Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Stefan Agner <stefan@agner.ch> * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de> * Copyright (C) 2012 Avionic Design GmbH */ #include <linux/clk.h> #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mtd/partitions.h> #include <linux/mtd/rawnand.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/reset.h> #define COMMAND 0x00 #define COMMAND_GO BIT(31) #define COMMAND_CLE BIT(30) #define COMMAND_ALE BIT(29) #define COMMAND_PIO BIT(28) #define COMMAND_TX BIT(27) #define COMMAND_RX BIT(26) #define COMMAND_SEC_CMD BIT(25) #define COMMAND_AFT_DAT BIT(24) #define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20) #define COMMAND_A_VALID BIT(19) #define COMMAND_B_VALID BIT(18) #define COMMAND_RD_STATUS_CHK BIT(17) #define COMMAND_RBSY_CHK BIT(16) #define COMMAND_CE(x) BIT(8 + ((x) & 0x7)) #define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4) #define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0) #define STATUS 0x04 #define ISR 0x08 #define ISR_CORRFAIL_ERR BIT(24) #define ISR_UND BIT(7) #define ISR_OVR BIT(6) #define ISR_CMD_DONE BIT(5) #define ISR_ECC_ERR BIT(4) #define IER 0x0c #define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) #define IER_UND BIT(7) #define IER_OVR BIT(6) #define IER_CMD_DONE BIT(5) #define IER_ECC_ERR BIT(4) #define IER_GIE BIT(0) #define CONFIG 0x10 #define CONFIG_HW_ECC BIT(31) #define CONFIG_ECC_SEL BIT(30) #define CONFIG_ERR_COR BIT(29) #define CONFIG_PIPE_EN BIT(28) #define CONFIG_TVAL_4 (0 << 24) #define CONFIG_TVAL_6 (1 << 24) #define CONFIG_TVAL_8 (2 << 24) #define CONFIG_SKIP_SPARE BIT(23) #define CONFIG_BUS_WIDTH_16 BIT(21) #define CONFIG_COM_BSY BIT(20) #define CONFIG_PS_256 (0 << 16) #define CONFIG_PS_512 (1 << 16) #define CONFIG_PS_1024 (2 << 16) #define CONFIG_PS_2048 (3 << 16) #define CONFIG_PS_4096 (4 << 16) #define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14) #define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14) #define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14) #define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14) #define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff) #define TIMING_1 0x14 #define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) #define TIMING_TWB(x) (((x) & 0xf) << 24) #define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) #define TIMING_TWHR(x) (((x) & 0xf) << 16) #define TIMING_TCS(x) (((x) & 0x3) << 14) #define TIMING_TWH(x) (((x) & 0x3) << 12) #define TIMING_TWP(x) (((x) & 0xf) << 8) #define TIMING_TRH(x) (((x) & 0x3) << 4) #define TIMING_TRP(x) (((x) & 0xf) << 0) #define RESP 0x18 #define TIMING_2 0x1c #define TIMING_TADL(x) ((x) & 0xf) #define CMD_REG1 0x20 #define CMD_REG2 0x24 #define ADDR_REG1 0x28 #define ADDR_REG2 0x2c #define DMA_MST_CTRL 0x30 #define DMA_MST_CTRL_GO BIT(31) #define DMA_MST_CTRL_IN (0 << 30) #define DMA_MST_CTRL_OUT BIT(30) #define DMA_MST_CTRL_PERF_EN BIT(29) #define DMA_MST_CTRL_IE_DONE BIT(28) #define DMA_MST_CTRL_REUSE BIT(27) #define DMA_MST_CTRL_BURST_1 (2 << 24) #define DMA_MST_CTRL_BURST_4 (3 << 24) #define DMA_MST_CTRL_BURST_8 (4 << 24) #define DMA_MST_CTRL_BURST_16 (5 << 24) #define DMA_MST_CTRL_IS_DONE BIT(20) #define DMA_MST_CTRL_EN_A BIT(2) #define DMA_MST_CTRL_EN_B BIT(1) #define DMA_CFG_A 0x34 #define DMA_CFG_B 0x38 #define FIFO_CTRL 0x3c #define FIFO_CTRL_CLR_ALL BIT(3) #define DATA_PTR 0x40 #define TAG_PTR 0x44 #define ECC_PTR 0x48 #define DEC_STATUS 0x4c #define DEC_STATUS_A_ECC_FAIL BIT(1) #define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 #define DEC_STATUS_ERR_COUNT_SHIFT 16 #define HWSTATUS_CMD 0x50 #define HWSTATUS_MASK 0x54 #define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) #define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) #define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) #define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) #define BCH_CONFIG 0xcc #define BCH_ENABLE BIT(0) #define BCH_TVAL_4 (0 << 4) #define BCH_TVAL_8 (1 << 4) #define BCH_TVAL_14 (2 << 4) #define BCH_TVAL_16 (3 << 4) #define DEC_STAT_RESULT 0xd0 #define DEC_STAT_BUF 0xd4 #define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 #define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 #define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 #define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 #define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 #define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 #define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) #define SKIP_SPARE_BYTES 4 #define BITS_PER_STEP_RS 18 #define BITS_PER_STEP_BCH 13 #define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) #define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY #define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \ HWSTATUS_RDSTATUS_VALUE(0) | \ HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) struct tegra_nand_controller { struct nand_controller controller; struct device *dev; void __iomem *regs; int irq; struct clk *clk; struct completion command_complete; struct completion dma_complete; bool last_read_error; int cur_cs; struct nand_chip *chip; }; struct tegra_nand_chip { struct nand_chip chip; struct gpio_desc *wp_gpio; struct mtd_oob_region ecc; u32 config; u32 config_ecc; u32 bch_config; int cs[1]; }; static inline struct tegra_nand_controller * to_tegra_ctrl(struct nand_controller *hw_ctrl) { return container_of(hw_ctrl, struct tegra_nand_controller, controller); } static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip) { return container_of(chip, struct tegra_nand_chip, chip); } static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, BITS_PER_BYTE); if (section > 0) return -ERANGE; oobregion->offset = SKIP_SPARE_BYTES; oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); return 0; } static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { return -ERANGE; } static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { .ecc = tegra_nand_ooblayout_rs_ecc, .free = tegra_nand_ooblayout_no_free, }; static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, BITS_PER_BYTE); if (section > 0) return -ERANGE; oobregion->offset = SKIP_SPARE_BYTES; oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); return 0; } static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { .ecc = tegra_nand_ooblayout_bch_ecc, .free = tegra_nand_ooblayout_no_free, }; static irqreturn_t tegra_nand_irq(int irq, void *data) { struct tegra_nand_controller *ctrl = data; u32 isr, dma; isr = readl_relaxed(ctrl->regs + ISR); dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); dev_dbg(ctrl->dev, "isr %08x\n", isr); if (!isr && !(dma & DMA_MST_CTRL_IS_DONE)) return IRQ_NONE; /* * The bit name is somewhat missleading: This is also set when * HW ECC was successful. The data sheet states: * Correctable OR Un-correctable errors occurred in the DMA transfer... */ if (isr & ISR_CORRFAIL_ERR) ctrl->last_read_error = true; if (isr & ISR_CMD_DONE) complete(&ctrl->command_complete); if (isr & ISR_UND) dev_err(ctrl->dev, "FIFO underrun\n"); if (isr & ISR_OVR) dev_err(ctrl->dev, "FIFO overrun\n"); /* handle DMA interrupts */ if (dma & DMA_MST_CTRL_IS_DONE) { writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); complete(&ctrl->dma_complete); } /* clear interrupts */ writel_relaxed(isr, ctrl->regs + ISR); return IRQ_HANDLED; } static const char * const tegra_nand_reg_names[] = { "COMMAND", "STATUS", "ISR", "IER", "CONFIG", "TIMING", NULL, "TIMING2", "CMD_REG1", "CMD_REG2", "ADDR_REG1", "ADDR_REG2", "DMA_MST_CTRL", "DMA_CFG_A", "DMA_CFG_B", "FIFO_CTRL", }; static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) { u32 reg; int i; dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { const char *reg_name = tegra_nand_reg_names[i]; if (!reg_name) continue; reg = readl_relaxed(ctrl->regs + (i * 4)); dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); } } static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl) { u32 isr, dma; disable_irq(ctrl->irq); /* Abort current command/DMA operation */ writel_relaxed(0, ctrl->regs + DMA_MST_CTRL); writel_relaxed(0, ctrl->regs + COMMAND); /* clear interrupts */ isr = readl_relaxed(ctrl->regs + ISR); writel_relaxed(isr, ctrl->regs + ISR); dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); reinit_completion(&ctrl->command_complete); reinit_completion(&ctrl->dma_complete); enable_irq(ctrl->irq); } static int tegra_nand_cmd(struct nand_chip *chip, const struct nand_subop *subop) { const struct nand_op_instr *instr; const struct nand_op_instr *instr_data_in = NULL; struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); unsigned int op_id, size = 0, offset = 0; bool first_cmd = true; u32 reg, cmd = 0; int ret; for (op_id = 0; op_id < subop->ninstrs; op_id++) { unsigned int naddrs, i; const u8 *addrs; u32 addr1 = 0, addr2 = 0; instr = &subop->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: if (first_cmd) { cmd |= COMMAND_CLE; writel_relaxed(instr->ctx.cmd.opcode, ctrl->regs + CMD_REG1); } else { cmd |= COMMAND_SEC_CMD; writel_relaxed(instr->ctx.cmd.opcode, ctrl->regs + CMD_REG2); } first_cmd = false; break; case NAND_OP_ADDR_INSTR: offset = nand_subop_get_addr_start_off(subop, op_id); naddrs = nand_subop_get_num_addr_cyc(subop, op_id); addrs = &instr->ctx.addr.addrs[offset]; cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs); for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) addr1 |= *addrs++ << (BITS_PER_BYTE * i); naddrs -= i; for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) addr2 |= *addrs++ << (BITS_PER_BYTE * i); writel_relaxed(addr1, ctrl->regs + ADDR_REG1); writel_relaxed(addr2, ctrl->regs + ADDR_REG2); break; case NAND_OP_DATA_IN_INSTR: size = nand_subop_get_data_len(subop, op_id); offset = nand_subop_get_data_start_off(subop, op_id); cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | COMMAND_RX | COMMAND_A_VALID; instr_data_in = instr; break; case NAND_OP_DATA_OUT_INSTR: size = nand_subop_get_data_len(subop, op_id); offset = nand_subop_get_data_start_off(subop, op_id); cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | COMMAND_TX | COMMAND_A_VALID; memcpy(®, instr->ctx.data.buf.out + offset, size); writel_relaxed(reg, ctrl->regs + RESP); break; case NAND_OP_WAITRDY_INSTR: cmd |= COMMAND_RBSY_CHK; break; } } cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs); writel_relaxed(cmd, ctrl->regs + COMMAND); ret = wait_for_completion_timeout(&ctrl->command_complete, msecs_to_jiffies(500)); if (!ret) { dev_err(ctrl->dev, "COMMAND timeout\n"); tegra_nand_dump_reg(ctrl); tegra_nand_controller_abort(ctrl); return -ETIMEDOUT; } if (instr_data_in) { reg = readl_relaxed(ctrl->regs + RESP); memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size); } return 0; } static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN(tegra_nand_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), NAND_OP_PARSER_PATTERN(tegra_nand_cmd, NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), NAND_OP_PARSER_PATTERN(tegra_nand_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), ); static void tegra_nand_select_target(struct nand_chip *chip, unsigned int die_nr) { struct tegra_nand_chip *nand = to_tegra_chip(chip); struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); ctrl->cur_cs = nand->cs[die_nr]; } static int tegra_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { tegra_nand_select_target(chip, op->cs); return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, check_only); } static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, struct nand_chip *chip, bool enable) { struct tegra_nand_chip *nand = to_tegra_chip(chip); if (chip->ecc.algo == NAND_ECC_BCH && enable) writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG); else writel_relaxed(0, ctrl->regs + BCH_CONFIG); if (enable) writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG); else writel_relaxed(nand->config, ctrl->regs + CONFIG); } static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip, void *buf, void *oob_buf, int oob_len, int page, bool read) { struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; dma_addr_t dma_addr = 0, dma_addr_oob = 0; u32 addr1, cmd, dma_ctrl; int ret; tegra_nand_select_target(chip, chip->cur_cs); if (read) { writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1); writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2); } else { writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1); writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2); } cmd = COMMAND_CLE | COMMAND_SEC_CMD; /* Lower 16-bits are column, by default 0 */ addr1 = page << 16; if (!buf) addr1 |= mtd->writesize; writel_relaxed(addr1, ctrl->regs + ADDR_REG1); if (chip->options & NAND_ROW_ADDR_3) { writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2); cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5); } else { cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4); } if (buf) { dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir); ret = dma_mapping_error(ctrl->dev, dma_addr); if (ret) { dev_err(ctrl->dev, "dma mapping error\n"); return -EINVAL; } writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); writel_relaxed(dma_addr, ctrl->regs + DATA_PTR); } if (oob_buf) { dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize, dir); ret = dma_mapping_error(ctrl->dev, dma_addr_oob); if (ret) { dev_err(ctrl->dev, "dma mapping error\n"); ret = -EINVAL; goto err_unmap_dma_page; } writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B); writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR); } dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN | DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE | DMA_MST_CTRL_BURST_16; if (buf) dma_ctrl |= DMA_MST_CTRL_EN_A; if (oob_buf) dma_ctrl |= DMA_MST_CTRL_EN_B; if (read) dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE; else dma_ctrl |= DMA_MST_CTRL_OUT; writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL); cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) | COMMAND_CE(ctrl->cur_cs); if (buf) cmd |= COMMAND_A_VALID; if (oob_buf) cmd |= COMMAND_B_VALID; if (read) cmd |= COMMAND_RX; else cmd |= COMMAND_TX | COMMAND_AFT_DAT; writel_relaxed(cmd, ctrl->regs + COMMAND); ret = wait_for_completion_timeout(&ctrl->command_complete, msecs_to_jiffies(500)); if (!ret) { dev_err(ctrl->dev, "COMMAND timeout\n"); tegra_nand_dump_reg(ctrl); tegra_nand_controller_abort(ctrl); ret = -ETIMEDOUT; goto err_unmap_dma; } ret = wait_for_completion_timeout(&ctrl->dma_complete, msecs_to_jiffies(500)); if (!ret) { dev_err(ctrl->dev, "DMA timeout\n"); tegra_nand_dump_reg(ctrl); tegra_nand_controller_abort(ctrl); ret = -ETIMEDOUT; goto err_unmap_dma; } ret = 0; err_unmap_dma: if (oob_buf) dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir); err_unmap_dma_page: if (buf) dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir); return ret; } static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); void *oob_buf = oob_required ? chip->oob_poi : NULL; return tegra_nand_page_xfer(mtd, chip, buf, oob_buf, mtd->oobsize, page, true); } static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); void *oob_buf = oob_required ? chip->oob_poi : NULL; return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, mtd->oobsize, page, false); } static int tegra_nand_read_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, mtd->oobsize, page, true); } static int tegra_nand_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, mtd->oobsize, page, false); } static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); struct tegra_nand_chip *nand = to_tegra_chip(chip); void *oob_buf = oob_required ? chip->oob_poi : NULL; u32 dec_stat, max_corr_cnt; unsigned long fail_sec_flag; int ret; tegra_nand_hw_ecc(ctrl, chip, true); ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true); tegra_nand_hw_ecc(ctrl, chip, false); if (ret) return ret; /* No correctable or un-correctable errors, page must have 0 bitflips */ if (!ctrl->last_read_error) return 0; /* * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF * which contains information for all ECC selections. * * Note that since we do not use Command Queues DEC_RESULT does not * state the number of pages we can read from the DEC_STAT_BUF. But * since CORRFAIL_ERR did occur during page read we do have a valid * result in DEC_STAT_BUF. */ ctrl->last_read_error = false; dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF); fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >> DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT; max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; if (fail_sec_flag) { int bit, max_bitflips = 0; /* * Since we do not support subpage writes, a complete page * is either written or not. We can take a shortcut here by * checking wheather any of the sector has been successful * read. If at least one sectors has been read successfully, * the page must have been a written previously. It cannot * be an erased page. * * E.g. controller might return fail_sec_flag with 0x4, which * would mean only the third sector failed to correct. The * page must have been written and the third sector is really * not correctable anymore. */ if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) { mtd->ecc_stats.failed += hweight8(fail_sec_flag); return max_corr_cnt; } /* * All sectors failed to correct, but the ECC isn't smart * enough to figure out if a page is really just erased. * Read OOB data and check whether data/OOB is completely * erased or if error correction just failed for all sub- * pages. */ ret = tegra_nand_read_oob(chip, page); if (ret < 0) return ret; for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) { u8 *data = buf + (chip->ecc.size * bit); u8 *oob = chip->oob_poi + nand->ecc.offset + (chip->ecc.bytes * bit); ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, oob, chip->ecc.bytes, NULL, 0, chip->ecc.strength); if (ret < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += ret; max_bitflips = max(ret, max_bitflips); } } return max_t(unsigned int, max_corr_cnt, max_bitflips); } else { int corr_sec_flag; corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; /* * The value returned in the register is the maximum of * bitflips encountered in any of the ECC regions. As there is * no way to get the number of bitflips in a specific regions * we are not able to deliver correct stats but instead * overestimate the number of corrected bitflips by assuming * that all regions where errors have been corrected * encountered the maximum number of bitflips. */ mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); return max_corr_cnt; } } static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); void *oob_buf = oob_required ? chip->oob_poi : NULL; int ret; tegra_nand_hw_ecc(ctrl, chip, true); ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, 0, page, false); tegra_nand_hw_ecc(ctrl, chip, false); return ret; } static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, const struct nand_sdr_timings *timings) { /* * The period (and all other timings in this function) is in ps, * so need to take care here to avoid integer overflows. */ unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; unsigned int period = DIV_ROUND_UP(1000000, rate); u32 val, reg = 0; val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, timings->tRC_min), period); reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3)); val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), max(timings->tALS_min, timings->tALH_min)), period); reg |= TIMING_TCS(OFFSET(val, 2)); val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, period); reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1)); reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1)); reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1)); reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1)); reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1)); reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1)); writel_relaxed(reg, ctrl->regs + TIMING_1); val = DIV_ROUND_UP(timings->tADL_min, period); reg = TIMING_TADL(OFFSET(val, 3)); writel_relaxed(reg, ctrl->regs + TIMING_2); } static int tegra_nand_setup_data_interface(struct nand_chip *chip, int csline, const struct nand_data_interface *conf) { struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); const struct nand_sdr_timings *timings; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return PTR_ERR(timings); if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; tegra_nand_setup_timing(ctrl, timings); return 0; } static const int rs_strength_bootable[] = { 4 }; static const int rs_strength[] = { 4, 6, 8 }; static const int bch_strength_bootable[] = { 8, 16 }; static const int bch_strength[] = { 4, 8, 14, 16 }; static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength, int strength_len, int bits_per_step, int oobsize) { bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE; int i; /* * Loop through available strengths. Backwards in case we try to * maximize the BCH strength. */ for (i = 0; i < strength_len; i++) { int strength_sel, bytes_per_step, bytes_per_page; if (maximize) { strength_sel = strength[strength_len - i - 1]; } else { strength_sel = strength[i]; if (strength_sel < chip->base.eccreq.strength) continue; } bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel, BITS_PER_BYTE); bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4); /* Check whether strength fits OOB */ if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES)) return strength_sel; } return -EINVAL; } static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize) { const int *strength; int strength_len, bits_per_step; switch (chip->ecc.algo) { case NAND_ECC_RS: bits_per_step = BITS_PER_STEP_RS; if (chip->options & NAND_IS_BOOT_MEDIUM) { strength = rs_strength_bootable; strength_len = ARRAY_SIZE(rs_strength_bootable); } else { strength = rs_strength; strength_len = ARRAY_SIZE(rs_strength); } break; case NAND_ECC_BCH: bits_per_step = BITS_PER_STEP_BCH; if (chip->options & NAND_IS_BOOT_MEDIUM) { strength = bch_strength_bootable; strength_len = ARRAY_SIZE(bch_strength_bootable); } else { strength = bch_strength; strength_len = ARRAY_SIZE(bch_strength); } break; default: return -EINVAL; } return tegra_nand_get_strength(chip, strength, strength_len, bits_per_step, oobsize); } static int tegra_nand_attach_chip(struct nand_chip *chip) { struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); struct tegra_nand_chip *nand = to_tegra_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); int bits_per_step; int ret; if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = 512; chip->ecc.steps = mtd->writesize / chip->ecc.size; if (chip->base.eccreq.step_size != 512) { dev_err(ctrl->dev, "Unsupported step size %d\n", chip->base.eccreq.step_size); return -EINVAL; } chip->ecc.read_page = tegra_nand_read_page_hwecc; chip->ecc.write_page = tegra_nand_write_page_hwecc; chip->ecc.read_page_raw = tegra_nand_read_page_raw; chip->ecc.write_page_raw = tegra_nand_write_page_raw; chip->ecc.read_oob = tegra_nand_read_oob; chip->ecc.write_oob = tegra_nand_write_oob; if (chip->options & NAND_BUSWIDTH_16) nand->config |= CONFIG_BUS_WIDTH_16; if (chip->ecc.algo == NAND_ECC_UNKNOWN) { if (mtd->writesize < 2048) chip->ecc.algo = NAND_ECC_RS; else chip->ecc.algo = NAND_ECC_BCH; } if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) { dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n"); return -EINVAL; } if (!chip->ecc.strength) { ret = tegra_nand_select_strength(chip, mtd->oobsize); if (ret < 0) { dev_err(ctrl->dev, "No valid strength found, minimum %d\n", chip->base.eccreq.strength); return ret; } chip->ecc.strength = ret; } nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE | CONFIG_SKIP_SPARE_SIZE_4; switch (chip->ecc.algo) { case NAND_ECC_RS: bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL | CONFIG_ERR_COR; switch (chip->ecc.strength) { case 4: nand->config_ecc |= CONFIG_TVAL_4; break; case 6: nand->config_ecc |= CONFIG_TVAL_6; break; case 8: nand->config_ecc |= CONFIG_TVAL_8; break; default: dev_err(ctrl->dev, "ECC strength %d not supported\n", chip->ecc.strength); return -EINVAL; } break; case NAND_ECC_BCH: bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); nand->bch_config = BCH_ENABLE; switch (chip->ecc.strength) { case 4: nand->bch_config |= BCH_TVAL_4; break; case 8: nand->bch_config |= BCH_TVAL_8; break; case 14: nand->bch_config |= BCH_TVAL_14; break; case 16: nand->bch_config |= BCH_TVAL_16; break; default: dev_err(ctrl->dev, "ECC strength %d not supported\n", chip->ecc.strength); return -EINVAL; } break; default: dev_err(ctrl->dev, "ECC algorithm not supported\n"); return -EINVAL; } dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n", chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS", chip->ecc.strength); chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE); switch (mtd->writesize) { case 256: nand->config |= CONFIG_PS_256; break; case 512: nand->config |= CONFIG_PS_512; break; case 1024: nand->config |= CONFIG_PS_1024; break; case 2048: nand->config |= CONFIG_PS_2048; break; case 4096: nand->config |= CONFIG_PS_4096; break; default: dev_err(ctrl->dev, "Unsupported writesize %d\n", mtd->writesize); return -ENODEV; } /* Store complete configuration for HW ECC in config_ecc */ nand->config_ecc |= nand->config; /* Non-HW ECC read/writes complete OOB */ nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1); writel_relaxed(nand->config, ctrl->regs + CONFIG); return 0; } static const struct nand_controller_ops tegra_nand_controller_ops = { .attach_chip = &tegra_nand_attach_chip, .exec_op = tegra_nand_exec_op, .setup_data_interface = tegra_nand_setup_data_interface, }; static int tegra_nand_chips_init(struct device *dev, struct tegra_nand_controller *ctrl) { struct device_node *np = dev->of_node; struct device_node *np_nand; int nsels, nchips = of_get_child_count(np); struct tegra_nand_chip *nand; struct mtd_info *mtd; struct nand_chip *chip; int ret; u32 cs; if (nchips != 1) { dev_err(dev, "Currently only one NAND chip supported\n"); return -EINVAL; } np_nand = of_get_next_child(np, NULL); nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32)); if (nsels != 1) { dev_err(dev, "Missing/invalid reg property\n"); return -EINVAL; } /* Retrieve CS id, currently only single die NAND supported */ ret = of_property_read_u32(np_nand, "reg", &cs); if (ret) { dev_err(dev, "could not retrieve reg property: %d\n", ret); return ret; } nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); if (!nand) return -ENOMEM; nand->cs[0] = cs; nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); if (IS_ERR(nand->wp_gpio)) { ret = PTR_ERR(nand->wp_gpio); dev_err(dev, "Failed to request WP GPIO: %d\n", ret); return ret; } chip = &nand->chip; chip->controller = &ctrl->controller; mtd = nand_to_mtd(chip); mtd->dev.parent = dev; mtd->owner = THIS_MODULE; nand_set_flash_node(chip, np_nand); if (!mtd->name) mtd->name = "tegra_nand"; chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER; ret = nand_scan(chip, 1); if (ret) return ret; mtd_ooblayout_ecc(mtd, 0, &nand->ecc); ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "Failed to register mtd device: %d\n", ret); nand_cleanup(chip); return ret; } ctrl->chip = chip; return 0; } static int tegra_nand_probe(struct platform_device *pdev) { struct reset_control *rst; struct tegra_nand_controller *ctrl; struct resource *res; int err = 0; ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = &pdev->dev; nand_controller_init(&ctrl->controller); ctrl->controller.ops = &tegra_nand_controller_ops; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ctrl->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ctrl->regs)) return PTR_ERR(ctrl->regs); rst = devm_reset_control_get(&pdev->dev, "nand"); if (IS_ERR(rst)) return PTR_ERR(rst); ctrl->clk = devm_clk_get(&pdev->dev, "nand"); if (IS_ERR(ctrl->clk)) return PTR_ERR(ctrl->clk); err = clk_prepare_enable(ctrl->clk); if (err) return err; err = reset_control_reset(rst); if (err) { dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); goto err_disable_clk; } writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD); writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK); writel_relaxed(INT_MASK, ctrl->regs + IER); init_completion(&ctrl->command_complete); init_completion(&ctrl->dma_complete); ctrl->irq = platform_get_irq(pdev, 0); err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0, dev_name(&pdev->dev), ctrl); if (err) { dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err); goto err_disable_clk; } writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL); err = tegra_nand_chips_init(ctrl->dev, ctrl); if (err) goto err_disable_clk; platform_set_drvdata(pdev, ctrl); return 0; err_disable_clk: clk_disable_unprepare(ctrl->clk); return err; } static int tegra_nand_remove(struct platform_device *pdev) { struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); struct nand_chip *chip = ctrl->chip; struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = mtd_device_unregister(mtd); if (ret) return ret; nand_cleanup(chip); clk_disable_unprepare(ctrl->clk); return 0; } static const struct of_device_id tegra_nand_of_match[] = { { .compatible = "nvidia,tegra20-nand" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tegra_nand_of_match); static struct platform_driver tegra_nand_driver = { .driver = { .name = "tegra-nand", .of_match_table = tegra_nand_of_match, }, .probe = tegra_nand_probe, .remove = tegra_nand_remove, }; module_platform_driver(tegra_nand_driver); MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>"); MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>"); MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>"); MODULE_LICENSE("GPL v2"); |