/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2017 Intel Corporation
*/
#include <linux/prime_numbers.h>
#include "gt/intel_gt.h"
#include "i915_selftest.h"
#include "selftests/i915_random.h"
static int cpu_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
unsigned int needs_clflush;
struct page *page;
void *map;
u32 *cpu;
int err;
err = i915_gem_object_prepare_write(obj, &needs_clflush);
if (err)
return err;
page = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT);
map = kmap_atomic(page);
cpu = map + offset_in_page(offset);
if (needs_clflush & CLFLUSH_BEFORE)
drm_clflush_virt_range(cpu, sizeof(*cpu));
*cpu = v;
if (needs_clflush & CLFLUSH_AFTER)
drm_clflush_virt_range(cpu, sizeof(*cpu));
kunmap_atomic(map);
i915_gem_object_finish_access(obj);
return 0;
}
static int cpu_get(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 *v)
{
unsigned int needs_clflush;
struct page *page;
void *map;
u32 *cpu;
int err;
err = i915_gem_object_prepare_read(obj, &needs_clflush);
if (err)
return err;
page = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT);
map = kmap_atomic(page);
cpu = map + offset_in_page(offset);
if (needs_clflush & CLFLUSH_BEFORE)
drm_clflush_virt_range(cpu, sizeof(*cpu));
*v = *cpu;
kunmap_atomic(map);
i915_gem_object_finish_access(obj);
return 0;
}
static int gtt_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
struct i915_vma *vma;
u32 __iomem *map;
int err;
i915_gem_object_lock(obj);
err = i915_gem_object_set_to_gtt_domain(obj, true);
i915_gem_object_unlock(obj);
if (err)
return err;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma))
return PTR_ERR(vma);
map = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(map))
return PTR_ERR(map);
iowrite32(v, &map[offset / sizeof(*map)]);
i915_vma_unpin_iomap(vma);
return 0;
}
static int gtt_get(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 *v)
{
struct i915_vma *vma;
u32 __iomem *map;
int err;
i915_gem_object_lock(obj);
err = i915_gem_object_set_to_gtt_domain(obj, false);
i915_gem_object_unlock(obj);
if (err)
return err;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma))
return PTR_ERR(vma);
map = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(map))
return PTR_ERR(map);
*v = ioread32(&map[offset / sizeof(*map)]);
i915_vma_unpin_iomap(vma);
return 0;
}
static int wc_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
u32 *map;
int err;
i915_gem_object_lock(obj);
err = i915_gem_object_set_to_wc_domain(obj, true);
i915_gem_object_unlock(obj);
if (err)
return err;
map = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(map))
return PTR_ERR(map);
map[offset / sizeof(*map)] = v;
i915_gem_object_unpin_map(obj);
return 0;
}
static int wc_get(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 *v)
{
u32 *map;
int err;
i915_gem_object_lock(obj);
err = i915_gem_object_set_to_wc_domain(obj, false);
i915_gem_object_unlock(obj);
if (err)
return err;
map = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(map))
return PTR_ERR(map);
*v = map[offset / sizeof(*map)];
i915_gem_object_unpin_map(obj);
return 0;
}
static int gpu_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_request *rq;
struct i915_vma *vma;
u32 *cs;
int err;
i915_gem_object_lock(obj);
err = i915_gem_object_set_to_gtt_domain(obj, true);
i915_gem_object_unlock(obj);
if (err)
return err;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
if (IS_ERR(vma))
return PTR_ERR(vma);
rq = i915_request_create(i915->engine[RCS0]->kernel_context);
if (IS_ERR(rq)) {
i915_vma_unpin(vma);
return PTR_ERR(rq);
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
i915_vma_unpin(vma);
return PTR_ERR(cs);
}
if (INTEL_GEN(i915) >= 8) {
*cs++ = MI_STORE_DWORD_IMM_GEN4 | 1 << 22;
*cs++ = lower_32_bits(i915_ggtt_offset(vma) + offset);
*cs++ = upper_32_bits(i915_ggtt_offset(vma) + offset);
*cs++ = v;
} else if (INTEL_GEN(i915) >= 4) {
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = 0;
*cs++ = i915_ggtt_offset(vma) + offset;
*cs++ = v;
} else {
*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
*cs++ = i915_ggtt_offset(vma) + offset;
*cs++ = v;
*cs++ = MI_NOOP;
}
intel_ring_advance(rq, cs);
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, true);
if (err == 0)
err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
i915_vma_unlock(vma);
i915_vma_unpin(vma);
i915_request_add(rq);
return err;
}
static bool always_valid(struct drm_i915_private *i915)
{
return true;
}
static bool needs_fence_registers(struct drm_i915_private *i915)
{
return !intel_gt_is_wedged(&i915->gt);
}
static bool needs_mi_store_dword(struct drm_i915_private *i915)
{
if (intel_gt_is_wedged(&i915->gt))
return false;
if (!HAS_ENGINE(i915, RCS0))
return false;
return intel_engine_can_store_dword(i915->engine[RCS0]);
}
static const struct igt_coherency_mode {
const char *name;
int (*set)(struct drm_i915_gem_object *, unsigned long offset, u32 v);
int (*get)(struct drm_i915_gem_object *, unsigned long offset, u32 *v);
bool (*valid)(struct drm_i915_private *i915);
} igt_coherency_mode[] = {
{ "cpu", cpu_set, cpu_get, always_valid },
{ "gtt", gtt_set, gtt_get, needs_fence_registers },
{ "wc", wc_set, wc_get, always_valid },
{ "gpu", gpu_set, NULL, needs_mi_store_dword },
{ },
};
static int igt_gem_coherency(void *arg)
{
const unsigned int ncachelines = PAGE_SIZE/64;
I915_RND_STATE(prng);
struct drm_i915_private *i915 = arg;
const struct igt_coherency_mode *read, *write, *over;
struct drm_i915_gem_object *obj;
intel_wakeref_t wakeref;
unsigned long count, n;
u32 *offsets, *values;
int err = 0;
/* We repeatedly write, overwrite and read from a sequence of
* cachelines in order to try and detect incoherency (unflushed writes
* from either the CPU or GPU). Each setter/getter uses our cache
* domain API which should prevent incoherency.
*/
offsets = kmalloc_array(ncachelines, 2*sizeof(u32), GFP_KERNEL);
if (!offsets)
return -ENOMEM;
for (count = 0; count < ncachelines; count++)
offsets[count] = count * 64 + 4 * (count % 16);
values = offsets + ncachelines;
mutex_lock(&i915->drm.struct_mutex);
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
for (over = igt_coherency_mode; over->name; over++) {
if (!over->set)
continue;
if (!over->valid(i915))
continue;
for (write = igt_coherency_mode; write->name; write++) {
if (!write->set)
continue;
if (!write->valid(i915))
continue;
for (read = igt_coherency_mode; read->name; read++) {
if (!read->get)
continue;
if (!read->valid(i915))
continue;
for_each_prime_number_from(count, 1, ncachelines) {
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto unlock;
}
i915_random_reorder(offsets, ncachelines, &prng);
for (n = 0; n < count; n++)
values[n] = prandom_u32_state(&prng);
for (n = 0; n < count; n++) {
err = over->set(obj, offsets[n], ~values[n]);
if (err) {
pr_err("Failed to set stale value[%ld/%ld] in object using %s, err=%d\n",
n, count, over->name, err);
goto put_object;
}
}
for (n = 0; n < count; n++) {
err = write->set(obj, offsets[n], values[n]);
if (err) {
pr_err("Failed to set value[%ld/%ld] in object using %s, err=%d\n",
n, count, write->name, err);
goto put_object;
}
}
for (n = 0; n < count; n++) {
u32 found;
err = read->get(obj, offsets[n], &found);
if (err) {
pr_err("Failed to get value[%ld/%ld] in object using %s, err=%d\n",
n, count, read->name, err);
goto put_object;
}
if (found != values[n]) {
pr_err("Value[%ld/%ld] mismatch, (overwrite with %s) wrote [%s] %x read [%s] %x (inverse %x), at offset %x\n",
n, count, over->name,
write->name, values[n],
read->name, found,
~values[n], offsets[n]);
err = -EINVAL;
goto put_object;
}
}
i915_gem_object_put(obj);
}
}
}
}
unlock:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
mutex_unlock(&i915->drm.struct_mutex);
kfree(offsets);
return err;
put_object:
i915_gem_object_put(obj);
goto unlock;
}
int i915_gem_coherency_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_gem_coherency),
};
return i915_subtests(tests, i915);
}