Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> * * membarrier system call */ #include "sched.h" /* * Bitmask made from a "or" of all commands within enum membarrier_cmd, * except MEMBARRIER_CMD_QUERY. */ #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \ (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE) #else #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0 #endif #define MEMBARRIER_CMD_BITMASK \ (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \ | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \ | MEMBARRIER_CMD_PRIVATE_EXPEDITED \ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \ | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK) static void ipi_mb(void *info) { smp_mb(); /* IPIs should be serializing but paranoid. */ } static void ipi_sync_core(void *info) { /* * The smp_mb() in membarrier after all the IPIs is supposed to * ensure that memory on remote CPUs that occur before the IPI * become visible to membarrier()'s caller -- see scenario B in * the big comment at the top of this file. * * A sync_core() would provide this guarantee, but * sync_core_before_usermode() might end up being deferred until * after membarrier()'s smp_mb(). */ smp_mb(); /* IPIs should be serializing but paranoid. */ sync_core_before_usermode(); } static void ipi_sync_rq_state(void *info) { struct mm_struct *mm = (struct mm_struct *) info; if (current->mm != mm) return; this_cpu_write(runqueues.membarrier_state, atomic_read(&mm->membarrier_state)); /* * Issue a memory barrier after setting * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to * guarantee that no memory access following registration is reordered * before registration. */ smp_mb(); } void membarrier_exec_mmap(struct mm_struct *mm) { /* * Issue a memory barrier before clearing membarrier_state to * guarantee that no memory access prior to exec is reordered after * clearing this state. */ smp_mb(); atomic_set(&mm->membarrier_state, 0); /* * Keep the runqueue membarrier_state in sync with this mm * membarrier_state. */ this_cpu_write(runqueues.membarrier_state, 0); } static int membarrier_global_expedited(void) { int cpu; cpumask_var_t tmpmask; if (num_online_cpus() == 1) return 0; /* * Matches memory barriers around rq->curr modification in * scheduler. */ smp_mb(); /* system call entry is not a mb. */ if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; cpus_read_lock(); rcu_read_lock(); for_each_online_cpu(cpu) { struct task_struct *p; /* * Skipping the current CPU is OK even through we can be * migrated at any point. The current CPU, at the point * where we read raw_smp_processor_id(), is ensured to * be in program order with respect to the caller * thread. Therefore, we can skip this CPU from the * iteration. */ if (cpu == raw_smp_processor_id()) continue; if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) & MEMBARRIER_STATE_GLOBAL_EXPEDITED)) continue; /* * Skip the CPU if it runs a kernel thread. The scheduler * leaves the prior task mm in place as an optimization when * scheduling a kthread. */ p = rcu_dereference(cpu_rq(cpu)->curr); if (p->flags & PF_KTHREAD) continue; __cpumask_set_cpu(cpu, tmpmask); } rcu_read_unlock(); preempt_disable(); smp_call_function_many(tmpmask, ipi_mb, NULL, 1); preempt_enable(); free_cpumask_var(tmpmask); cpus_read_unlock(); /* * Memory barrier on the caller thread _after_ we finished * waiting for the last IPI. Matches memory barriers around * rq->curr modification in scheduler. */ smp_mb(); /* exit from system call is not a mb */ return 0; } static int membarrier_private_expedited(int flags) { int cpu; cpumask_var_t tmpmask; struct mm_struct *mm = current->mm; smp_call_func_t ipi_func = ipi_mb; if (flags & MEMBARRIER_FLAG_SYNC_CORE) { if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) return -EINVAL; if (!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY)) return -EPERM; ipi_func = ipi_sync_core; } else { if (!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY)) return -EPERM; } if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) return 0; /* * Matches memory barriers around rq->curr modification in * scheduler. */ smp_mb(); /* system call entry is not a mb. */ if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; cpus_read_lock(); rcu_read_lock(); for_each_online_cpu(cpu) { struct task_struct *p; /* * Skipping the current CPU is OK even through we can be * migrated at any point. The current CPU, at the point * where we read raw_smp_processor_id(), is ensured to * be in program order with respect to the caller * thread. Therefore, we can skip this CPU from the * iteration. */ if (cpu == raw_smp_processor_id()) continue; p = rcu_dereference(cpu_rq(cpu)->curr); if (p && p->mm == mm) __cpumask_set_cpu(cpu, tmpmask); } rcu_read_unlock(); preempt_disable(); smp_call_function_many(tmpmask, ipi_func, NULL, 1); preempt_enable(); free_cpumask_var(tmpmask); cpus_read_unlock(); /* * Memory barrier on the caller thread _after_ we finished * waiting for the last IPI. Matches memory barriers around * rq->curr modification in scheduler. */ smp_mb(); /* exit from system call is not a mb */ return 0; } static int sync_runqueues_membarrier_state(struct mm_struct *mm) { int membarrier_state = atomic_read(&mm->membarrier_state); cpumask_var_t tmpmask; int cpu; if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) { this_cpu_write(runqueues.membarrier_state, membarrier_state); /* * For single mm user, we can simply issue a memory barrier * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the * mm and in the current runqueue to guarantee that no memory * access following registration is reordered before * registration. */ smp_mb(); return 0; } if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; /* * For mm with multiple users, we need to ensure all future * scheduler executions will observe @mm's new membarrier * state. */ synchronize_rcu(); /* * For each cpu runqueue, if the task's mm match @mm, ensure that all * @mm's membarrier state set bits are also set in in the runqueue's * membarrier state. This ensures that a runqueue scheduling * between threads which are users of @mm has its membarrier state * updated. */ cpus_read_lock(); rcu_read_lock(); for_each_online_cpu(cpu) { struct rq *rq = cpu_rq(cpu); struct task_struct *p; p = rcu_dereference(rq->curr); if (p && p->mm == mm) __cpumask_set_cpu(cpu, tmpmask); } rcu_read_unlock(); on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true); free_cpumask_var(tmpmask); cpus_read_unlock(); return 0; } static int membarrier_register_global_expedited(void) { struct task_struct *p = current; struct mm_struct *mm = p->mm; int ret; if (atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY) return 0; atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state); ret = sync_runqueues_membarrier_state(mm); if (ret) return ret; atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY, &mm->membarrier_state); return 0; } static int membarrier_register_private_expedited(int flags) { struct task_struct *p = current; struct mm_struct *mm = p->mm; int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY, set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED, ret; if (flags & MEMBARRIER_FLAG_SYNC_CORE) { if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) return -EINVAL; ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY; } /* * We need to consider threads belonging to different thread * groups, which use the same mm. (CLONE_VM but not * CLONE_THREAD). */ if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state) return 0; if (flags & MEMBARRIER_FLAG_SYNC_CORE) set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE; atomic_or(set_state, &mm->membarrier_state); ret = sync_runqueues_membarrier_state(mm); if (ret) return ret; atomic_or(ready_state, &mm->membarrier_state); return 0; } /** * sys_membarrier - issue memory barriers on a set of threads * @cmd: Takes command values defined in enum membarrier_cmd. * @flags: Currently needs to be 0. For future extensions. * * If this system call is not implemented, -ENOSYS is returned. If the * command specified does not exist, not available on the running * kernel, or if the command argument is invalid, this system call * returns -EINVAL. For a given command, with flags argument set to 0, * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to * always return the same value until reboot. In addition, it can return * -ENOMEM if there is not enough memory available to perform the system * call. * * All memory accesses performed in program order from each targeted thread * is guaranteed to be ordered with respect to sys_membarrier(). If we use * the semantic "barrier()" to represent a compiler barrier forcing memory * accesses to be performed in program order across the barrier, and * smp_mb() to represent explicit memory barriers forcing full memory * ordering across the barrier, we have the following ordering table for * each pair of barrier(), sys_membarrier() and smp_mb(): * * The pair ordering is detailed as (O: ordered, X: not ordered): * * barrier() smp_mb() sys_membarrier() * barrier() X X O * smp_mb() X O O * sys_membarrier() O O O */ SYSCALL_DEFINE2(membarrier, int, cmd, int, flags) { if (unlikely(flags)) return -EINVAL; switch (cmd) { case MEMBARRIER_CMD_QUERY: { int cmd_mask = MEMBARRIER_CMD_BITMASK; if (tick_nohz_full_enabled()) cmd_mask &= ~MEMBARRIER_CMD_GLOBAL; return cmd_mask; } case MEMBARRIER_CMD_GLOBAL: /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */ if (tick_nohz_full_enabled()) return -EINVAL; if (num_online_cpus() > 1) synchronize_rcu(); return 0; case MEMBARRIER_CMD_GLOBAL_EXPEDITED: return membarrier_global_expedited(); case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED: return membarrier_register_global_expedited(); case MEMBARRIER_CMD_PRIVATE_EXPEDITED: return membarrier_private_expedited(0); case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED: return membarrier_register_private_expedited(0); case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE: return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE); case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE: return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE); default: return -EINVAL; } } |