Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) /* Copyright (c) 2018 Facebook */ #include <endian.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #include <linux/err.h> #include <linux/btf.h> #include <gelf.h> #include "btf.h" #include "bpf.h" #include "libbpf.h" #include "libbpf_internal.h" #include "hashmap.h" #define BTF_MAX_NR_TYPES 0x7fffffff #define BTF_MAX_STR_OFFSET 0x7fffffff static struct btf_type btf_void; struct btf { union { struct btf_header *hdr; void *data; }; struct btf_type **types; const char *strings; void *nohdr_data; __u32 nr_types; __u32 types_size; __u32 data_size; int fd; }; static inline __u64 ptr_to_u64(const void *ptr) { return (__u64) (unsigned long) ptr; } static int btf_add_type(struct btf *btf, struct btf_type *t) { if (btf->types_size - btf->nr_types < 2) { struct btf_type **new_types; __u32 expand_by, new_size; if (btf->types_size == BTF_MAX_NR_TYPES) return -E2BIG; expand_by = max(btf->types_size >> 2, 16); new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by); new_types = realloc(btf->types, sizeof(*new_types) * new_size); if (!new_types) return -ENOMEM; if (btf->nr_types == 0) new_types[0] = &btf_void; btf->types = new_types; btf->types_size = new_size; } btf->types[++(btf->nr_types)] = t; return 0; } static int btf_parse_hdr(struct btf *btf) { const struct btf_header *hdr = btf->hdr; __u32 meta_left; if (btf->data_size < sizeof(struct btf_header)) { pr_debug("BTF header not found\n"); return -EINVAL; } if (hdr->magic != BTF_MAGIC) { pr_debug("Invalid BTF magic:%x\n", hdr->magic); return -EINVAL; } if (hdr->version != BTF_VERSION) { pr_debug("Unsupported BTF version:%u\n", hdr->version); return -ENOTSUP; } if (hdr->flags) { pr_debug("Unsupported BTF flags:%x\n", hdr->flags); return -ENOTSUP; } meta_left = btf->data_size - sizeof(*hdr); if (!meta_left) { pr_debug("BTF has no data\n"); return -EINVAL; } if (meta_left < hdr->type_off) { pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); return -EINVAL; } if (meta_left < hdr->str_off) { pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); return -EINVAL; } if (hdr->type_off >= hdr->str_off) { pr_debug("BTF type section offset >= string section offset. No type?\n"); return -EINVAL; } if (hdr->type_off & 0x02) { pr_debug("BTF type section is not aligned to 4 bytes\n"); return -EINVAL; } btf->nohdr_data = btf->hdr + 1; return 0; } static int btf_parse_str_sec(struct btf *btf) { const struct btf_header *hdr = btf->hdr; const char *start = btf->nohdr_data + hdr->str_off; const char *end = start + btf->hdr->str_len; if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || start[0] || end[-1]) { pr_debug("Invalid BTF string section\n"); return -EINVAL; } btf->strings = start; return 0; } static int btf_type_size(struct btf_type *t) { int base_size = sizeof(struct btf_type); __u16 vlen = btf_vlen(t); switch (btf_kind(t)) { case BTF_KIND_FWD: case BTF_KIND_CONST: case BTF_KIND_VOLATILE: case BTF_KIND_RESTRICT: case BTF_KIND_PTR: case BTF_KIND_TYPEDEF: case BTF_KIND_FUNC: return base_size; case BTF_KIND_INT: return base_size + sizeof(__u32); case BTF_KIND_ENUM: return base_size + vlen * sizeof(struct btf_enum); case BTF_KIND_ARRAY: return base_size + sizeof(struct btf_array); case BTF_KIND_STRUCT: case BTF_KIND_UNION: return base_size + vlen * sizeof(struct btf_member); case BTF_KIND_FUNC_PROTO: return base_size + vlen * sizeof(struct btf_param); case BTF_KIND_VAR: return base_size + sizeof(struct btf_var); case BTF_KIND_DATASEC: return base_size + vlen * sizeof(struct btf_var_secinfo); default: pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); return -EINVAL; } } static int btf_parse_type_sec(struct btf *btf) { struct btf_header *hdr = btf->hdr; void *nohdr_data = btf->nohdr_data; void *next_type = nohdr_data + hdr->type_off; void *end_type = nohdr_data + hdr->str_off; while (next_type < end_type) { struct btf_type *t = next_type; int type_size; int err; type_size = btf_type_size(t); if (type_size < 0) return type_size; next_type += type_size; err = btf_add_type(btf, t); if (err) return err; } return 0; } __u32 btf__get_nr_types(const struct btf *btf) { return btf->nr_types; } const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) { if (type_id > btf->nr_types) return NULL; return btf->types[type_id]; } static bool btf_type_is_void(const struct btf_type *t) { return t == &btf_void || btf_is_fwd(t); } static bool btf_type_is_void_or_null(const struct btf_type *t) { return !t || btf_type_is_void(t); } #define MAX_RESOLVE_DEPTH 32 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) { const struct btf_array *array; const struct btf_type *t; __u32 nelems = 1; __s64 size = -1; int i; t = btf__type_by_id(btf, type_id); for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { switch (btf_kind(t)) { case BTF_KIND_INT: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_ENUM: case BTF_KIND_DATASEC: size = t->size; goto done; case BTF_KIND_PTR: size = sizeof(void *); goto done; case BTF_KIND_TYPEDEF: case BTF_KIND_VOLATILE: case BTF_KIND_CONST: case BTF_KIND_RESTRICT: case BTF_KIND_VAR: type_id = t->type; break; case BTF_KIND_ARRAY: array = btf_array(t); if (nelems && array->nelems > UINT32_MAX / nelems) return -E2BIG; nelems *= array->nelems; type_id = array->type; break; default: return -EINVAL; } t = btf__type_by_id(btf, type_id); } if (size < 0) return -EINVAL; done: if (nelems && size > UINT32_MAX / nelems) return -E2BIG; return nelems * size; } int btf__resolve_type(const struct btf *btf, __u32 type_id) { const struct btf_type *t; int depth = 0; t = btf__type_by_id(btf, type_id); while (depth < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t) && (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { type_id = t->type; t = btf__type_by_id(btf, type_id); depth++; } if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) return -EINVAL; return type_id; } __s32 btf__find_by_name(const struct btf *btf, const char *type_name) { __u32 i; if (!strcmp(type_name, "void")) return 0; for (i = 1; i <= btf->nr_types; i++) { const struct btf_type *t = btf->types[i]; const char *name = btf__name_by_offset(btf, t->name_off); if (name && !strcmp(type_name, name)) return i; } return -ENOENT; } void btf__free(struct btf *btf) { if (!btf) return; if (btf->fd != -1) close(btf->fd); free(btf->data); free(btf->types); free(btf); } struct btf *btf__new(__u8 *data, __u32 size) { struct btf *btf; int err; btf = calloc(1, sizeof(struct btf)); if (!btf) return ERR_PTR(-ENOMEM); btf->fd = -1; btf->data = malloc(size); if (!btf->data) { err = -ENOMEM; goto done; } memcpy(btf->data, data, size); btf->data_size = size; err = btf_parse_hdr(btf); if (err) goto done; err = btf_parse_str_sec(btf); if (err) goto done; err = btf_parse_type_sec(btf); done: if (err) { btf__free(btf); return ERR_PTR(err); } return btf; } static bool btf_check_endianness(const GElf_Ehdr *ehdr) { #if __BYTE_ORDER == __LITTLE_ENDIAN return ehdr->e_ident[EI_DATA] == ELFDATA2LSB; #elif __BYTE_ORDER == __BIG_ENDIAN return ehdr->e_ident[EI_DATA] == ELFDATA2MSB; #else # error "Unrecognized __BYTE_ORDER__" #endif } struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) { Elf_Data *btf_data = NULL, *btf_ext_data = NULL; int err = 0, fd = -1, idx = 0; struct btf *btf = NULL; Elf_Scn *scn = NULL; Elf *elf = NULL; GElf_Ehdr ehdr; if (elf_version(EV_CURRENT) == EV_NONE) { pr_warning("failed to init libelf for %s\n", path); return ERR_PTR(-LIBBPF_ERRNO__LIBELF); } fd = open(path, O_RDONLY); if (fd < 0) { err = -errno; pr_warning("failed to open %s: %s\n", path, strerror(errno)); return ERR_PTR(err); } err = -LIBBPF_ERRNO__FORMAT; elf = elf_begin(fd, ELF_C_READ, NULL); if (!elf) { pr_warning("failed to open %s as ELF file\n", path); goto done; } if (!gelf_getehdr(elf, &ehdr)) { pr_warning("failed to get EHDR from %s\n", path); goto done; } if (!btf_check_endianness(&ehdr)) { pr_warning("non-native ELF endianness is not supported\n"); goto done; } if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { pr_warning("failed to get e_shstrndx from %s\n", path); goto done; } while ((scn = elf_nextscn(elf, scn)) != NULL) { GElf_Shdr sh; char *name; idx++; if (gelf_getshdr(scn, &sh) != &sh) { pr_warning("failed to get section(%d) header from %s\n", idx, path); goto done; } name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); if (!name) { pr_warning("failed to get section(%d) name from %s\n", idx, path); goto done; } if (strcmp(name, BTF_ELF_SEC) == 0) { btf_data = elf_getdata(scn, 0); if (!btf_data) { pr_warning("failed to get section(%d, %s) data from %s\n", idx, name, path); goto done; } continue; } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { btf_ext_data = elf_getdata(scn, 0); if (!btf_ext_data) { pr_warning("failed to get section(%d, %s) data from %s\n", idx, name, path); goto done; } continue; } } err = 0; if (!btf_data) { err = -ENOENT; goto done; } btf = btf__new(btf_data->d_buf, btf_data->d_size); if (IS_ERR(btf)) goto done; if (btf_ext && btf_ext_data) { *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); if (IS_ERR(*btf_ext)) goto done; } else if (btf_ext) { *btf_ext = NULL; } done: if (elf) elf_end(elf); close(fd); if (err) return ERR_PTR(err); /* * btf is always parsed before btf_ext, so no need to clean up * btf_ext, if btf loading failed */ if (IS_ERR(btf)) return btf; if (btf_ext && IS_ERR(*btf_ext)) { btf__free(btf); err = PTR_ERR(*btf_ext); return ERR_PTR(err); } return btf; } static int compare_vsi_off(const void *_a, const void *_b) { const struct btf_var_secinfo *a = _a; const struct btf_var_secinfo *b = _b; return a->offset - b->offset; } static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, struct btf_type *t) { __u32 size = 0, off = 0, i, vars = btf_vlen(t); const char *name = btf__name_by_offset(btf, t->name_off); const struct btf_type *t_var; struct btf_var_secinfo *vsi; const struct btf_var *var; int ret; if (!name) { pr_debug("No name found in string section for DATASEC kind.\n"); return -ENOENT; } ret = bpf_object__section_size(obj, name, &size); if (ret || !size || (t->size && t->size != size)) { pr_debug("Invalid size for section %s: %u bytes\n", name, size); return -ENOENT; } t->size = size; for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { t_var = btf__type_by_id(btf, vsi->type); var = btf_var(t_var); if (!btf_is_var(t_var)) { pr_debug("Non-VAR type seen in section %s\n", name); return -EINVAL; } if (var->linkage == BTF_VAR_STATIC) continue; name = btf__name_by_offset(btf, t_var->name_off); if (!name) { pr_debug("No name found in string section for VAR kind\n"); return -ENOENT; } ret = bpf_object__variable_offset(obj, name, &off); if (ret) { pr_debug("No offset found in symbol table for VAR %s\n", name); return -ENOENT; } vsi->offset = off; } qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off); return 0; } int btf__finalize_data(struct bpf_object *obj, struct btf *btf) { int err = 0; __u32 i; for (i = 1; i <= btf->nr_types; i++) { struct btf_type *t = btf->types[i]; /* Loader needs to fix up some of the things compiler * couldn't get its hands on while emitting BTF. This * is section size and global variable offset. We use * the info from the ELF itself for this purpose. */ if (btf_is_datasec(t)) { err = btf_fixup_datasec(obj, btf, t); if (err) break; } } return err; } int btf__load(struct btf *btf) { __u32 log_buf_size = BPF_LOG_BUF_SIZE; char *log_buf = NULL; int err = 0; if (btf->fd >= 0) return -EEXIST; log_buf = malloc(log_buf_size); if (!log_buf) return -ENOMEM; *log_buf = 0; btf->fd = bpf_load_btf(btf->data, btf->data_size, log_buf, log_buf_size, false); if (btf->fd < 0) { err = -errno; pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno); if (*log_buf) pr_warning("%s\n", log_buf); goto done; } done: free(log_buf); return err; } int btf__fd(const struct btf *btf) { return btf->fd; } const void *btf__get_raw_data(const struct btf *btf, __u32 *size) { *size = btf->data_size; return btf->data; } const char *btf__name_by_offset(const struct btf *btf, __u32 offset) { if (offset < btf->hdr->str_len) return &btf->strings[offset]; else return NULL; } int btf__get_from_id(__u32 id, struct btf **btf) { struct bpf_btf_info btf_info = { 0 }; __u32 len = sizeof(btf_info); __u32 last_size; int btf_fd; void *ptr; int err; err = 0; *btf = NULL; btf_fd = bpf_btf_get_fd_by_id(id); if (btf_fd < 0) return 0; /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so * let's start with a sane default - 4KiB here - and resize it only if * bpf_obj_get_info_by_fd() needs a bigger buffer. */ btf_info.btf_size = 4096; last_size = btf_info.btf_size; ptr = malloc(last_size); if (!ptr) { err = -ENOMEM; goto exit_free; } memset(ptr, 0, last_size); btf_info.btf = ptr_to_u64(ptr); err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); if (!err && btf_info.btf_size > last_size) { void *temp_ptr; last_size = btf_info.btf_size; temp_ptr = realloc(ptr, last_size); if (!temp_ptr) { err = -ENOMEM; goto exit_free; } ptr = temp_ptr; memset(ptr, 0, last_size); btf_info.btf = ptr_to_u64(ptr); err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); } if (err || btf_info.btf_size > last_size) { err = errno; goto exit_free; } *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); if (IS_ERR(*btf)) { err = PTR_ERR(*btf); *btf = NULL; } exit_free: close(btf_fd); free(ptr); return err; } int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, __u32 expected_key_size, __u32 expected_value_size, __u32 *key_type_id, __u32 *value_type_id) { const struct btf_type *container_type; const struct btf_member *key, *value; const size_t max_name = 256; char container_name[max_name]; __s64 key_size, value_size; __s32 container_id; if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { pr_warning("map:%s length of '____btf_map_%s' is too long\n", map_name, map_name); return -EINVAL; } container_id = btf__find_by_name(btf, container_name); if (container_id < 0) { pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", map_name, container_name); return container_id; } container_type = btf__type_by_id(btf, container_id); if (!container_type) { pr_warning("map:%s cannot find BTF type for container_id:%u\n", map_name, container_id); return -EINVAL; } if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { pr_warning("map:%s container_name:%s is an invalid container struct\n", map_name, container_name); return -EINVAL; } key = btf_members(container_type); value = key + 1; key_size = btf__resolve_size(btf, key->type); if (key_size < 0) { pr_warning("map:%s invalid BTF key_type_size\n", map_name); return key_size; } if (expected_key_size != key_size) { pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", map_name, (__u32)key_size, expected_key_size); return -EINVAL; } value_size = btf__resolve_size(btf, value->type); if (value_size < 0) { pr_warning("map:%s invalid BTF value_type_size\n", map_name); return value_size; } if (expected_value_size != value_size) { pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", map_name, (__u32)value_size, expected_value_size); return -EINVAL; } *key_type_id = key->type; *value_type_id = value->type; return 0; } struct btf_ext_sec_setup_param { __u32 off; __u32 len; __u32 min_rec_size; struct btf_ext_info *ext_info; const char *desc; }; static int btf_ext_setup_info(struct btf_ext *btf_ext, struct btf_ext_sec_setup_param *ext_sec) { const struct btf_ext_info_sec *sinfo; struct btf_ext_info *ext_info; __u32 info_left, record_size; /* The start of the info sec (including the __u32 record_size). */ void *info; if (ext_sec->len == 0) return 0; if (ext_sec->off & 0x03) { pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", ext_sec->desc); return -EINVAL; } info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; info_left = ext_sec->len; if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", ext_sec->desc, ext_sec->off, ext_sec->len); return -EINVAL; } /* At least a record size */ if (info_left < sizeof(__u32)) { pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); return -EINVAL; } /* The record size needs to meet the minimum standard */ record_size = *(__u32 *)info; if (record_size < ext_sec->min_rec_size || record_size & 0x03) { pr_debug("%s section in .BTF.ext has invalid record size %u\n", ext_sec->desc, record_size); return -EINVAL; } sinfo = info + sizeof(__u32); info_left -= sizeof(__u32); /* If no records, return failure now so .BTF.ext won't be used. */ if (!info_left) { pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); return -EINVAL; } while (info_left) { unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); __u64 total_record_size; __u32 num_records; if (info_left < sec_hdrlen) { pr_debug("%s section header is not found in .BTF.ext\n", ext_sec->desc); return -EINVAL; } num_records = sinfo->num_info; if (num_records == 0) { pr_debug("%s section has incorrect num_records in .BTF.ext\n", ext_sec->desc); return -EINVAL; } total_record_size = sec_hdrlen + (__u64)num_records * record_size; if (info_left < total_record_size) { pr_debug("%s section has incorrect num_records in .BTF.ext\n", ext_sec->desc); return -EINVAL; } info_left -= total_record_size; sinfo = (void *)sinfo + total_record_size; } ext_info = ext_sec->ext_info; ext_info->len = ext_sec->len - sizeof(__u32); ext_info->rec_size = record_size; ext_info->info = info + sizeof(__u32); return 0; } static int btf_ext_setup_func_info(struct btf_ext *btf_ext) { struct btf_ext_sec_setup_param param = { .off = btf_ext->hdr->func_info_off, .len = btf_ext->hdr->func_info_len, .min_rec_size = sizeof(struct bpf_func_info_min), .ext_info = &btf_ext->func_info, .desc = "func_info" }; return btf_ext_setup_info(btf_ext, ¶m); } static int btf_ext_setup_line_info(struct btf_ext *btf_ext) { struct btf_ext_sec_setup_param param = { .off = btf_ext->hdr->line_info_off, .len = btf_ext->hdr->line_info_len, .min_rec_size = sizeof(struct bpf_line_info_min), .ext_info = &btf_ext->line_info, .desc = "line_info", }; return btf_ext_setup_info(btf_ext, ¶m); } static int btf_ext_setup_offset_reloc(struct btf_ext *btf_ext) { struct btf_ext_sec_setup_param param = { .off = btf_ext->hdr->offset_reloc_off, .len = btf_ext->hdr->offset_reloc_len, .min_rec_size = sizeof(struct bpf_offset_reloc), .ext_info = &btf_ext->offset_reloc_info, .desc = "offset_reloc", }; return btf_ext_setup_info(btf_ext, ¶m); } static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) { const struct btf_ext_header *hdr = (struct btf_ext_header *)data; if (data_size < offsetofend(struct btf_ext_header, hdr_len) || data_size < hdr->hdr_len) { pr_debug("BTF.ext header not found"); return -EINVAL; } if (hdr->magic != BTF_MAGIC) { pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); return -EINVAL; } if (hdr->version != BTF_VERSION) { pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); return -ENOTSUP; } if (hdr->flags) { pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); return -ENOTSUP; } if (data_size == hdr->hdr_len) { pr_debug("BTF.ext has no data\n"); return -EINVAL; } return 0; } void btf_ext__free(struct btf_ext *btf_ext) { if (!btf_ext) return; free(btf_ext->data); free(btf_ext); } struct btf_ext *btf_ext__new(__u8 *data, __u32 size) { struct btf_ext *btf_ext; int err; err = btf_ext_parse_hdr(data, size); if (err) return ERR_PTR(err); btf_ext = calloc(1, sizeof(struct btf_ext)); if (!btf_ext) return ERR_PTR(-ENOMEM); btf_ext->data_size = size; btf_ext->data = malloc(size); if (!btf_ext->data) { err = -ENOMEM; goto done; } memcpy(btf_ext->data, data, size); if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) goto done; err = btf_ext_setup_func_info(btf_ext); if (err) goto done; err = btf_ext_setup_line_info(btf_ext); if (err) goto done; if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, offset_reloc_len)) goto done; err = btf_ext_setup_offset_reloc(btf_ext); if (err) goto done; done: if (err) { btf_ext__free(btf_ext); return ERR_PTR(err); } return btf_ext; } const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) { *size = btf_ext->data_size; return btf_ext->data; } static int btf_ext_reloc_info(const struct btf *btf, const struct btf_ext_info *ext_info, const char *sec_name, __u32 insns_cnt, void **info, __u32 *cnt) { __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); __u32 i, record_size, existing_len, records_len; struct btf_ext_info_sec *sinfo; const char *info_sec_name; __u64 remain_len; void *data; record_size = ext_info->rec_size; sinfo = ext_info->info; remain_len = ext_info->len; while (remain_len > 0) { records_len = sinfo->num_info * record_size; info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); if (strcmp(info_sec_name, sec_name)) { remain_len -= sec_hdrlen + records_len; sinfo = (void *)sinfo + sec_hdrlen + records_len; continue; } existing_len = (*cnt) * record_size; data = realloc(*info, existing_len + records_len); if (!data) return -ENOMEM; memcpy(data + existing_len, sinfo->data, records_len); /* adjust insn_off only, the rest data will be passed * to the kernel. */ for (i = 0; i < sinfo->num_info; i++) { __u32 *insn_off; insn_off = data + existing_len + (i * record_size); *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; } *info = data; *cnt += sinfo->num_info; return 0; } return -ENOENT; } int btf_ext__reloc_func_info(const struct btf *btf, const struct btf_ext *btf_ext, const char *sec_name, __u32 insns_cnt, void **func_info, __u32 *cnt) { return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, insns_cnt, func_info, cnt); } int btf_ext__reloc_line_info(const struct btf *btf, const struct btf_ext *btf_ext, const char *sec_name, __u32 insns_cnt, void **line_info, __u32 *cnt) { return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, insns_cnt, line_info, cnt); } __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) { return btf_ext->func_info.rec_size; } __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) { return btf_ext->line_info.rec_size; } struct btf_dedup; static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, const struct btf_dedup_opts *opts); static void btf_dedup_free(struct btf_dedup *d); static int btf_dedup_strings(struct btf_dedup *d); static int btf_dedup_prim_types(struct btf_dedup *d); static int btf_dedup_struct_types(struct btf_dedup *d); static int btf_dedup_ref_types(struct btf_dedup *d); static int btf_dedup_compact_types(struct btf_dedup *d); static int btf_dedup_remap_types(struct btf_dedup *d); /* * Deduplicate BTF types and strings. * * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF * section with all BTF type descriptors and string data. It overwrites that * memory in-place with deduplicated types and strings without any loss of * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section * is provided, all the strings referenced from .BTF.ext section are honored * and updated to point to the right offsets after deduplication. * * If function returns with error, type/string data might be garbled and should * be discarded. * * More verbose and detailed description of both problem btf_dedup is solving, * as well as solution could be found at: * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html * * Problem description and justification * ===================================== * * BTF type information is typically emitted either as a result of conversion * from DWARF to BTF or directly by compiler. In both cases, each compilation * unit contains information about a subset of all the types that are used * in an application. These subsets are frequently overlapping and contain a lot * of duplicated information when later concatenated together into a single * binary. This algorithm ensures that each unique type is represented by single * BTF type descriptor, greatly reducing resulting size of BTF data. * * Compilation unit isolation and subsequent duplication of data is not the only * problem. The same type hierarchy (e.g., struct and all the type that struct * references) in different compilation units can be represented in BTF to * various degrees of completeness (or, rather, incompleteness) due to * struct/union forward declarations. * * Let's take a look at an example, that we'll use to better understand the * problem (and solution). Suppose we have two compilation units, each using * same `struct S`, but each of them having incomplete type information about * struct's fields: * * // CU #1: * struct S; * struct A { * int a; * struct A* self; * struct S* parent; * }; * struct B; * struct S { * struct A* a_ptr; * struct B* b_ptr; * }; * * // CU #2: * struct S; * struct A; * struct B { * int b; * struct B* self; * struct S* parent; * }; * struct S { * struct A* a_ptr; * struct B* b_ptr; * }; * * In case of CU #1, BTF data will know only that `struct B` exist (but no * more), but will know the complete type information about `struct A`. While * for CU #2, it will know full type information about `struct B`, but will * only know about forward declaration of `struct A` (in BTF terms, it will * have `BTF_KIND_FWD` type descriptor with name `B`). * * This compilation unit isolation means that it's possible that there is no * single CU with complete type information describing structs `S`, `A`, and * `B`. Also, we might get tons of duplicated and redundant type information. * * Additional complication we need to keep in mind comes from the fact that * types, in general, can form graphs containing cycles, not just DAGs. * * While algorithm does deduplication, it also merges and resolves type * information (unless disabled throught `struct btf_opts`), whenever possible. * E.g., in the example above with two compilation units having partial type * information for structs `A` and `B`, the output of algorithm will emit * a single copy of each BTF type that describes structs `A`, `B`, and `S` * (as well as type information for `int` and pointers), as if they were defined * in a single compilation unit as: * * struct A { * int a; * struct A* self; * struct S* parent; * }; * struct B { * int b; * struct B* self; * struct S* parent; * }; * struct S { * struct A* a_ptr; * struct B* b_ptr; * }; * * Algorithm summary * ================= * * Algorithm completes its work in 6 separate passes: * * 1. Strings deduplication. * 2. Primitive types deduplication (int, enum, fwd). * 3. Struct/union types deduplication. * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func * protos, and const/volatile/restrict modifiers). * 5. Types compaction. * 6. Types remapping. * * Algorithm determines canonical type descriptor, which is a single * representative type for each truly unique type. This canonical type is the * one that will go into final deduplicated BTF type information. For * struct/unions, it is also the type that algorithm will merge additional type * information into (while resolving FWDs), as it discovers it from data in * other CUs. Each input BTF type eventually gets either mapped to itself, if * that type is canonical, or to some other type, if that type is equivalent * and was chosen as canonical representative. This mapping is stored in * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that * FWD type got resolved to. * * To facilitate fast discovery of canonical types, we also maintain canonical * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types * that match that signature. With sufficiently good choice of type signature * hashing function, we can limit number of canonical types for each unique type * signature to a very small number, allowing to find canonical type for any * duplicated type very quickly. * * Struct/union deduplication is the most critical part and algorithm for * deduplicating structs/unions is described in greater details in comments for * `btf_dedup_is_equiv` function. */ int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, const struct btf_dedup_opts *opts) { struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); int err; if (IS_ERR(d)) { pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); return -EINVAL; } err = btf_dedup_strings(d); if (err < 0) { pr_debug("btf_dedup_strings failed:%d\n", err); goto done; } err = btf_dedup_prim_types(d); if (err < 0) { pr_debug("btf_dedup_prim_types failed:%d\n", err); goto done; } err = btf_dedup_struct_types(d); if (err < 0) { pr_debug("btf_dedup_struct_types failed:%d\n", err); goto done; } err = btf_dedup_ref_types(d); if (err < 0) { pr_debug("btf_dedup_ref_types failed:%d\n", err); goto done; } err = btf_dedup_compact_types(d); if (err < 0) { pr_debug("btf_dedup_compact_types failed:%d\n", err); goto done; } err = btf_dedup_remap_types(d); if (err < 0) { pr_debug("btf_dedup_remap_types failed:%d\n", err); goto done; } done: btf_dedup_free(d); return err; } #define BTF_UNPROCESSED_ID ((__u32)-1) #define BTF_IN_PROGRESS_ID ((__u32)-2) struct btf_dedup { /* .BTF section to be deduped in-place */ struct btf *btf; /* * Optional .BTF.ext section. When provided, any strings referenced * from it will be taken into account when deduping strings */ struct btf_ext *btf_ext; /* * This is a map from any type's signature hash to a list of possible * canonical representative type candidates. Hash collisions are * ignored, so even types of various kinds can share same list of * candidates, which is fine because we rely on subsequent * btf_xxx_equal() checks to authoritatively verify type equality. */ struct hashmap *dedup_table; /* Canonical types map */ __u32 *map; /* Hypothetical mapping, used during type graph equivalence checks */ __u32 *hypot_map; __u32 *hypot_list; size_t hypot_cnt; size_t hypot_cap; /* Various option modifying behavior of algorithm */ struct btf_dedup_opts opts; }; struct btf_str_ptr { const char *str; __u32 new_off; bool used; }; struct btf_str_ptrs { struct btf_str_ptr *ptrs; const char *data; __u32 cnt; __u32 cap; }; static long hash_combine(long h, long value) { return h * 31 + value; } #define for_each_dedup_cand(d, node, hash) \ hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) { return hashmap__append(d->dedup_table, (void *)hash, (void *)(long)type_id); } static int btf_dedup_hypot_map_add(struct btf_dedup *d, __u32 from_id, __u32 to_id) { if (d->hypot_cnt == d->hypot_cap) { __u32 *new_list; d->hypot_cap += max(16, d->hypot_cap / 2); new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap); if (!new_list) return -ENOMEM; d->hypot_list = new_list; } d->hypot_list[d->hypot_cnt++] = from_id; d->hypot_map[from_id] = to_id; return 0; } static void btf_dedup_clear_hypot_map(struct btf_dedup *d) { int i; for (i = 0; i < d->hypot_cnt; i++) d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; d->hypot_cnt = 0; } static void btf_dedup_free(struct btf_dedup *d) { hashmap__free(d->dedup_table); d->dedup_table = NULL; free(d->map); d->map = NULL; free(d->hypot_map); d->hypot_map = NULL; free(d->hypot_list); d->hypot_list = NULL; free(d); } static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) { return (size_t)key; } static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) { return 0; } static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) { return k1 == k2; } static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, const struct btf_dedup_opts *opts) { struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; int i, err = 0; if (!d) return ERR_PTR(-ENOMEM); d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; /* dedup_table_size is now used only to force collisions in tests */ if (opts && opts->dedup_table_size == 1) hash_fn = btf_dedup_collision_hash_fn; d->btf = btf; d->btf_ext = btf_ext; d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); if (IS_ERR(d->dedup_table)) { err = PTR_ERR(d->dedup_table); d->dedup_table = NULL; goto done; } d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); if (!d->map) { err = -ENOMEM; goto done; } /* special BTF "void" type is made canonical immediately */ d->map[0] = 0; for (i = 1; i <= btf->nr_types; i++) { struct btf_type *t = d->btf->types[i]; /* VAR and DATASEC are never deduped and are self-canonical */ if (btf_is_var(t) || btf_is_datasec(t)) d->map[i] = i; else d->map[i] = BTF_UNPROCESSED_ID; } d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); if (!d->hypot_map) { err = -ENOMEM; goto done; } for (i = 0; i <= btf->nr_types; i++) d->hypot_map[i] = BTF_UNPROCESSED_ID; done: if (err) { btf_dedup_free(d); return ERR_PTR(err); } return d; } typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); /* * Iterate over all possible places in .BTF and .BTF.ext that can reference * string and pass pointer to it to a provided callback `fn`. */ static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) { void *line_data_cur, *line_data_end; int i, j, r, rec_size; struct btf_type *t; for (i = 1; i <= d->btf->nr_types; i++) { t = d->btf->types[i]; r = fn(&t->name_off, ctx); if (r) return r; switch (btf_kind(t)) { case BTF_KIND_STRUCT: case BTF_KIND_UNION: { struct btf_member *m = btf_members(t); __u16 vlen = btf_vlen(t); for (j = 0; j < vlen; j++) { r = fn(&m->name_off, ctx); if (r) return r; m++; } break; } case BTF_KIND_ENUM: { struct btf_enum *m = btf_enum(t); __u16 vlen = btf_vlen(t); for (j = 0; j < vlen; j++) { r = fn(&m->name_off, ctx); if (r) return r; m++; } break; } case BTF_KIND_FUNC_PROTO: { struct btf_param *m = btf_params(t); __u16 vlen = btf_vlen(t); for (j = 0; j < vlen; j++) { r = fn(&m->name_off, ctx); if (r) return r; m++; } break; } default: break; } } if (!d->btf_ext) return 0; line_data_cur = d->btf_ext->line_info.info; line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; rec_size = d->btf_ext->line_info.rec_size; while (line_data_cur < line_data_end) { struct btf_ext_info_sec *sec = line_data_cur; struct bpf_line_info_min *line_info; __u32 num_info = sec->num_info; r = fn(&sec->sec_name_off, ctx); if (r) return r; line_data_cur += sizeof(struct btf_ext_info_sec); for (i = 0; i < num_info; i++) { line_info = line_data_cur; r = fn(&line_info->file_name_off, ctx); if (r) return r; r = fn(&line_info->line_off, ctx); if (r) return r; line_data_cur += rec_size; } } return 0; } static int str_sort_by_content(const void *a1, const void *a2) { const struct btf_str_ptr *p1 = a1; const struct btf_str_ptr *p2 = a2; return strcmp(p1->str, p2->str); } static int str_sort_by_offset(const void *a1, const void *a2) { const struct btf_str_ptr *p1 = a1; const struct btf_str_ptr *p2 = a2; if (p1->str != p2->str) return p1->str < p2->str ? -1 : 1; return 0; } static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) { const struct btf_str_ptr *p = pelem; if (str_ptr != p->str) return (const char *)str_ptr < p->str ? -1 : 1; return 0; } static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) { struct btf_str_ptrs *strs; struct btf_str_ptr *s; if (*str_off_ptr == 0) return 0; strs = ctx; s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); if (!s) return -EINVAL; s->used = true; return 0; } static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) { struct btf_str_ptrs *strs; struct btf_str_ptr *s; if (*str_off_ptr == 0) return 0; strs = ctx; s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); if (!s) return -EINVAL; *str_off_ptr = s->new_off; return 0; } /* * Dedup string and filter out those that are not referenced from either .BTF * or .BTF.ext (if provided) sections. * * This is done by building index of all strings in BTF's string section, * then iterating over all entities that can reference strings (e.g., type * names, struct field names, .BTF.ext line info, etc) and marking corresponding * strings as used. After that all used strings are deduped and compacted into * sequential blob of memory and new offsets are calculated. Then all the string * references are iterated again and rewritten using new offsets. */ static int btf_dedup_strings(struct btf_dedup *d) { const struct btf_header *hdr = d->btf->hdr; char *start = (char *)d->btf->nohdr_data + hdr->str_off; char *end = start + d->btf->hdr->str_len; char *p = start, *tmp_strs = NULL; struct btf_str_ptrs strs = { .cnt = 0, .cap = 0, .ptrs = NULL, .data = start, }; int i, j, err = 0, grp_idx; bool grp_used; /* build index of all strings */ while (p < end) { if (strs.cnt + 1 > strs.cap) { struct btf_str_ptr *new_ptrs; strs.cap += max(strs.cnt / 2, 16); new_ptrs = realloc(strs.ptrs, sizeof(strs.ptrs[0]) * strs.cap); if (!new_ptrs) { err = -ENOMEM; goto done; } strs.ptrs = new_ptrs; } strs.ptrs[strs.cnt].str = p; strs.ptrs[strs.cnt].used = false; p += strlen(p) + 1; strs.cnt++; } /* temporary storage for deduplicated strings */ tmp_strs = malloc(d->btf->hdr->str_len); if (!tmp_strs) { err = -ENOMEM; goto done; } /* mark all used strings */ strs.ptrs[0].used = true; err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); if (err) goto done; /* sort strings by context, so that we can identify duplicates */ qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); /* * iterate groups of equal strings and if any instance in a group was * referenced, emit single instance and remember new offset */ p = tmp_strs; grp_idx = 0; grp_used = strs.ptrs[0].used; /* iterate past end to avoid code duplication after loop */ for (i = 1; i <= strs.cnt; i++) { /* * when i == strs.cnt, we want to skip string comparison and go * straight to handling last group of strings (otherwise we'd * need to handle last group after the loop w/ duplicated code) */ if (i < strs.cnt && !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { grp_used = grp_used || strs.ptrs[i].used; continue; } /* * this check would have been required after the loop to handle * last group of strings, but due to <= condition in a loop * we avoid that duplication */ if (grp_used) { int new_off = p - tmp_strs; __u32 len = strlen(strs.ptrs[grp_idx].str); memmove(p, strs.ptrs[grp_idx].str, len + 1); for (j = grp_idx; j < i; j++) strs.ptrs[j].new_off = new_off; p += len + 1; } if (i < strs.cnt) { grp_idx = i; grp_used = strs.ptrs[i].used; } } /* replace original strings with deduped ones */ d->btf->hdr->str_len = p - tmp_strs; memmove(start, tmp_strs, d->btf->hdr->str_len); end = start + d->btf->hdr->str_len; /* restore original order for further binary search lookups */ qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); /* remap string offsets */ err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); if (err) goto done; d->btf->hdr->str_len = end - start; done: free(tmp_strs); free(strs.ptrs); return err; } static long btf_hash_common(struct btf_type *t) { long h; h = hash_combine(0, t->name_off); h = hash_combine(h, t->info); h = hash_combine(h, t->size); return h; } static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) { return t1->name_off == t2->name_off && t1->info == t2->info && t1->size == t2->size; } /* Calculate type signature hash of INT. */ static long btf_hash_int(struct btf_type *t) { __u32 info = *(__u32 *)(t + 1); long h; h = btf_hash_common(t); h = hash_combine(h, info); return h; } /* Check structural equality of two INTs. */ static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) { __u32 info1, info2; if (!btf_equal_common(t1, t2)) return false; info1 = *(__u32 *)(t1 + 1); info2 = *(__u32 *)(t2 + 1); return info1 == info2; } /* Calculate type signature hash of ENUM. */ static long btf_hash_enum(struct btf_type *t) { long h; /* don't hash vlen and enum members to support enum fwd resolving */ h = hash_combine(0, t->name_off); h = hash_combine(h, t->info & ~0xffff); h = hash_combine(h, t->size); return h; } /* Check structural equality of two ENUMs. */ static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) { const struct btf_enum *m1, *m2; __u16 vlen; int i; if (!btf_equal_common(t1, t2)) return false; vlen = btf_vlen(t1); m1 = btf_enum(t1); m2 = btf_enum(t2); for (i = 0; i < vlen; i++) { if (m1->name_off != m2->name_off || m1->val != m2->val) return false; m1++; m2++; } return true; } static inline bool btf_is_enum_fwd(struct btf_type *t) { return btf_is_enum(t) && btf_vlen(t) == 0; } static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) { if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) return btf_equal_enum(t1, t2); /* ignore vlen when comparing */ return t1->name_off == t2->name_off && (t1->info & ~0xffff) == (t2->info & ~0xffff) && t1->size == t2->size; } /* * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, * as referenced type IDs equivalence is established separately during type * graph equivalence check algorithm. */ static long btf_hash_struct(struct btf_type *t) { const struct btf_member *member = btf_members(t); __u32 vlen = btf_vlen(t); long h = btf_hash_common(t); int i; for (i = 0; i < vlen; i++) { h = hash_combine(h, member->name_off); h = hash_combine(h, member->offset); /* no hashing of referenced type ID, it can be unresolved yet */ member++; } return h; } /* * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type * IDs. This check is performed during type graph equivalence check and * referenced types equivalence is checked separately. */ static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) { const struct btf_member *m1, *m2; __u16 vlen; int i; if (!btf_equal_common(t1, t2)) return false; vlen = btf_vlen(t1); m1 = btf_members(t1); m2 = btf_members(t2); for (i = 0; i < vlen; i++) { if (m1->name_off != m2->name_off || m1->offset != m2->offset) return false; m1++; m2++; } return true; } /* * Calculate type signature hash of ARRAY, including referenced type IDs, * under assumption that they were already resolved to canonical type IDs and * are not going to change. */ static long btf_hash_array(struct btf_type *t) { const struct btf_array *info = btf_array(t); long h = btf_hash_common(t); h = hash_combine(h, info->type); h = hash_combine(h, info->index_type); h = hash_combine(h, info->nelems); return h; } /* * Check exact equality of two ARRAYs, taking into account referenced * type IDs, under assumption that they were already resolved to canonical * type IDs and are not going to change. * This function is called during reference types deduplication to compare * ARRAY to potential canonical representative. */ static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) { const struct btf_array *info1, *info2; if (!btf_equal_common(t1, t2)) return false; info1 = btf_array(t1); info2 = btf_array(t2); return info1->type == info2->type && info1->index_type == info2->index_type && info1->nelems == info2->nelems; } /* * Check structural compatibility of two ARRAYs, ignoring referenced type * IDs. This check is performed during type graph equivalence check and * referenced types equivalence is checked separately. */ static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) { if (!btf_equal_common(t1, t2)) return false; return btf_array(t1)->nelems == btf_array(t2)->nelems; } /* * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, * under assumption that they were already resolved to canonical type IDs and * are not going to change. */ static long btf_hash_fnproto(struct btf_type *t) { const struct btf_param *member = btf_params(t); __u16 vlen = btf_vlen(t); long h = btf_hash_common(t); int i; for (i = 0; i < vlen; i++) { h = hash_combine(h, member->name_off); h = hash_combine(h, member->type); member++; } return h; } /* * Check exact equality of two FUNC_PROTOs, taking into account referenced * type IDs, under assumption that they were already resolved to canonical * type IDs and are not going to change. * This function is called during reference types deduplication to compare * FUNC_PROTO to potential canonical representative. */ static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) { const struct btf_param *m1, *m2; __u16 vlen; int i; if (!btf_equal_common(t1, t2)) return false; vlen = btf_vlen(t1); m1 = btf_params(t1); m2 = btf_params(t2); for (i = 0; i < vlen; i++) { if (m1->name_off != m2->name_off || m1->type != m2->type) return false; m1++; m2++; } return true; } /* * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type * IDs. This check is performed during type graph equivalence check and * referenced types equivalence is checked separately. */ static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) { const struct btf_param *m1, *m2; __u16 vlen; int i; /* skip return type ID */ if (t1->name_off != t2->name_off || t1->info != t2->info) return false; vlen = btf_vlen(t1); m1 = btf_params(t1); m2 = btf_params(t2); for (i = 0; i < vlen; i++) { if (m1->name_off != m2->name_off) return false; m1++; m2++; } return true; } /* * Deduplicate primitive types, that can't reference other types, by calculating * their type signature hash and comparing them with any possible canonical * candidate. If no canonical candidate matches, type itself is marked as * canonical and is added into `btf_dedup->dedup_table` as another candidate. */ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) { struct btf_type *t = d->btf->types[type_id]; struct hashmap_entry *hash_entry; struct btf_type *cand; /* if we don't find equivalent type, then we are canonical */ __u32 new_id = type_id; __u32 cand_id; long h; switch (btf_kind(t)) { case BTF_KIND_CONST: case BTF_KIND_VOLATILE: case BTF_KIND_RESTRICT: case BTF_KIND_PTR: case BTF_KIND_TYPEDEF: case BTF_KIND_ARRAY: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_FUNC: case BTF_KIND_FUNC_PROTO: case BTF_KIND_VAR: case BTF_KIND_DATASEC: return 0; case BTF_KIND_INT: h = btf_hash_int(t); for_each_dedup_cand(d, hash_entry, h) { cand_id = (__u32)(long)hash_entry->value; cand = d->btf->types[cand_id]; if (btf_equal_int(t, cand)) { new_id = cand_id; break; } } break; case BTF_KIND_ENUM: h = btf_hash_enum(t); for_each_dedup_cand(d, hash_entry, h) { cand_id = (__u32)(long)hash_entry->value; cand = d->btf->types[cand_id]; if (btf_equal_enum(t, cand)) { new_id = cand_id; break; } if (d->opts.dont_resolve_fwds) continue; if (btf_compat_enum(t, cand)) { if (btf_is_enum_fwd(t)) { /* resolve fwd to full enum */ new_id = cand_id; break; } /* resolve canonical enum fwd to full enum */ d->map[cand_id] = type_id; } } break; case BTF_KIND_FWD: h = btf_hash_common(t); for_each_dedup_cand(d, hash_entry, h) { cand_id = (__u32)(long)hash_entry->value; cand = d->btf->types[cand_id]; if (btf_equal_common(t, cand)) { new_id = cand_id; break; } } break; default: return -EINVAL; } d->map[type_id] = new_id; if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) return -ENOMEM; return 0; } static int btf_dedup_prim_types(struct btf_dedup *d) { int i, err; for (i = 1; i <= d->btf->nr_types; i++) { err = btf_dedup_prim_type(d, i); if (err) return err; } return 0; } /* * Check whether type is already mapped into canonical one (could be to itself). */ static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) { return d->map[type_id] <= BTF_MAX_NR_TYPES; } /* * Resolve type ID into its canonical type ID, if any; otherwise return original * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow * STRUCT/UNION link and resolve it into canonical type ID as well. */ static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) { while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) type_id = d->map[type_id]; return type_id; } /* * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original * type ID. */ static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) { __u32 orig_type_id = type_id; if (!btf_is_fwd(d->btf->types[type_id])) return type_id; while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) type_id = d->map[type_id]; if (!btf_is_fwd(d->btf->types[type_id])) return type_id; return orig_type_id; } static inline __u16 btf_fwd_kind(struct btf_type *t) { return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; } /* * Check equivalence of BTF type graph formed by candidate struct/union (we'll * call it "candidate graph" in this description for brevity) to a type graph * formed by (potential) canonical struct/union ("canonical graph" for brevity * here, though keep in mind that not all types in canonical graph are * necessarily canonical representatives themselves, some of them might be * duplicates or its uniqueness might not have been established yet). * Returns: * - >0, if type graphs are equivalent; * - 0, if not equivalent; * - <0, on error. * * Algorithm performs side-by-side DFS traversal of both type graphs and checks * equivalence of BTF types at each step. If at any point BTF types in candidate * and canonical graphs are not compatible structurally, whole graphs are * incompatible. If types are structurally equivalent (i.e., all information * except referenced type IDs is exactly the same), a mapping from `canon_id` to * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). * If a type references other types, then those referenced types are checked * for equivalence recursively. * * During DFS traversal, if we find that for current `canon_id` type we * already have some mapping in hypothetical map, we check for two possible * situations: * - `canon_id` is mapped to exactly the same type as `cand_id`. This will * happen when type graphs have cycles. In this case we assume those two * types are equivalent. * - `canon_id` is mapped to different type. This is contradiction in our * hypothetical mapping, because same graph in canonical graph corresponds * to two different types in candidate graph, which for equivalent type * graphs shouldn't happen. This condition terminates equivalence check * with negative result. * * If type graphs traversal exhausts types to check and find no contradiction, * then type graphs are equivalent. * * When checking types for equivalence, there is one special case: FWD types. * If FWD type resolution is allowed and one of the types (either from canonical * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind * flag) and their names match, hypothetical mapping is updated to point from * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. * * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, * if there are two exactly named (or anonymous) structs/unions that are * compatible structurally, one of which has FWD field, while other is concrete * STRUCT/UNION, but according to C sources they are different structs/unions * that are referencing different types with the same name. This is extremely * unlikely to happen, but btf_dedup API allows to disable FWD resolution if * this logic is causing problems. * * Doing FWD resolution means that both candidate and/or canonical graphs can * consists of portions of the graph that come from multiple compilation units. * This is due to the fact that types within single compilation unit are always * deduplicated and FWDs are already resolved, if referenced struct/union * definiton is available. So, if we had unresolved FWD and found corresponding * STRUCT/UNION, they will be from different compilation units. This * consequently means that when we "link" FWD to corresponding STRUCT/UNION, * type graph will likely have at least two different BTF types that describe * same type (e.g., most probably there will be two different BTF types for the * same 'int' primitive type) and could even have "overlapping" parts of type * graph that describe same subset of types. * * This in turn means that our assumption that each type in canonical graph * must correspond to exactly one type in candidate graph might not hold * anymore and will make it harder to detect contradictions using hypothetical * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION * resolution only in canonical graph. FWDs in candidate graphs are never * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs * that can occur: * - Both types in canonical and candidate graphs are FWDs. If they are * structurally equivalent, then they can either be both resolved to the * same STRUCT/UNION or not resolved at all. In both cases they are * equivalent and there is no need to resolve FWD on candidate side. * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, * so nothing to resolve as well, algorithm will check equivalence anyway. * - Type in canonical graph is FWD, while type in candidate is concrete * STRUCT/UNION. In this case candidate graph comes from single compilation * unit, so there is exactly one BTF type for each unique C type. After * resolving FWD into STRUCT/UNION, there might be more than one BTF type * in canonical graph mapping to single BTF type in candidate graph, but * because hypothetical mapping maps from canonical to candidate types, it's * alright, and we still maintain the property of having single `canon_id` * mapping to single `cand_id` (there could be two different `canon_id` * mapped to the same `cand_id`, but it's not contradictory). * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate * graph is FWD. In this case we are just going to check compatibility of * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from * canonical graph. */ static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, __u32 canon_id) { struct btf_type *cand_type; struct btf_type *canon_type; __u32 hypot_type_id; __u16 cand_kind; __u16 canon_kind; int i, eq; /* if both resolve to the same canonical, they must be equivalent */ if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) return 1; canon_id = resolve_fwd_id(d, canon_id); hypot_type_id = d->hypot_map[canon_id]; if (hypot_type_id <= BTF_MAX_NR_TYPES) return hypot_type_id == cand_id; if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) return -ENOMEM; cand_type = d->btf->types[cand_id]; canon_type = d->btf->types[canon_id]; cand_kind = btf_kind(cand_type); canon_kind = btf_kind(canon_type); if (cand_type->name_off != canon_type->name_off) return 0; /* FWD <--> STRUCT/UNION equivalence check, if enabled */ if (!d->opts.dont_resolve_fwds && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) && cand_kind != canon_kind) { __u16 real_kind; __u16 fwd_kind; if (cand_kind == BTF_KIND_FWD) { real_kind = canon_kind; fwd_kind = btf_fwd_kind(cand_type); } else { real_kind = cand_kind; fwd_kind = btf_fwd_kind(canon_type); } return fwd_kind == real_kind; } if (cand_kind != canon_kind) return 0; switch (cand_kind) { case BTF_KIND_INT: return btf_equal_int(cand_type, canon_type); case BTF_KIND_ENUM: if (d->opts.dont_resolve_fwds) return btf_equal_enum(cand_type, canon_type); else return btf_compat_enum(cand_type, canon_type); case BTF_KIND_FWD: return btf_equal_common(cand_type, canon_type); case BTF_KIND_CONST: case BTF_KIND_VOLATILE: case BTF_KIND_RESTRICT: case BTF_KIND_PTR: case BTF_KIND_TYPEDEF: case BTF_KIND_FUNC: if (cand_type->info != canon_type->info) return 0; return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); case BTF_KIND_ARRAY: { const struct btf_array *cand_arr, *canon_arr; if (!btf_compat_array(cand_type, canon_type)) return 0; cand_arr = btf_array(cand_type); canon_arr = btf_array(canon_type); eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); if (eq <= 0) return eq; return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); } case BTF_KIND_STRUCT: case BTF_KIND_UNION: { const struct btf_member *cand_m, *canon_m; __u16 vlen; if (!btf_shallow_equal_struct(cand_type, canon_type)) return 0; vlen = btf_vlen(cand_type); cand_m = btf_members(cand_type); canon_m = btf_members(canon_type); for (i = 0; i < vlen; i++) { eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); if (eq <= 0) return eq; cand_m++; canon_m++; } return 1; } case BTF_KIND_FUNC_PROTO: { const struct btf_param *cand_p, *canon_p; __u16 vlen; if (!btf_compat_fnproto(cand_type, canon_type)) return 0; eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); if (eq <= 0) return eq; vlen = btf_vlen(cand_type); cand_p = btf_params(cand_type); canon_p = btf_params(canon_type); for (i = 0; i < vlen; i++) { eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); if (eq <= 0) return eq; cand_p++; canon_p++; } return 1; } default: return -EINVAL; } return 0; } /* * Use hypothetical mapping, produced by successful type graph equivalence * check, to augment existing struct/union canonical mapping, where possible. * * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: * it doesn't matter if FWD type was part of canonical graph or candidate one, * we are recording the mapping anyway. As opposed to carefulness required * for struct/union correspondence mapping (described below), for FWD resolution * it's not important, as by the time that FWD type (reference type) will be * deduplicated all structs/unions will be deduped already anyway. * * Recording STRUCT/UNION mapping is purely a performance optimization and is * not required for correctness. It needs to be done carefully to ensure that * struct/union from candidate's type graph is not mapped into corresponding * struct/union from canonical type graph that itself hasn't been resolved into * canonical representative. The only guarantee we have is that canonical * struct/union was determined as canonical and that won't change. But any * types referenced through that struct/union fields could have been not yet * resolved, so in case like that it's too early to establish any kind of * correspondence between structs/unions. * * No canonical correspondence is derived for primitive types (they are already * deduplicated completely already anyway) or reference types (they rely on * stability of struct/union canonical relationship for equivalence checks). */ static void btf_dedup_merge_hypot_map(struct btf_dedup *d) { __u32 cand_type_id, targ_type_id; __u16 t_kind, c_kind; __u32 t_id, c_id; int i; for (i = 0; i < d->hypot_cnt; i++) { cand_type_id = d->hypot_list[i]; targ_type_id = d->hypot_map[cand_type_id]; t_id = resolve_type_id(d, targ_type_id); c_id = resolve_type_id(d, cand_type_id); t_kind = btf_kind(d->btf->types[t_id]); c_kind = btf_kind(d->btf->types[c_id]); /* * Resolve FWD into STRUCT/UNION. * It's ok to resolve FWD into STRUCT/UNION that's not yet * mapped to canonical representative (as opposed to * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because * eventually that struct is going to be mapped and all resolved * FWDs will automatically resolve to correct canonical * representative. This will happen before ref type deduping, * which critically depends on stability of these mapping. This * stability is not a requirement for STRUCT/UNION equivalence * checks, though. */ if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) d->map[c_id] = t_id; else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) d->map[t_id] = c_id; if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && c_kind != BTF_KIND_FWD && is_type_mapped(d, c_id) && !is_type_mapped(d, t_id)) { /* * as a perf optimization, we can map struct/union * that's part of type graph we just verified for * equivalence. We can do that for struct/union that has * canonical representative only, though. */ d->map[t_id] = c_id; } } } /* * Deduplicate struct/union types. * * For each struct/union type its type signature hash is calculated, taking * into account type's name, size, number, order and names of fields, but * ignoring type ID's referenced from fields, because they might not be deduped * completely until after reference types deduplication phase. This type hash * is used to iterate over all potential canonical types, sharing same hash. * For each canonical candidate we check whether type graphs that they form * (through referenced types in fields and so on) are equivalent using algorithm * implemented in `btf_dedup_is_equiv`. If such equivalence is found and * BTF_KIND_FWD resolution is allowed, then hypothetical mapping * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to * potentially map other structs/unions to their canonical representatives, * if such relationship hasn't yet been established. This speeds up algorithm * by eliminating some of the duplicate work. * * If no matching canonical representative was found, struct/union is marked * as canonical for itself and is added into btf_dedup->dedup_table hash map * for further look ups. */ static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) { struct btf_type *cand_type, *t; struct hashmap_entry *hash_entry; /* if we don't find equivalent type, then we are canonical */ __u32 new_id = type_id; __u16 kind; long h; /* already deduped or is in process of deduping (loop detected) */ if (d->map[type_id] <= BTF_MAX_NR_TYPES) return 0; t = d->btf->types[type_id]; kind = btf_kind(t); if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) return 0; h = btf_hash_struct(t); for_each_dedup_cand(d, hash_entry, h) { __u32 cand_id = (__u32)(long)hash_entry->value; int eq; /* * Even though btf_dedup_is_equiv() checks for * btf_shallow_equal_struct() internally when checking two * structs (unions) for equivalence, we need to guard here * from picking matching FWD type as a dedup candidate. * This can happen due to hash collision. In such case just * relying on btf_dedup_is_equiv() would lead to potentially * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because * FWD and compatible STRUCT/UNION are considered equivalent. */ cand_type = d->btf->types[cand_id]; if (!btf_shallow_equal_struct(t, cand_type)) continue; btf_dedup_clear_hypot_map(d); eq = btf_dedup_is_equiv(d, type_id, cand_id); if (eq < 0) return eq; if (!eq) continue; new_id = cand_id; btf_dedup_merge_hypot_map(d); break; } d->map[type_id] = new_id; if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) return -ENOMEM; return 0; } static int btf_dedup_struct_types(struct btf_dedup *d) { int i, err; for (i = 1; i <= d->btf->nr_types; i++) { err = btf_dedup_struct_type(d, i); if (err) return err; } return 0; } /* * Deduplicate reference type. * * Once all primitive and struct/union types got deduplicated, we can easily * deduplicate all other (reference) BTF types. This is done in two steps: * * 1. Resolve all referenced type IDs into their canonical type IDs. This * resolution can be done either immediately for primitive or struct/union types * (because they were deduped in previous two phases) or recursively for * reference types. Recursion will always terminate at either primitive or * struct/union type, at which point we can "unwind" chain of reference types * one by one. There is no danger of encountering cycles because in C type * system the only way to form type cycle is through struct/union, so any chain * of reference types, even those taking part in a type cycle, will inevitably * reach struct/union at some point. * * 2. Once all referenced type IDs are resolved into canonical ones, BTF type * becomes "stable", in the sense that no further deduplication will cause * any changes to it. With that, it's now possible to calculate type's signature * hash (this time taking into account referenced type IDs) and loop over all * potential canonical representatives. If no match was found, current type * will become canonical representative of itself and will be added into * btf_dedup->dedup_table as another possible canonical representative. */ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) { struct hashmap_entry *hash_entry; __u32 new_id = type_id, cand_id; struct btf_type *t, *cand; /* if we don't find equivalent type, then we are representative type */ int ref_type_id; long h; if (d->map[type_id] == BTF_IN_PROGRESS_ID) return -ELOOP; if (d->map[type_id] <= BTF_MAX_NR_TYPES) return resolve_type_id(d, type_id); t = d->btf->types[type_id]; d->map[type_id] = BTF_IN_PROGRESS_ID; switch (btf_kind(t)) { case BTF_KIND_CONST: case BTF_KIND_VOLATILE: case BTF_KIND_RESTRICT: case BTF_KIND_PTR: case BTF_KIND_TYPEDEF: case BTF_KIND_FUNC: ref_type_id = btf_dedup_ref_type(d, t->type); if (ref_type_id < 0) return ref_type_id; t->type = ref_type_id; h = btf_hash_common(t); for_each_dedup_cand(d, hash_entry, h) { cand_id = (__u32)(long)hash_entry->value; cand = d->btf->types[cand_id]; if (btf_equal_common(t, cand)) { new_id = cand_id; break; } } break; case BTF_KIND_ARRAY: { struct btf_array *info = btf_array(t); ref_type_id = btf_dedup_ref_type(d, info->type); if (ref_type_id < 0) return ref_type_id; info->type = ref_type_id; ref_type_id = btf_dedup_ref_type(d, info->index_type); if (ref_type_id < 0) return ref_type_id; info->index_type = ref_type_id; h = btf_hash_array(t); for_each_dedup_cand(d, hash_entry, h) { cand_id = (__u32)(long)hash_entry->value; cand = d->btf->types[cand_id]; if (btf_equal_array(t, cand)) { new_id = cand_id; break; } } break; } case BTF_KIND_FUNC_PROTO: { struct btf_param *param; __u16 vlen; int i; ref_type_id = btf_dedup_ref_type(d, t->type); if (ref_type_id < 0) return ref_type_id; t->type = ref_type_id; vlen = btf_vlen(t); param = btf_params(t); for (i = 0; i < vlen; i++) { ref_type_id = btf_dedup_ref_type(d, param->type); if (ref_type_id < 0) return ref_type_id; param->type = ref_type_id; param++; } h = btf_hash_fnproto(t); for_each_dedup_cand(d, hash_entry, h) { cand_id = (__u32)(long)hash_entry->value; cand = d->btf->types[cand_id]; if (btf_equal_fnproto(t, cand)) { new_id = cand_id; break; } } break; } default: return -EINVAL; } d->map[type_id] = new_id; if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) return -ENOMEM; return new_id; } static int btf_dedup_ref_types(struct btf_dedup *d) { int i, err; for (i = 1; i <= d->btf->nr_types; i++) { err = btf_dedup_ref_type(d, i); if (err < 0) return err; } /* we won't need d->dedup_table anymore */ hashmap__free(d->dedup_table); d->dedup_table = NULL; return 0; } /* * Compact types. * * After we established for each type its corresponding canonical representative * type, we now can eliminate types that are not canonical and leave only * canonical ones layed out sequentially in memory by copying them over * duplicates. During compaction btf_dedup->hypot_map array is reused to store * a map from original type ID to a new compacted type ID, which will be used * during next phase to "fix up" type IDs, referenced from struct/union and * reference types. */ static int btf_dedup_compact_types(struct btf_dedup *d) { struct btf_type **new_types; __u32 next_type_id = 1; char *types_start, *p; int i, len; /* we are going to reuse hypot_map to store compaction remapping */ d->hypot_map[0] = 0; for (i = 1; i <= d->btf->nr_types; i++) d->hypot_map[i] = BTF_UNPROCESSED_ID; types_start = d->btf->nohdr_data + d->btf->hdr->type_off; p = types_start; for (i = 1; i <= d->btf->nr_types; i++) { if (d->map[i] != i) continue; len = btf_type_size(d->btf->types[i]); if (len < 0) return len; memmove(p, d->btf->types[i], len); d->hypot_map[i] = next_type_id; d->btf->types[next_type_id] = (struct btf_type *)p; p += len; next_type_id++; } /* shrink struct btf's internal types index and update btf_header */ d->btf->nr_types = next_type_id - 1; d->btf->types_size = d->btf->nr_types; d->btf->hdr->type_len = p - types_start; new_types = realloc(d->btf->types, (1 + d->btf->nr_types) * sizeof(struct btf_type *)); if (!new_types) return -ENOMEM; d->btf->types = new_types; /* make sure string section follows type information without gaps */ d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data; memmove(p, d->btf->strings, d->btf->hdr->str_len); d->btf->strings = p; p += d->btf->hdr->str_len; d->btf->data_size = p - (char *)d->btf->data; return 0; } /* * Figure out final (deduplicated and compacted) type ID for provided original * `type_id` by first resolving it into corresponding canonical type ID and * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, * which is populated during compaction phase. */ static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) { __u32 resolved_type_id, new_type_id; resolved_type_id = resolve_type_id(d, type_id); new_type_id = d->hypot_map[resolved_type_id]; if (new_type_id > BTF_MAX_NR_TYPES) return -EINVAL; return new_type_id; } /* * Remap referenced type IDs into deduped type IDs. * * After BTF types are deduplicated and compacted, their final type IDs may * differ from original ones. The map from original to a corresponding * deduped type ID is stored in btf_dedup->hypot_map and is populated during * compaction phase. During remapping phase we are rewriting all type IDs * referenced from any BTF type (e.g., struct fields, func proto args, etc) to * their final deduped type IDs. */ static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) { struct btf_type *t = d->btf->types[type_id]; int i, r; switch (btf_kind(t)) { case BTF_KIND_INT: case BTF_KIND_ENUM: break; case BTF_KIND_FWD: case BTF_KIND_CONST: case BTF_KIND_VOLATILE: case BTF_KIND_RESTRICT: case BTF_KIND_PTR: case BTF_KIND_TYPEDEF: case BTF_KIND_FUNC: case BTF_KIND_VAR: r = btf_dedup_remap_type_id(d, t->type); if (r < 0) return r; t->type = r; break; case BTF_KIND_ARRAY: { struct btf_array *arr_info = btf_array(t); r = btf_dedup_remap_type_id(d, arr_info->type); if (r < 0) return r; arr_info->type = r; r = btf_dedup_remap_type_id(d, arr_info->index_type); if (r < 0) return r; arr_info->index_type = r; break; } case BTF_KIND_STRUCT: case BTF_KIND_UNION: { struct btf_member *member = btf_members(t); __u16 vlen = btf_vlen(t); for (i = 0; i < vlen; i++) { r = btf_dedup_remap_type_id(d, member->type); if (r < 0) return r; member->type = r; member++; } break; } case BTF_KIND_FUNC_PROTO: { struct btf_param *param = btf_params(t); __u16 vlen = btf_vlen(t); r = btf_dedup_remap_type_id(d, t->type); if (r < 0) return r; t->type = r; for (i = 0; i < vlen; i++) { r = btf_dedup_remap_type_id(d, param->type); if (r < 0) return r; param->type = r; param++; } break; } case BTF_KIND_DATASEC: { struct btf_var_secinfo *var = btf_var_secinfos(t); __u16 vlen = btf_vlen(t); for (i = 0; i < vlen; i++) { r = btf_dedup_remap_type_id(d, var->type); if (r < 0) return r; var->type = r; var++; } break; } default: return -EINVAL; } return 0; } static int btf_dedup_remap_types(struct btf_dedup *d) { int i, r; for (i = 1; i <= d->btf->nr_types; i++) { r = btf_dedup_remap_type(d, i); if (r < 0) return r; } return 0; } |