Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 | // SPDX-License-Identifier: GPL-2.0 /* * kaslr.c * * This contains the routines needed to generate a reasonable level of * entropy to choose a randomized kernel base address offset in support * of Kernel Address Space Layout Randomization (KASLR). Additionally * handles walking the physical memory maps (and tracking memory regions * to avoid) in order to select a physical memory location that can * contain the entire properly aligned running kernel image. * */ /* * isspace() in linux/ctype.h is expected by next_args() to filter * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, * since isdigit() is implemented in both of them. Hence disable it * here. */ #define BOOT_CTYPE_H /* * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h. * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL * which is meaningless and will cause compiling error in some cases. */ #define __DISABLE_EXPORTS #include "misc.h" #include "error.h" #include "../string.h" #include <generated/compile.h> #include <linux/module.h> #include <linux/uts.h> #include <linux/utsname.h> #include <linux/ctype.h> #include <linux/efi.h> #include <generated/utsrelease.h> #include <asm/efi.h> /* Macros used by the included decompressor code below. */ #define STATIC #include <linux/decompress/mm.h> #ifdef CONFIG_X86_5LEVEL unsigned int __pgtable_l5_enabled; unsigned int pgdir_shift __ro_after_init = 39; unsigned int ptrs_per_p4d __ro_after_init = 1; #endif extern unsigned long get_cmd_line_ptr(void); /* Used by PAGE_KERN* macros: */ pteval_t __default_kernel_pte_mask __read_mostly = ~0; /* Simplified build-specific string for starting entropy. */ static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; static unsigned long rotate_xor(unsigned long hash, const void *area, size_t size) { size_t i; unsigned long *ptr = (unsigned long *)area; for (i = 0; i < size / sizeof(hash); i++) { /* Rotate by odd number of bits and XOR. */ hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); hash ^= ptr[i]; } return hash; } /* Attempt to create a simple but unpredictable starting entropy. */ static unsigned long get_boot_seed(void) { unsigned long hash = 0; hash = rotate_xor(hash, build_str, sizeof(build_str)); hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); return hash; } #define KASLR_COMPRESSED_BOOT #include "../../lib/kaslr.c" /* Only supporting at most 4 unusable memmap regions with kaslr */ #define MAX_MEMMAP_REGIONS 4 static bool memmap_too_large; /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */ static unsigned long long mem_limit = ULLONG_MAX; /* Number of immovable memory regions */ static int num_immovable_mem; enum mem_avoid_index { MEM_AVOID_ZO_RANGE = 0, MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, MEM_AVOID_BOOTPARAMS, MEM_AVOID_MEMMAP_BEGIN, MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, MEM_AVOID_MAX, }; static struct mem_vector mem_avoid[MEM_AVOID_MAX]; static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) { /* Item one is entirely before item two. */ if (one->start + one->size <= two->start) return false; /* Item one is entirely after item two. */ if (one->start >= two->start + two->size) return false; return true; } char *skip_spaces(const char *str) { while (isspace(*str)) ++str; return (char *)str; } #include "../../../../lib/ctype.c" #include "../../../../lib/cmdline.c" enum parse_mode { PARSE_MEMMAP, PARSE_EFI, }; static int parse_memmap(char *p, unsigned long long *start, unsigned long long *size, enum parse_mode mode) { char *oldp; if (!p) return -EINVAL; /* We don't care about this option here */ if (!strncmp(p, "exactmap", 8)) return -EINVAL; oldp = p; *size = memparse(p, &p); if (p == oldp) return -EINVAL; switch (*p) { case '#': case '$': case '!': *start = memparse(p + 1, &p); return 0; case '@': if (mode == PARSE_MEMMAP) { /* * memmap=nn@ss specifies usable region, should * be skipped */ *size = 0; } else { unsigned long long flags; /* * efi_fake_mem=nn@ss:attr the attr specifies * flags that might imply a soft-reservation. */ *start = memparse(p + 1, &p); if (p && *p == ':') { p++; if (kstrtoull(p, 0, &flags) < 0) *size = 0; else if (flags & EFI_MEMORY_SP) return 0; } *size = 0; } /* Fall through */ default: /* * If w/o offset, only size specified, memmap=nn[KMG] has the * same behaviour as mem=nn[KMG]. It limits the max address * system can use. Region above the limit should be avoided. */ *start = 0; return 0; } return -EINVAL; } static void mem_avoid_memmap(enum parse_mode mode, char *str) { static int i; if (i >= MAX_MEMMAP_REGIONS) return; while (str && (i < MAX_MEMMAP_REGIONS)) { int rc; unsigned long long start, size; char *k = strchr(str, ','); if (k) *k++ = 0; rc = parse_memmap(str, &start, &size, mode); if (rc < 0) break; str = k; if (start == 0) { /* Store the specified memory limit if size > 0 */ if (size > 0) mem_limit = size; continue; } mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; i++; } /* More than 4 memmaps, fail kaslr */ if ((i >= MAX_MEMMAP_REGIONS) && str) memmap_too_large = true; } /* Store the number of 1GB huge pages which users specified: */ static unsigned long max_gb_huge_pages; static void parse_gb_huge_pages(char *param, char *val) { static bool gbpage_sz; char *p; if (!strcmp(param, "hugepagesz")) { p = val; if (memparse(p, &p) != PUD_SIZE) { gbpage_sz = false; return; } if (gbpage_sz) warn("Repeatedly set hugeTLB page size of 1G!\n"); gbpage_sz = true; return; } if (!strcmp(param, "hugepages") && gbpage_sz) { p = val; max_gb_huge_pages = simple_strtoull(p, &p, 0); return; } } static void handle_mem_options(void) { char *args = (char *)get_cmd_line_ptr(); size_t len = strlen((char *)args); char *tmp_cmdline; char *param, *val; u64 mem_size; if (!strstr(args, "memmap=") && !strstr(args, "mem=") && !strstr(args, "hugepages")) return; tmp_cmdline = malloc(len + 1); if (!tmp_cmdline) error("Failed to allocate space for tmp_cmdline"); memcpy(tmp_cmdline, args, len); tmp_cmdline[len] = 0; args = tmp_cmdline; /* Chew leading spaces */ args = skip_spaces(args); while (*args) { args = next_arg(args, ¶m, &val); /* Stop at -- */ if (!val && strcmp(param, "--") == 0) { warn("Only '--' specified in cmdline"); goto out; } if (!strcmp(param, "memmap")) { mem_avoid_memmap(PARSE_MEMMAP, val); } else if (strstr(param, "hugepages")) { parse_gb_huge_pages(param, val); } else if (!strcmp(param, "mem")) { char *p = val; if (!strcmp(p, "nopentium")) continue; mem_size = memparse(p, &p); if (mem_size == 0) goto out; mem_limit = mem_size; } else if (!strcmp(param, "efi_fake_mem")) { mem_avoid_memmap(PARSE_EFI, val); } } out: free(tmp_cmdline); return; } /* * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T). * The mem_avoid array is used to store the ranges that need to be avoided * when KASLR searches for an appropriate random address. We must avoid any * regions that are unsafe to overlap with during decompression, and other * things like the initrd, cmdline and boot_params. This comment seeks to * explain mem_avoid as clearly as possible since incorrect mem_avoid * memory ranges lead to really hard to debug boot failures. * * The initrd, cmdline, and boot_params are trivial to identify for * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and * MEM_AVOID_BOOTPARAMS respectively below. * * What is not obvious how to avoid is the range of memory that is used * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover * the compressed kernel (ZO) and its run space, which is used to extract * the uncompressed kernel (VO) and relocs. * * ZO's full run size sits against the end of the decompression buffer, so * we can calculate where text, data, bss, etc of ZO are positioned more * easily. * * For additional background, the decompression calculations can be found * in header.S, and the memory diagram is based on the one found in misc.c. * * The following conditions are already enforced by the image layouts and * associated code: * - input + input_size >= output + output_size * - kernel_total_size <= init_size * - kernel_total_size <= output_size (see Note below) * - output + init_size >= output + output_size * * (Note that kernel_total_size and output_size have no fundamental * relationship, but output_size is passed to choose_random_location * as a maximum of the two. The diagram is showing a case where * kernel_total_size is larger than output_size, but this case is * handled by bumping output_size.) * * The above conditions can be illustrated by a diagram: * * 0 output input input+input_size output+init_size * | | | | | * | | | | | * |-----|--------|--------|--------------|-----------|--|-------------| * | | | * | | | * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size * * [output, output+init_size) is the entire memory range used for * extracting the compressed image. * * [output, output+kernel_total_size) is the range needed for the * uncompressed kernel (VO) and its run size (bss, brk, etc). * * [output, output+output_size) is VO plus relocs (i.e. the entire * uncompressed payload contained by ZO). This is the area of the buffer * written to during decompression. * * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case * range of the copied ZO and decompression code. (i.e. the range * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) * * [input, input+input_size) is the original copied compressed image (ZO) * (i.e. it does not include its run size). This range must be avoided * because it contains the data used for decompression. * * [input+input_size, output+init_size) is [_text, _end) for ZO. This * range includes ZO's heap and stack, and must be avoided since it * performs the decompression. * * Since the above two ranges need to be avoided and they are adjacent, * they can be merged, resulting in: [input, output+init_size) which * becomes the MEM_AVOID_ZO_RANGE below. */ static void mem_avoid_init(unsigned long input, unsigned long input_size, unsigned long output) { unsigned long init_size = boot_params->hdr.init_size; u64 initrd_start, initrd_size; u64 cmd_line, cmd_line_size; char *ptr; /* * Avoid the region that is unsafe to overlap during * decompression. */ mem_avoid[MEM_AVOID_ZO_RANGE].start = input; mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start, mem_avoid[MEM_AVOID_ZO_RANGE].size); /* Avoid initrd. */ initrd_start = (u64)boot_params->ext_ramdisk_image << 32; initrd_start |= boot_params->hdr.ramdisk_image; initrd_size = (u64)boot_params->ext_ramdisk_size << 32; initrd_size |= boot_params->hdr.ramdisk_size; mem_avoid[MEM_AVOID_INITRD].start = initrd_start; mem_avoid[MEM_AVOID_INITRD].size = initrd_size; /* No need to set mapping for initrd, it will be handled in VO. */ /* Avoid kernel command line. */ cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32; cmd_line |= boot_params->hdr.cmd_line_ptr; /* Calculate size of cmd_line. */ ptr = (char *)(unsigned long)cmd_line; for (cmd_line_size = 0; ptr[cmd_line_size++];) ; mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start, mem_avoid[MEM_AVOID_CMDLINE].size); /* Avoid boot parameters. */ mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start, mem_avoid[MEM_AVOID_BOOTPARAMS].size); /* We don't need to set a mapping for setup_data. */ /* Mark the memmap regions we need to avoid */ handle_mem_options(); /* Enumerate the immovable memory regions */ num_immovable_mem = count_immovable_mem_regions(); #ifdef CONFIG_X86_VERBOSE_BOOTUP /* Make sure video RAM can be used. */ add_identity_map(0, PMD_SIZE); #endif } /* * Does this memory vector overlap a known avoided area? If so, record the * overlap region with the lowest address. */ static bool mem_avoid_overlap(struct mem_vector *img, struct mem_vector *overlap) { int i; struct setup_data *ptr; unsigned long earliest = img->start + img->size; bool is_overlapping = false; for (i = 0; i < MEM_AVOID_MAX; i++) { if (mem_overlaps(img, &mem_avoid[i]) && mem_avoid[i].start < earliest) { *overlap = mem_avoid[i]; earliest = overlap->start; is_overlapping = true; } } /* Avoid all entries in the setup_data linked list. */ ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; while (ptr) { struct mem_vector avoid; avoid.start = (unsigned long)ptr; avoid.size = sizeof(*ptr) + ptr->len; if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { *overlap = avoid; earliest = overlap->start; is_overlapping = true; } if (ptr->type == SETUP_INDIRECT && ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) { avoid.start = ((struct setup_indirect *)ptr->data)->addr; avoid.size = ((struct setup_indirect *)ptr->data)->len; if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { *overlap = avoid; earliest = overlap->start; is_overlapping = true; } } ptr = (struct setup_data *)(unsigned long)ptr->next; } return is_overlapping; } struct slot_area { unsigned long addr; int num; }; #define MAX_SLOT_AREA 100 static struct slot_area slot_areas[MAX_SLOT_AREA]; static unsigned long slot_max; static unsigned long slot_area_index; static void store_slot_info(struct mem_vector *region, unsigned long image_size) { struct slot_area slot_area; if (slot_area_index == MAX_SLOT_AREA) return; slot_area.addr = region->start; slot_area.num = (region->size - image_size) / CONFIG_PHYSICAL_ALIGN + 1; if (slot_area.num > 0) { slot_areas[slot_area_index++] = slot_area; slot_max += slot_area.num; } } /* * Skip as many 1GB huge pages as possible in the passed region * according to the number which users specified: */ static void process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) { unsigned long addr, size = 0; struct mem_vector tmp; int i = 0; if (!max_gb_huge_pages) { store_slot_info(region, image_size); return; } addr = ALIGN(region->start, PUD_SIZE); /* Did we raise the address above the passed in memory entry? */ if (addr < region->start + region->size) size = region->size - (addr - region->start); /* Check how many 1GB huge pages can be filtered out: */ while (size > PUD_SIZE && max_gb_huge_pages) { size -= PUD_SIZE; max_gb_huge_pages--; i++; } /* No good 1GB huge pages found: */ if (!i) { store_slot_info(region, image_size); return; } /* * Skip those 'i'*1GB good huge pages, and continue checking and * processing the remaining head or tail part of the passed region * if available. */ if (addr >= region->start + image_size) { tmp.start = region->start; tmp.size = addr - region->start; store_slot_info(&tmp, image_size); } size = region->size - (addr - region->start) - i * PUD_SIZE; if (size >= image_size) { tmp.start = addr + i * PUD_SIZE; tmp.size = size; store_slot_info(&tmp, image_size); } } static unsigned long slots_fetch_random(void) { unsigned long slot; int i; /* Handle case of no slots stored. */ if (slot_max == 0) return 0; slot = kaslr_get_random_long("Physical") % slot_max; for (i = 0; i < slot_area_index; i++) { if (slot >= slot_areas[i].num) { slot -= slot_areas[i].num; continue; } return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN; } if (i == slot_area_index) debug_putstr("slots_fetch_random() failed!?\n"); return 0; } static void __process_mem_region(struct mem_vector *entry, unsigned long minimum, unsigned long image_size) { struct mem_vector region, overlap; unsigned long start_orig, end; struct mem_vector cur_entry; /* On 32-bit, ignore entries entirely above our maximum. */ if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE) return; /* Ignore entries entirely below our minimum. */ if (entry->start + entry->size < minimum) return; /* Ignore entries above memory limit */ end = min(entry->size + entry->start, mem_limit); if (entry->start >= end) return; cur_entry.start = entry->start; cur_entry.size = end - entry->start; region.start = cur_entry.start; region.size = cur_entry.size; /* Give up if slot area array is full. */ while (slot_area_index < MAX_SLOT_AREA) { start_orig = region.start; /* Potentially raise address to minimum location. */ if (region.start < minimum) region.start = minimum; /* Potentially raise address to meet alignment needs. */ region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); /* Did we raise the address above the passed in memory entry? */ if (region.start > cur_entry.start + cur_entry.size) return; /* Reduce size by any delta from the original address. */ region.size -= region.start - start_orig; /* On 32-bit, reduce region size to fit within max size. */ if (IS_ENABLED(CONFIG_X86_32) && region.start + region.size > KERNEL_IMAGE_SIZE) region.size = KERNEL_IMAGE_SIZE - region.start; /* Return if region can't contain decompressed kernel */ if (region.size < image_size) return; /* If nothing overlaps, store the region and return. */ if (!mem_avoid_overlap(®ion, &overlap)) { process_gb_huge_pages(®ion, image_size); return; } /* Store beginning of region if holds at least image_size. */ if (overlap.start > region.start + image_size) { struct mem_vector beginning; beginning.start = region.start; beginning.size = overlap.start - region.start; process_gb_huge_pages(&beginning, image_size); } /* Return if overlap extends to or past end of region. */ if (overlap.start + overlap.size >= region.start + region.size) return; /* Clip off the overlapping region and start over. */ region.size -= overlap.start - region.start + overlap.size; region.start = overlap.start + overlap.size; } } static bool process_mem_region(struct mem_vector *region, unsigned long long minimum, unsigned long long image_size) { int i; /* * If no immovable memory found, or MEMORY_HOTREMOVE disabled, * use @region directly. */ if (!num_immovable_mem) { __process_mem_region(region, minimum, image_size); if (slot_area_index == MAX_SLOT_AREA) { debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); return 1; } return 0; } #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) /* * If immovable memory found, filter the intersection between * immovable memory and @region. */ for (i = 0; i < num_immovable_mem; i++) { unsigned long long start, end, entry_end, region_end; struct mem_vector entry; if (!mem_overlaps(region, &immovable_mem[i])) continue; start = immovable_mem[i].start; end = start + immovable_mem[i].size; region_end = region->start + region->size; entry.start = clamp(region->start, start, end); entry_end = clamp(region_end, start, end); entry.size = entry_end - entry.start; __process_mem_region(&entry, minimum, image_size); if (slot_area_index == MAX_SLOT_AREA) { debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); return 1; } } #endif return 0; } #ifdef CONFIG_EFI /* * Returns true if mirror region found (and must have been processed * for slots adding) */ static bool process_efi_entries(unsigned long minimum, unsigned long image_size) { struct efi_info *e = &boot_params->efi_info; bool efi_mirror_found = false; struct mem_vector region; efi_memory_desc_t *md; unsigned long pmap; char *signature; u32 nr_desc; int i; signature = (char *)&e->efi_loader_signature; if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) return false; #ifdef CONFIG_X86_32 /* Can't handle data above 4GB at this time */ if (e->efi_memmap_hi) { warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); return false; } pmap = e->efi_memmap; #else pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); #endif nr_desc = e->efi_memmap_size / e->efi_memdesc_size; for (i = 0; i < nr_desc; i++) { md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { efi_mirror_found = true; break; } } for (i = 0; i < nr_desc; i++) { md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); /* * Here we are more conservative in picking free memory than * the EFI spec allows: * * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also * free memory and thus available to place the kernel image into, * but in practice there's firmware where using that memory leads * to crashes. * * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free. */ if (md->type != EFI_CONVENTIONAL_MEMORY) continue; if (efi_soft_reserve_enabled() && (md->attribute & EFI_MEMORY_SP)) continue; if (efi_mirror_found && !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) continue; region.start = md->phys_addr; region.size = md->num_pages << EFI_PAGE_SHIFT; if (process_mem_region(®ion, minimum, image_size)) break; } return true; } #else static inline bool process_efi_entries(unsigned long minimum, unsigned long image_size) { return false; } #endif static void process_e820_entries(unsigned long minimum, unsigned long image_size) { int i; struct mem_vector region; struct boot_e820_entry *entry; /* Verify potential e820 positions, appending to slots list. */ for (i = 0; i < boot_params->e820_entries; i++) { entry = &boot_params->e820_table[i]; /* Skip non-RAM entries. */ if (entry->type != E820_TYPE_RAM) continue; region.start = entry->addr; region.size = entry->size; if (process_mem_region(®ion, minimum, image_size)) break; } } static unsigned long find_random_phys_addr(unsigned long minimum, unsigned long image_size) { /* Check if we had too many memmaps. */ if (memmap_too_large) { debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); return 0; } /* Make sure minimum is aligned. */ minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); if (process_efi_entries(minimum, image_size)) return slots_fetch_random(); process_e820_entries(minimum, image_size); return slots_fetch_random(); } static unsigned long find_random_virt_addr(unsigned long minimum, unsigned long image_size) { unsigned long slots, random_addr; /* Make sure minimum is aligned. */ minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); /* Align image_size for easy slot calculations. */ image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN); /* * There are how many CONFIG_PHYSICAL_ALIGN-sized slots * that can hold image_size within the range of minimum to * KERNEL_IMAGE_SIZE? */ slots = (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN + 1; random_addr = kaslr_get_random_long("Virtual") % slots; return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; } /* * Since this function examines addresses much more numerically, * it takes the input and output pointers as 'unsigned long'. */ void choose_random_location(unsigned long input, unsigned long input_size, unsigned long *output, unsigned long output_size, unsigned long *virt_addr) { unsigned long random_addr, min_addr; if (cmdline_find_option_bool("nokaslr")) { warn("KASLR disabled: 'nokaslr' on cmdline."); return; } #ifdef CONFIG_X86_5LEVEL if (__read_cr4() & X86_CR4_LA57) { __pgtable_l5_enabled = 1; pgdir_shift = 48; ptrs_per_p4d = 512; } #endif boot_params->hdr.loadflags |= KASLR_FLAG; /* Prepare to add new identity pagetables on demand. */ initialize_identity_maps(); /* Record the various known unsafe memory ranges. */ mem_avoid_init(input, input_size, *output); /* * Low end of the randomization range should be the * smaller of 512M or the initial kernel image * location: */ min_addr = min(*output, 512UL << 20); /* Walk available memory entries to find a random address. */ random_addr = find_random_phys_addr(min_addr, output_size); if (!random_addr) { warn("Physical KASLR disabled: no suitable memory region!"); } else { /* Update the new physical address location. */ if (*output != random_addr) { add_identity_map(random_addr, output_size); *output = random_addr; } /* * This loads the identity mapping page table. * This should only be done if a new physical address * is found for the kernel, otherwise we should keep * the old page table to make it be like the "nokaslr" * case. */ finalize_identity_maps(); } /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ if (IS_ENABLED(CONFIG_X86_64)) random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); *virt_addr = random_addr; } |