Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2013 Red Hat Inc. * * Authors: Jérôme Glisse <jglisse@redhat.com> */ /* * Refer to include/linux/hmm.h for information about heterogeneous memory * management or HMM for short. */ #include <linux/pagewalk.h> #include <linux/hmm.h> #include <linux/init.h> #include <linux/rmap.h> #include <linux/swap.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/mmzone.h> #include <linux/pagemap.h> #include <linux/swapops.h> #include <linux/hugetlb.h> #include <linux/memremap.h> #include <linux/sched/mm.h> #include <linux/jump_label.h> #include <linux/dma-mapping.h> #include <linux/mmu_notifier.h> #include <linux/memory_hotplug.h> struct hmm_vma_walk { struct hmm_range *range; struct dev_pagemap *pgmap; unsigned long last; unsigned int flags; }; static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr, bool write_fault, uint64_t *pfn) { unsigned int flags = FAULT_FLAG_REMOTE; struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; vm_fault_t ret; if (!vma) goto err; if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY) flags |= FAULT_FLAG_ALLOW_RETRY; if (write_fault) flags |= FAULT_FLAG_WRITE; ret = handle_mm_fault(vma, addr, flags); if (ret & VM_FAULT_RETRY) { /* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */ return -EAGAIN; } if (ret & VM_FAULT_ERROR) goto err; return -EBUSY; err: *pfn = range->values[HMM_PFN_ERROR]; return -EFAULT; } static int hmm_pfns_fill(unsigned long addr, unsigned long end, struct hmm_range *range, enum hmm_pfn_value_e value) { uint64_t *pfns = range->pfns; unsigned long i; i = (addr - range->start) >> PAGE_SHIFT; for (; addr < end; addr += PAGE_SIZE, i++) pfns[i] = range->values[value]; return 0; } /* * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s) * @addr: range virtual start address (inclusive) * @end: range virtual end address (exclusive) * @fault: should we fault or not ? * @write_fault: write fault ? * @walk: mm_walk structure * Return: 0 on success, -EBUSY after page fault, or page fault error * * This function will be called whenever pmd_none() or pte_none() returns true, * or whenever there is no page directory covering the virtual address range. */ static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end, bool fault, bool write_fault, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; uint64_t *pfns = range->pfns; unsigned long i; hmm_vma_walk->last = addr; i = (addr - range->start) >> PAGE_SHIFT; if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE)) return -EPERM; for (; addr < end; addr += PAGE_SIZE, i++) { pfns[i] = range->values[HMM_PFN_NONE]; if (fault || write_fault) { int ret; ret = hmm_vma_do_fault(walk, addr, write_fault, &pfns[i]); if (ret != -EBUSY) return ret; } } return (fault || write_fault) ? -EBUSY : 0; } static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, uint64_t pfns, uint64_t cpu_flags, bool *fault, bool *write_fault) { struct hmm_range *range = hmm_vma_walk->range; if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) return; /* * So we not only consider the individual per page request we also * consider the default flags requested for the range. The API can * be used 2 ways. The first one where the HMM user coalesces * multiple page faults into one request and sets flags per pfn for * those faults. The second one where the HMM user wants to pre- * fault a range with specific flags. For the latter one it is a * waste to have the user pre-fill the pfn arrays with a default * flags value. */ pfns = (pfns & range->pfn_flags_mask) | range->default_flags; /* We aren't ask to do anything ... */ if (!(pfns & range->flags[HMM_PFN_VALID])) return; /* If this is device memory then only fault if explicitly requested */ if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) { /* Do we fault on device memory ? */ if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) { *write_fault = pfns & range->flags[HMM_PFN_WRITE]; *fault = true; } return; } /* If CPU page table is not valid then we need to fault */ *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]); /* Need to write fault ? */ if ((pfns & range->flags[HMM_PFN_WRITE]) && !(cpu_flags & range->flags[HMM_PFN_WRITE])) { *write_fault = true; *fault = true; } } static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, const uint64_t *pfns, unsigned long npages, uint64_t cpu_flags, bool *fault, bool *write_fault) { unsigned long i; if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) { *fault = *write_fault = false; return; } *fault = *write_fault = false; for (i = 0; i < npages; ++i) { hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags, fault, write_fault); if ((*write_fault)) return; } } static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, __always_unused int depth, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; bool fault, write_fault; unsigned long i, npages; uint64_t *pfns; i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault, &write_fault); return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); } static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd) { if (pmd_protnone(pmd)) return 0; return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, unsigned long end, uint64_t *pfns, pmd_t pmd) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; unsigned long pfn, npages, i; bool fault, write_fault; uint64_t cpu_flags; npages = (end - addr) >> PAGE_SHIFT; cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, &fault, &write_fault); if (pmd_protnone(pmd) || fault || write_fault) return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { if (pmd_devmap(pmd)) { hmm_vma_walk->pgmap = get_dev_pagemap(pfn, hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) return -EBUSY; } pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; } if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } hmm_vma_walk->last = end; return 0; } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ /* stub to allow the code below to compile */ int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, unsigned long end, uint64_t *pfns, pmd_t pmd); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte) { if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) return 0; return pte_write(pte) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, unsigned long end, pmd_t *pmdp, pte_t *ptep, uint64_t *pfn) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; bool fault, write_fault; uint64_t cpu_flags; pte_t pte = *ptep; uint64_t orig_pfn = *pfn; *pfn = range->values[HMM_PFN_NONE]; fault = write_fault = false; if (pte_none(pte)) { hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault, &write_fault); if (fault || write_fault) goto fault; return 0; } if (!pte_present(pte)) { swp_entry_t entry = pte_to_swp_entry(pte); if (!non_swap_entry(entry)) { cpu_flags = pte_to_hmm_pfn_flags(range, pte); hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) goto fault; return 0; } /* * This is a special swap entry, ignore migration, use * device and report anything else as error. */ if (is_device_private_entry(entry)) { cpu_flags = range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_DEVICE_PRIVATE]; cpu_flags |= is_write_device_private_entry(entry) ? range->flags[HMM_PFN_WRITE] : 0; hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) goto fault; *pfn = hmm_device_entry_from_pfn(range, swp_offset(entry)); *pfn |= cpu_flags; return 0; } if (is_migration_entry(entry)) { if (fault || write_fault) { pte_unmap(ptep); hmm_vma_walk->last = addr; migration_entry_wait(walk->mm, pmdp, addr); return -EBUSY; } return 0; } /* Report error for everything else */ *pfn = range->values[HMM_PFN_ERROR]; return -EFAULT; } else { cpu_flags = pte_to_hmm_pfn_flags(range, pte); hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); } if (fault || write_fault) goto fault; if (pte_devmap(pte)) { hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte), hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) return -EBUSY; } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) { if (!is_zero_pfn(pte_pfn(pte))) { *pfn = range->values[HMM_PFN_SPECIAL]; return -EFAULT; } /* * Since each architecture defines a struct page for the zero * page, just fall through and treat it like a normal page. */ } *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags; return 0; fault: if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } pte_unmap(ptep); /* Fault any virtual address we were asked to fault */ return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); } static int hmm_vma_walk_pmd(pmd_t *pmdp, unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; uint64_t *pfns = range->pfns; unsigned long addr = start, i; pte_t *ptep; pmd_t pmd; again: pmd = READ_ONCE(*pmdp); if (pmd_none(pmd)) return hmm_vma_walk_hole(start, end, -1, walk); if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { bool fault, write_fault; unsigned long npages; uint64_t *pfns; i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault, &write_fault); if (fault || write_fault) { hmm_vma_walk->last = addr; pmd_migration_entry_wait(walk->mm, pmdp); return -EBUSY; } return 0; } else if (!pmd_present(pmd)) return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { /* * No need to take pmd_lock here, even if some other thread * is splitting the huge pmd we will get that event through * mmu_notifier callback. * * So just read pmd value and check again it's a transparent * huge or device mapping one and compute corresponding pfn * values. */ pmd = pmd_read_atomic(pmdp); barrier(); if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) goto again; i = (addr - range->start) >> PAGE_SHIFT; return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd); } /* * We have handled all the valid cases above ie either none, migration, * huge or transparent huge. At this point either it is a valid pmd * entry pointing to pte directory or it is a bad pmd that will not * recover. */ if (pmd_bad(pmd)) return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); ptep = pte_offset_map(pmdp, addr); i = (addr - range->start) >> PAGE_SHIFT; for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { int r; r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]); if (r) { /* hmm_vma_handle_pte() did unmap pte directory */ hmm_vma_walk->last = addr; return r; } } if (hmm_vma_walk->pgmap) { /* * We do put_dev_pagemap() here and not in hmm_vma_handle_pte() * so that we can leverage get_dev_pagemap() optimization which * will not re-take a reference on a pgmap if we already have * one. */ put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } pte_unmap(ptep - 1); hmm_vma_walk->last = addr; return 0; } #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud) { if (!pud_present(pud)) return 0; return pud_write(pud) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; unsigned long addr = start; pud_t pud; int ret = 0; spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); if (!ptl) return 0; /* Normally we don't want to split the huge page */ walk->action = ACTION_CONTINUE; pud = READ_ONCE(*pudp); if (pud_none(pud)) { ret = hmm_vma_walk_hole(start, end, -1, walk); goto out_unlock; } if (pud_huge(pud) && pud_devmap(pud)) { unsigned long i, npages, pfn; uint64_t *pfns, cpu_flags; bool fault, write_fault; if (!pud_present(pud)) { ret = hmm_vma_walk_hole(start, end, -1, walk); goto out_unlock; } i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; cpu_flags = pud_to_hmm_pfn_flags(range, pud); hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, &fault, &write_fault); if (fault || write_fault) { ret = hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); goto out_unlock; } pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); for (i = 0; i < npages; ++i, ++pfn) { hmm_vma_walk->pgmap = get_dev_pagemap(pfn, hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) { ret = -EBUSY; goto out_unlock; } pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; } if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } hmm_vma_walk->last = end; goto out_unlock; } /* Ask for the PUD to be split */ walk->action = ACTION_SUBTREE; out_unlock: spin_unlock(ptl); return ret; } #else #define hmm_vma_walk_pud NULL #endif #ifdef CONFIG_HUGETLB_PAGE static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, unsigned long start, unsigned long end, struct mm_walk *walk) { unsigned long addr = start, i, pfn; struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; uint64_t orig_pfn, cpu_flags; bool fault, write_fault; spinlock_t *ptl; pte_t entry; int ret = 0; ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); entry = huge_ptep_get(pte); i = (start - range->start) >> PAGE_SHIFT; orig_pfn = range->pfns[i]; range->pfns[i] = range->values[HMM_PFN_NONE]; cpu_flags = pte_to_hmm_pfn_flags(range, entry); fault = write_fault = false; hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) { ret = -ENOENT; goto unlock; } pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); for (; addr < end; addr += PAGE_SIZE, i++, pfn++) range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; hmm_vma_walk->last = end; unlock: spin_unlock(ptl); if (ret == -ENOENT) return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); return ret; } #else #define hmm_vma_walk_hugetlb_entry NULL #endif /* CONFIG_HUGETLB_PAGE */ static int hmm_vma_walk_test(unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; /* * Skip vma ranges that don't have struct page backing them or * map I/O devices directly. */ if (vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) return -EFAULT; /* * If the vma does not allow read access, then assume that it does not * allow write access either. HMM does not support architectures * that allow write without read. */ if (!(vma->vm_flags & VM_READ)) { bool fault, write_fault; /* * Check to see if a fault is requested for any page in the * range. */ hmm_range_need_fault(hmm_vma_walk, range->pfns + ((start - range->start) >> PAGE_SHIFT), (end - start) >> PAGE_SHIFT, 0, &fault, &write_fault); if (fault || write_fault) return -EFAULT; hmm_pfns_fill(start, end, range, HMM_PFN_NONE); hmm_vma_walk->last = end; /* Skip this vma and continue processing the next vma. */ return 1; } return 0; } static const struct mm_walk_ops hmm_walk_ops = { .pud_entry = hmm_vma_walk_pud, .pmd_entry = hmm_vma_walk_pmd, .pte_hole = hmm_vma_walk_hole, .hugetlb_entry = hmm_vma_walk_hugetlb_entry, .test_walk = hmm_vma_walk_test, }; /** * hmm_range_fault - try to fault some address in a virtual address range * @range: range being faulted * @flags: HMM_FAULT_* flags * * Return: the number of valid pages in range->pfns[] (from range start * address), which may be zero. On error one of the following status codes * can be returned: * * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma * (e.g., device file vma). * -ENOMEM: Out of memory. * -EPERM: Invalid permission (e.g., asking for write and range is read * only). * -EAGAIN: A page fault needs to be retried and mmap_sem was dropped. * -EBUSY: The range has been invalidated and the caller needs to wait for * the invalidation to finish. * -EFAULT: Invalid (i.e., either no valid vma or it is illegal to access * that range) number of valid pages in range->pfns[] (from * range start address). * * This is similar to a regular CPU page fault except that it will not trigger * any memory migration if the memory being faulted is not accessible by CPUs * and caller does not ask for migration. * * On error, for one virtual address in the range, the function will mark the * corresponding HMM pfn entry with an error flag. */ long hmm_range_fault(struct hmm_range *range, unsigned int flags) { struct hmm_vma_walk hmm_vma_walk = { .range = range, .last = range->start, .flags = flags, }; struct mm_struct *mm = range->notifier->mm; int ret; lockdep_assert_held(&mm->mmap_sem); do { /* If range is no longer valid force retry. */ if (mmu_interval_check_retry(range->notifier, range->notifier_seq)) return -EBUSY; ret = walk_page_range(mm, hmm_vma_walk.last, range->end, &hmm_walk_ops, &hmm_vma_walk); } while (ret == -EBUSY); if (ret) return ret; return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; } EXPORT_SYMBOL(hmm_range_fault); |