/* QLogic qede NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "qede_ptp.h"
#define QEDE_PTP_TX_TIMEOUT (2 * HZ)
struct qede_ptp {
const struct qed_eth_ptp_ops *ops;
struct ptp_clock_info clock_info;
struct cyclecounter cc;
struct timecounter tc;
struct ptp_clock *clock;
struct work_struct work;
unsigned long ptp_tx_start;
struct qede_dev *edev;
struct sk_buff *tx_skb;
/* ptp spinlock is used for protecting the cycle/time counter fields
* and, also for serializing the qed PTP API invocations.
*/
spinlock_t lock;
bool hw_ts_ioctl_called;
u16 tx_type;
u16 rx_filter;
};
/**
* qede_ptp_adjfreq
* @ptp: the ptp clock structure
* @ppb: parts per billion adjustment from base
*
* Adjust the frequency of the ptp cycle counter by the
* indicated ppb from the base frequency.
*/
static int qede_ptp_adjfreq(struct ptp_clock_info *info, s32 ppb)
{
struct qede_ptp *ptp = container_of(info, struct qede_ptp, clock_info);
struct qede_dev *edev = ptp->edev;
int rc;
__qede_lock(edev);
if (edev->state == QEDE_STATE_OPEN) {
spin_lock_bh(&ptp->lock);
rc = ptp->ops->adjfreq(edev->cdev, ppb);
spin_unlock_bh(&ptp->lock);
} else {
DP_ERR(edev, "PTP adjfreq called while interface is down\n");
rc = -EFAULT;
}
__qede_unlock(edev);
return rc;
}
static int qede_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
{
struct qede_dev *edev;
struct qede_ptp *ptp;
ptp = container_of(info, struct qede_ptp, clock_info);
edev = ptp->edev;
DP_VERBOSE(edev, QED_MSG_DEBUG, "PTP adjtime called, delta = %llx\n",
delta);
spin_lock_bh(&ptp->lock);
timecounter_adjtime(&ptp->tc, delta);
spin_unlock_bh(&ptp->lock);
return 0;
}
static int qede_ptp_gettime(struct ptp_clock_info *info, struct timespec64 *ts)
{
struct qede_dev *edev;
struct qede_ptp *ptp;
u64 ns;
ptp = container_of(info, struct qede_ptp, clock_info);
edev = ptp->edev;
spin_lock_bh(&ptp->lock);
ns = timecounter_read(&ptp->tc);
spin_unlock_bh(&ptp->lock);
DP_VERBOSE(edev, QED_MSG_DEBUG, "PTP gettime called, ns = %llu\n", ns);
*ts = ns_to_timespec64(ns);
return 0;
}
static int qede_ptp_settime(struct ptp_clock_info *info,
const struct timespec64 *ts)
{
struct qede_dev *edev;
struct qede_ptp *ptp;
u64 ns;
ptp = container_of(info, struct qede_ptp, clock_info);
edev = ptp->edev;
ns = timespec64_to_ns(ts);
DP_VERBOSE(edev, QED_MSG_DEBUG, "PTP settime called, ns = %llu\n", ns);
/* Re-init the timecounter */
spin_lock_bh(&ptp->lock);
timecounter_init(&ptp->tc, &ptp->cc, ns);
spin_unlock_bh(&ptp->lock);
return 0;
}
/* Enable (or disable) ancillary features of the phc subsystem */
static int qede_ptp_ancillary_feature_enable(struct ptp_clock_info *info,
struct ptp_clock_request *rq,
int on)
{
struct qede_dev *edev;
struct qede_ptp *ptp;
ptp = container_of(info, struct qede_ptp, clock_info);
edev = ptp->edev;
DP_ERR(edev, "PHC ancillary features are not supported\n");
return -ENOTSUPP;
}
static void qede_ptp_task(struct work_struct *work)
{
struct skb_shared_hwtstamps shhwtstamps;
struct qede_dev *edev;
struct qede_ptp *ptp;
u64 timestamp, ns;
bool timedout;
int rc;
ptp = container_of(work, struct qede_ptp, work);
edev = ptp->edev;
timedout = time_is_before_jiffies(ptp->ptp_tx_start +
QEDE_PTP_TX_TIMEOUT);
/* Read Tx timestamp registers */
spin_lock_bh(&ptp->lock);
rc = ptp->ops->read_tx_ts(edev->cdev, ×tamp);
spin_unlock_bh(&ptp->lock);
if (rc) {
if (unlikely(timedout)) {
DP_INFO(edev, "Tx timestamp is not recorded\n");
dev_kfree_skb_any(ptp->tx_skb);
ptp->tx_skb = NULL;
clear_bit_unlock(QEDE_FLAGS_PTP_TX_IN_PRORGESS,
&edev->flags);
edev->ptp_skip_txts++;
} else {
/* Reschedule to keep checking for a valid TS value */
schedule_work(&ptp->work);
}
return;
}
ns = timecounter_cyc2time(&ptp->tc, timestamp);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(ptp->tx_skb, &shhwtstamps);
dev_kfree_skb_any(ptp->tx_skb);
ptp->tx_skb = NULL;
clear_bit_unlock(QEDE_FLAGS_PTP_TX_IN_PRORGESS, &edev->flags);
DP_VERBOSE(edev, QED_MSG_DEBUG,
"Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
timestamp, ns);
}
/* Read the PHC. This API is invoked with ptp_lock held. */
static u64 qede_ptp_read_cc(const struct cyclecounter *cc)
{
struct qede_dev *edev;
struct qede_ptp *ptp;
u64 phc_cycles;
int rc;
ptp = container_of(cc, struct qede_ptp, cc);
edev = ptp->edev;
rc = ptp->ops->read_cc(edev->cdev, &phc_cycles);
if (rc)
WARN_ONCE(1, "PHC read err %d\n", rc);
DP_VERBOSE(edev, QED_MSG_DEBUG, "PHC read cycles = %llu\n", phc_cycles);
return phc_cycles;
}
static int qede_ptp_cfg_filters(struct qede_dev *edev)
{
enum qed_ptp_hwtstamp_tx_type tx_type = QED_PTP_HWTSTAMP_TX_ON;
enum qed_ptp_filter_type rx_filter = QED_PTP_FILTER_NONE;
struct qede_ptp *ptp = edev->ptp;
if (!ptp)
return -EIO;
if (!ptp->hw_ts_ioctl_called) {
DP_INFO(edev, "TS IOCTL not called\n");
return 0;
}
switch (ptp->tx_type) {
case HWTSTAMP_TX_ON:
set_bit(QEDE_FLAGS_TX_TIMESTAMPING_EN, &edev->flags);
tx_type = QED_PTP_HWTSTAMP_TX_ON;
break;
case HWTSTAMP_TX_OFF:
clear_bit(QEDE_FLAGS_TX_TIMESTAMPING_EN, &edev->flags);
tx_type = QED_PTP_HWTSTAMP_TX_OFF;
break;
case HWTSTAMP_TX_ONESTEP_SYNC:
case HWTSTAMP_TX_ONESTEP_P2P:
DP_ERR(edev, "One-step timestamping is not supported\n");
return -ERANGE;
}
spin_lock_bh(&ptp->lock);
switch (ptp->rx_filter) {
case HWTSTAMP_FILTER_NONE:
rx_filter = QED_PTP_FILTER_NONE;
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_NTP_ALL:
ptp->rx_filter = HWTSTAMP_FILTER_NONE;
rx_filter = QED_PTP_FILTER_ALL;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
rx_filter = QED_PTP_FILTER_V1_L4_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
/* Initialize PTP detection for UDP/IPv4 events */
rx_filter = QED_PTP_FILTER_V1_L4_GEN;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
rx_filter = QED_PTP_FILTER_V2_L4_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
rx_filter = QED_PTP_FILTER_V2_L4_GEN;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
rx_filter = QED_PTP_FILTER_V2_L2_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
/* Initialize PTP detection L2 events */
rx_filter = QED_PTP_FILTER_V2_L2_GEN;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
rx_filter = QED_PTP_FILTER_V2_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ptp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
rx_filter = QED_PTP_FILTER_V2_GEN;
break;
}
ptp->ops->cfg_filters(edev->cdev, rx_filter, tx_type);
spin_unlock_bh(&ptp->lock);
return 0;
}
int qede_ptp_hw_ts(struct qede_dev *edev, struct ifreq *ifr)
{
struct hwtstamp_config config;
struct qede_ptp *ptp;
int rc;
ptp = edev->ptp;
if (!ptp)
return -EIO;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
DP_VERBOSE(edev, QED_MSG_DEBUG,
"HWTSTAMP IOCTL: Requested tx_type = %d, requested rx_filters = %d\n",
config.tx_type, config.rx_filter);
if (config.flags) {
DP_ERR(edev, "config.flags is reserved for future use\n");
return -EINVAL;
}
ptp->hw_ts_ioctl_called = 1;
ptp->tx_type = config.tx_type;
ptp->rx_filter = config.rx_filter;
rc = qede_ptp_cfg_filters(edev);
if (rc)
return rc;
config.rx_filter = ptp->rx_filter;
return copy_to_user(ifr->ifr_data, &config,
sizeof(config)) ? -EFAULT : 0;
}
int qede_ptp_get_ts_info(struct qede_dev *edev, struct ethtool_ts_info *info)
{
struct qede_ptp *ptp = edev->ptp;
if (!ptp) {
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE;
info->phc_index = -1;
return 0;
}
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
if (ptp->clock)
info->phc_index = ptp_clock_index(ptp->clock);
else
info->phc_index = -1;
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
BIT(HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
return 0;
}
void qede_ptp_disable(struct qede_dev *edev)
{
struct qede_ptp *ptp;
ptp = edev->ptp;
if (!ptp)
return;
if (ptp->clock) {
ptp_clock_unregister(ptp->clock);
ptp->clock = NULL;
}
/* Cancel PTP work queue. Should be done after the Tx queues are
* drained to prevent additional scheduling.
*/
cancel_work_sync(&ptp->work);
if (ptp->tx_skb) {
dev_kfree_skb_any(ptp->tx_skb);
ptp->tx_skb = NULL;
}
/* Disable PTP in HW */
spin_lock_bh(&ptp->lock);
ptp->ops->disable(edev->cdev);
spin_unlock_bh(&ptp->lock);
kfree(ptp);
edev->ptp = NULL;
}
static int qede_ptp_init(struct qede_dev *edev, bool init_tc)
{
struct qede_ptp *ptp;
int rc;
ptp = edev->ptp;
if (!ptp)
return -EINVAL;
spin_lock_init(&ptp->lock);
/* Configure PTP in HW */
rc = ptp->ops->enable(edev->cdev);
if (rc) {
DP_INFO(edev, "PTP HW enable failed\n");
return rc;
}
/* Init work queue for Tx timestamping */
INIT_WORK(&ptp->work, qede_ptp_task);
/* Init cyclecounter and timecounter. This is done only in the first
* load. If done in every load, PTP application will fail when doing
* unload / load (e.g. MTU change) while it is running.
*/
if (init_tc) {
memset(&ptp->cc, 0, sizeof(ptp->cc));
ptp->cc.read = qede_ptp_read_cc;
ptp->cc.mask = CYCLECOUNTER_MASK(64);
ptp->cc.shift = 0;
ptp->cc.mult = 1;
timecounter_init(&ptp->tc, &ptp->cc,
ktime_to_ns(ktime_get_real()));
}
return rc;
}
int qede_ptp_enable(struct qede_dev *edev, bool init_tc)
{
struct qede_ptp *ptp;
int rc;
ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
if (!ptp) {
DP_INFO(edev, "Failed to allocate struct for PTP\n");
return -ENOMEM;
}
ptp->edev = edev;
ptp->ops = edev->ops->ptp;
if (!ptp->ops) {
DP_INFO(edev, "PTP enable failed\n");
rc = -EIO;
goto err1;
}
edev->ptp = ptp;
rc = qede_ptp_init(edev, init_tc);
if (rc)
goto err1;
qede_ptp_cfg_filters(edev);
/* Fill the ptp_clock_info struct and register PTP clock */
ptp->clock_info.owner = THIS_MODULE;
snprintf(ptp->clock_info.name, 16, "%s", edev->ndev->name);
ptp->clock_info.max_adj = QED_MAX_PHC_DRIFT_PPB;
ptp->clock_info.n_alarm = 0;
ptp->clock_info.n_ext_ts = 0;
ptp->clock_info.n_per_out = 0;
ptp->clock_info.pps = 0;
ptp->clock_info.adjfreq = qede_ptp_adjfreq;
ptp->clock_info.adjtime = qede_ptp_adjtime;
ptp->clock_info.gettime64 = qede_ptp_gettime;
ptp->clock_info.settime64 = qede_ptp_settime;
ptp->clock_info.enable = qede_ptp_ancillary_feature_enable;
ptp->clock = ptp_clock_register(&ptp->clock_info, &edev->pdev->dev);
if (IS_ERR(ptp->clock)) {
DP_ERR(edev, "PTP clock registration failed\n");
qede_ptp_disable(edev);
rc = -EINVAL;
goto err2;
}
return 0;
err1:
kfree(ptp);
err2:
edev->ptp = NULL;
return rc;
}
void qede_ptp_tx_ts(struct qede_dev *edev, struct sk_buff *skb)
{
struct qede_ptp *ptp;
ptp = edev->ptp;
if (!ptp)
return;
if (test_and_set_bit_lock(QEDE_FLAGS_PTP_TX_IN_PRORGESS,
&edev->flags)) {
DP_ERR(edev, "Timestamping in progress\n");
edev->ptp_skip_txts++;
return;
}
if (unlikely(!test_bit(QEDE_FLAGS_TX_TIMESTAMPING_EN, &edev->flags))) {
DP_ERR(edev,
"Tx timestamping was not enabled, this packet will not be timestamped\n");
clear_bit_unlock(QEDE_FLAGS_PTP_TX_IN_PRORGESS, &edev->flags);
edev->ptp_skip_txts++;
} else if (unlikely(ptp->tx_skb)) {
DP_ERR(edev,
"The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
clear_bit_unlock(QEDE_FLAGS_PTP_TX_IN_PRORGESS, &edev->flags);
edev->ptp_skip_txts++;
} else {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
/* schedule check for Tx timestamp */
ptp->tx_skb = skb_get(skb);
ptp->ptp_tx_start = jiffies;
schedule_work(&ptp->work);
}
}
void qede_ptp_rx_ts(struct qede_dev *edev, struct sk_buff *skb)
{
struct qede_ptp *ptp;
u64 timestamp, ns;
int rc;
ptp = edev->ptp;
if (!ptp)
return;
spin_lock_bh(&ptp->lock);
rc = ptp->ops->read_rx_ts(edev->cdev, ×tamp);
if (rc) {
spin_unlock_bh(&ptp->lock);
DP_INFO(edev, "Invalid Rx timestamp\n");
return;
}
ns = timecounter_cyc2time(&ptp->tc, timestamp);
spin_unlock_bh(&ptp->lock);
skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
DP_VERBOSE(edev, QED_MSG_DEBUG,
"Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
timestamp, ns);
}