// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include "i915_drv.h"
#include "intel_gt.h"
#include "intel_gt_pm.h"
#include "intel_uncore.h"
void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
{
gt->i915 = i915;
gt->uncore = &i915->uncore;
spin_lock_init(>->irq_lock);
mutex_init(>->tlb_invalidate_lock);
INIT_LIST_HEAD(>->closed_vma);
spin_lock_init(>->closed_lock);
intel_gt_init_hangcheck(gt);
intel_gt_init_reset(gt);
intel_gt_pm_init_early(gt);
intel_uc_init_early(>->uc);
}
void intel_gt_init_hw(struct drm_i915_private *i915)
{
i915->gt.ggtt = &i915->ggtt;
}
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
intel_uncore_rmw(uncore, reg, 0, set);
}
static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
intel_uncore_rmw(uncore, reg, clr, 0);
}
static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
intel_uncore_rmw(uncore, reg, 0, 0);
}
static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
{
GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
GEN6_RING_FAULT_REG_POSTING_READ(engine);
}
void
intel_gt_clear_error_registers(struct intel_gt *gt,
intel_engine_mask_t engine_mask)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
u32 eir;
if (!IS_GEN(i915, 2))
clear_register(uncore, PGTBL_ER);
if (INTEL_GEN(i915) < 4)
clear_register(uncore, IPEIR(RENDER_RING_BASE));
else
clear_register(uncore, IPEIR_I965);
clear_register(uncore, EIR);
eir = intel_uncore_read(uncore, EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
rmw_set(uncore, EMR, eir);
intel_uncore_write(uncore, GEN2_IIR,
I915_MASTER_ERROR_INTERRUPT);
}
if (INTEL_GEN(i915) >= 12) {
rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
} else if (INTEL_GEN(i915) >= 8) {
rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
} else if (INTEL_GEN(i915) >= 6) {
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine_masked(engine, i915, engine_mask, id)
gen8_clear_engine_error_register(engine);
}
}
static void gen6_check_faults(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 fault;
for_each_engine(engine, gt->i915, id) {
fault = GEN6_RING_FAULT_REG_READ(engine);
if (fault & RING_FAULT_VALID) {
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08lx\n"
"\tAddress space: %s\n"
"\tSource ID: %d\n"
"\tType: %d\n",
fault & PAGE_MASK,
fault & RING_FAULT_GTTSEL_MASK ?
"GGTT" : "PPGTT",
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
}
static void gen8_check_faults(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
u32 fault;
if (INTEL_GEN(gt->i915) >= 12) {
fault_reg = GEN12_RING_FAULT_REG;
fault_data0_reg = GEN12_FAULT_TLB_DATA0;
fault_data1_reg = GEN12_FAULT_TLB_DATA1;
} else {
fault_reg = GEN8_RING_FAULT_REG;
fault_data0_reg = GEN8_FAULT_TLB_DATA0;
fault_data1_reg = GEN8_FAULT_TLB_DATA1;
}
fault = intel_uncore_read(uncore, fault_reg);
if (fault & RING_FAULT_VALID) {
u32 fault_data0, fault_data1;
u64 fault_addr;
fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
((u64)fault_data0 << 12);
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08x_%08x\n"
"\tAddress space: %s\n"
"\tEngine ID: %d\n"
"\tSource ID: %d\n"
"\tType: %d\n",
upper_32_bits(fault_addr),
lower_32_bits(fault_addr),
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
GEN8_RING_FAULT_ENGINE_ID(fault),
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
/* From GEN8 onwards we only have one 'All Engine Fault Register' */
if (INTEL_GEN(i915) >= 8)
gen8_check_faults(gt);
else if (INTEL_GEN(i915) >= 6)
gen6_check_faults(gt);
else
return;
intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
intel_wakeref_t wakeref;
/*
* No actual flushing is required for the GTT write domain for reads
* from the GTT domain. Writes to it "immediately" go to main memory
* as far as we know, so there's no chipset flush. It also doesn't
* land in the GPU render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*
* We also have to wait a bit for the writes to land from the GTT.
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
* timing. This issue has only been observed when switching quickly
* between GTT writes and CPU reads from inside the kernel on recent hw,
* and it appears to only affect discrete GTT blocks (i.e. on LLC
* system agents we cannot reproduce this behaviour, until Cannonlake
* that was!).
*/
wmb();
if (INTEL_INFO(i915)->has_coherent_ggtt)
return;
intel_gt_chipset_flush(gt);
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
struct intel_uncore *uncore = gt->uncore;
spin_lock_irq(&uncore->lock);
intel_uncore_posting_read_fw(uncore,
RING_HEAD(RENDER_RING_BASE));
spin_unlock_irq(&uncore->lock);
}
}
void intel_gt_chipset_flush(struct intel_gt *gt)
{
wmb();
if (INTEL_GEN(gt->i915) < 6)
intel_gtt_chipset_flush();
}
int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
{
struct drm_i915_private *i915 = gt->i915;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
obj = i915_gem_object_create_stolen(i915, size);
if (!obj)
obj = i915_gem_object_create_internal(i915, size);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate scratch page\n");
return PTR_ERR(obj);
}
vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (ret)
goto err_unref;
gt->scratch = i915_vma_make_unshrinkable(vma);
return 0;
err_unref:
i915_gem_object_put(obj);
return ret;
}
void intel_gt_fini_scratch(struct intel_gt *gt)
{
i915_vma_unpin_and_release(>->scratch, 0);
}
void intel_gt_driver_late_release(struct intel_gt *gt)
{
intel_uc_driver_late_release(>->uc);
intel_gt_fini_reset(gt);
}
struct reg_and_bit {
i915_reg_t reg;
u32 bit;
};
static struct reg_and_bit
get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
const i915_reg_t *regs, const unsigned int num)
{
const unsigned int class = engine->class;
struct reg_and_bit rb = { };
if (WARN_ON_ONCE(class >= num || !regs[class].reg))
return rb;
rb.reg = regs[class];
if (gen8 && class == VIDEO_DECODE_CLASS)
rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
else
rb.bit = engine->instance;
rb.bit = BIT(rb.bit);
return rb;
}
void intel_gt_invalidate_tlbs(struct intel_gt *gt)
{
static const i915_reg_t gen8_regs[] = {
[RENDER_CLASS] = GEN8_RTCR,
[VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */
[VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR,
[COPY_ENGINE_CLASS] = GEN8_BTCR,
};
static const i915_reg_t gen12_regs[] = {
[RENDER_CLASS] = GEN12_GFX_TLB_INV_CR,
[VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR,
[VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR,
[COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR,
};
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
struct intel_engine_cs *engine;
enum intel_engine_id id;
const i915_reg_t *regs;
unsigned int num = 0;
if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
return;
if (INTEL_GEN(i915) == 12) {
regs = gen12_regs;
num = ARRAY_SIZE(gen12_regs);
} else if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) <= 11) {
regs = gen8_regs;
num = ARRAY_SIZE(gen8_regs);
} else if (INTEL_GEN(i915) < 8) {
return;
}
if (WARN_ONCE(!num, "Platform does not implement TLB invalidation!"))
return;
GEM_TRACE("\n");
assert_rpm_wakelock_held(&i915->runtime_pm);
mutex_lock(>->tlb_invalidate_lock);
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */
for_each_engine(engine, gt, id) {
struct reg_and_bit rb;
rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
if (!i915_mmio_reg_offset(rb.reg))
continue;
if (INTEL_GEN(i915) == 12 && (engine->class == VIDEO_DECODE_CLASS ||
engine->class == VIDEO_ENHANCEMENT_CLASS))
rb.bit = _MASKED_BIT_ENABLE(rb.bit);
intel_uncore_write_fw(uncore, rb.reg, rb.bit);
}
spin_unlock_irq(&uncore->lock);
for_each_engine(engine, gt, id) {
/*
* HW architecture suggest typical invalidation time at 40us,
* with pessimistic cases up to 100us and a recommendation to
* cap at 1ms. We go a bit higher just in case.
*/
const unsigned int timeout_us = 100;
const unsigned int timeout_ms = 4;
struct reg_and_bit rb;
rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
if (!i915_mmio_reg_offset(rb.reg))
continue;
if (__intel_wait_for_register_fw(uncore,
rb.reg, rb.bit, 0,
timeout_us, timeout_ms,
NULL))
DRM_ERROR_RATELIMITED("%s TLB invalidation did not complete in %ums!\n",
engine->name, timeout_ms);
}
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
mutex_unlock(>->tlb_invalidate_lock);
}