pqueue->lock); goto request_cleanup; } /* * Check if we are close to filling in entire pending queue, * if so then tell the sender to stop/sleep by returning -EBUSY * We do it only for context which can sleep (GFP_KERNEL) */ if (gfp == GFP_KERNEL && pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) { pentry->resume_sender = true; } else pentry->resume_sender = false; resume_sender = pentry->resume_sender; pqueue->pending_count++; pentry->completion_addr = info->completion_addr; pentry->info = info; pentry->callback = req->callback; pentry->areq = req->areq; pentry->busy = true; info->pentry = pentry; info->time_in = jiffies; info->req = req; /* Fill in the command */ iq_cmd.cmd.u64 = 0; iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags); iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1); iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2); iq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen); /* 64-bit swap for microcode data reads, not needed for addresses*/ iq_cmd.cmd.u64 = cpu_to_be64(iq_cmd.cmd.u64); iq_cmd.dptr = info->dptr_baddr; iq_cmd.rptr = info->rptr_baddr; iq_cmd.cptr.u64 = 0; iq_cmd.cptr.s.grp = ctrl->s.grp; /* Fill in the CPT_INST_S type command for HW interpretation */ cpt_fill_inst(&cptinst, info, &iq_cmd); /* Print debug info if enabled */ otx_cpt_dump_sg_list(pdev, req); pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE); print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false); pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen); print_hex_dump_debug("", 0, 16, 1, info->in_buffer, cpt_req->dlen, false); /* Send CPT command */ cpt_send_cmd(&cptinst, cptvf); /* * We allocate and prepare pending queue entry in critical section * together with submitting CPT instruction to CPT instruction queue * to make sure that order of CPT requests is the same in both * pending and instruction queues */ spin_unlock_bh(&pqueue->lock); ret = resume_sender ? -EBUSY : -EINPROGRESS; return ret; request_cleanup: do_request_cleanup(pdev, info); return ret; } int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req, int cpu_num) { struct otx_cptvf *cptvf = pci_get_drvdata(pdev); if (!otx_cpt_device_ready(cptvf)) { dev_err(&pdev->dev, "CPT Device is not ready"); return -ENODEV; } if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) { dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request", cptvf->vfid); return -EINVAL; } else if ((cptvf->vftype == OTX_CPT_AE_TYPES) && (req->ctrl.s.se_req)) { dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request", cptvf->vfid); return -EINVAL; } return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf); } static int cpt_process_ccode(struct pci_dev *pdev, union otx_cpt_res_s *cpt_status, struct otx_cpt_info_buffer *cpt_info, struct otx_cpt_req_info *req, u32 *res_code) { u8 ccode = cpt_status->s.compcode; union otx_cpt_error_code ecode; ecode.u = be64_to_cpu(*((u64 *) cpt_info->out_buffer)); switch (ccode) { case CPT_COMP_E_FAULT: dev_err(&pdev->dev, "Request failed with DMA fault\n"); otx_cpt_dump_sg_list(pdev, req); break; case CPT_COMP_E_SWERR: dev_err(&pdev->dev, "Request failed with software error code %d\n", ecode.s.ccode); otx_cpt_dump_sg_list(pdev, req); break; case CPT_COMP_E_HWERR: dev_err(&pdev->dev, "Request failed with hardware error\n"); otx_cpt_dump_sg_list(pdev, req); break; case COMPLETION_CODE_INIT: /* check for timeout */ if (time_after_eq(jiffies, cpt_info->time_in + OTX_CPT_COMMAND_TIMEOUT * HZ)) dev_warn(&pdev->dev, "Request timed out 0x%p", req); else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) { cpt_info->time_in = jiffies; cpt_info->extra_time++; } return 1; case CPT_COMP_E_GOOD: /* Check microcode completion code */ if (ecode.s.ccode) { /* * If requested hmac is truncated and ucode returns * s/g write length error then we report success * because ucode writes as many bytes of calculated * hmac as available in gather buffer and reports * s/g write length error if number of bytes in gather * buffer is less than full hmac size. */ if (req->is_trunc_hmac && ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) { *res_code = 0; break; } dev_err(&pdev->dev, "Request failed with software error code 0x%x\n", ecode.s.ccode); otx_cpt_dump_sg_list(pdev, req); break; } /* Request has been processed with success */ *res_code = 0; break; default: dev_err(&pdev->dev, "Request returned invalid status\n"); break; } return 0; } static inline void process_pending_queue(struct pci_dev *pdev, struct otx_cpt_pending_queue *pqueue) { void (*callback)(int status, void *arg1, void *arg2); struct otx_cpt_pending_entry *resume_pentry = NULL; struct otx_cpt_pending_entry *pentry = NULL; struct otx_cpt_info_buffer *cpt_info = NULL; union otx_cpt_res_s *cpt_status = NULL; struct otx_cpt_req_info *req = NULL; struct crypto_async_request *areq; u32 res_code, resume_index; while (1) { spin_lock_bh(&pqueue->lock); pentry = &pqueue->head[pqueue->front]; if (WARN_ON(!pentry)) { spin_unlock_bh(&pqueue->lock); break; } res_code = -EINVAL; if (unlikely(!pentry->busy)) { spin_unlock_bh(&pqueue->lock); break; } if (unlikely(!pentry->callback)) { dev_err(&pdev->dev, "Callback NULL\n"); goto process_pentry; } cpt_info = pentry->info; if (unlikely(!cpt_info)) { dev_err(&pdev->dev, "Pending entry post arg NULL\n"); goto process_pentry; } req = cpt_info->req; if (unlikely(!req)) { dev_err(&pdev->dev, "Request NULL\n"); goto process_pentry; } cpt_status = (union otx_cpt_res_s *) pentry->completion_addr; if (unlikely(!cpt_status)) { dev_err(&pdev->dev, "Completion address NULL\n"); goto process_pentry; } if (cpt_process_ccode(pdev, cpt_status, cpt_info, req, &res_code)) { spin_unlock_bh(&pqueue->lock); return; } cpt_info->pdev = pdev; process_pentry: /* * Check if we should inform sending side to resume * We do it CPT_IQ_RESUME_MARGIN elements in advance before * pending queue becomes empty */ resume_index = modulo_inc(pqueue->front, pqueue->qlen, CPT_IQ_RESUME_MARGIN); resume_pentry = &pqueue->head[resume_index]; if (resume_pentry && resume_pentry->resume_sender) { resume_pentry->resume_sender = false; callback = resume_pentry->callback; areq = resume_pentry->areq; if (callback) { spin_unlock_bh(&pqueue->lock); /* * EINPROGRESS is an indication for sending * side that it can resume sending requests */ callback(-EINPROGRESS, areq, cpt_info); spin_lock_bh(&pqueue->lock); } } callback = pentry->callback; areq = pentry->areq; free_pentry(pentry); pqueue->pending_count--; pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1); spin_unlock_bh(&pqueue->lock); /* * Call callback after current pending entry has been * processed, we don't do it if the callback pointer is * invalid. */ if (callback) callback(res_code, areq, cpt_info); } } void otx_cpt_post_process(struct otx_cptvf_wqe *wqe) { process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]); } |