Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | // SPDX-License-Identifier: GPL-2.0-only /* * AMD CPU Microcode Update Driver for Linux * * This driver allows to upgrade microcode on F10h AMD * CPUs and later. * * Copyright (C) 2008-2011 Advanced Micro Devices Inc. * 2013-2018 Borislav Petkov <bp@alien8.de> * * Author: Peter Oruba <peter.oruba@amd.com> * * Based on work by: * Tigran Aivazian <aivazian.tigran@gmail.com> * * early loader: * Copyright (C) 2013 Advanced Micro Devices, Inc. * * Author: Jacob Shin <jacob.shin@amd.com> * Fixes: Borislav Petkov <bp@suse.de> */ #define pr_fmt(fmt) "microcode: " fmt #include <linux/earlycpio.h> #include <linux/firmware.h> #include <linux/uaccess.h> #include <linux/vmalloc.h> #include <linux/initrd.h> #include <linux/kernel.h> #include <linux/pci.h> #include <asm/microcode_amd.h> #include <asm/microcode.h> #include <asm/processor.h> #include <asm/setup.h> #include <asm/cpu.h> #include <asm/msr.h> static struct equiv_cpu_table { unsigned int num_entries; struct equiv_cpu_entry *entry; } equiv_table; /* * This points to the current valid container of microcode patches which we will * save from the initrd/builtin before jettisoning its contents. @mc is the * microcode patch we found to match. */ struct cont_desc { struct microcode_amd *mc; u32 cpuid_1_eax; u32 psize; u8 *data; size_t size; }; static u32 ucode_new_rev; /* One blob per node. */ static u8 amd_ucode_patch[MAX_NUMNODES][PATCH_MAX_SIZE]; /* * Microcode patch container file is prepended to the initrd in cpio * format. See Documentation/x86/microcode.rst */ static const char ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) { unsigned int i; if (!et || !et->num_entries) return 0; for (i = 0; i < et->num_entries; i++) { struct equiv_cpu_entry *e = &et->entry[i]; if (sig == e->installed_cpu) return e->equiv_cpu; e++; } return 0; } /* * Check whether there is a valid microcode container file at the beginning * of @buf of size @buf_size. Set @early to use this function in the early path. */ static bool verify_container(const u8 *buf, size_t buf_size, bool early) { u32 cont_magic; if (buf_size <= CONTAINER_HDR_SZ) { if (!early) pr_debug("Truncated microcode container header.\n"); return false; } cont_magic = *(const u32 *)buf; if (cont_magic != UCODE_MAGIC) { if (!early) pr_debug("Invalid magic value (0x%08x).\n", cont_magic); return false; } return true; } /* * Check whether there is a valid, non-truncated CPU equivalence table at the * beginning of @buf of size @buf_size. Set @early to use this function in the * early path. */ static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early) { const u32 *hdr = (const u32 *)buf; u32 cont_type, equiv_tbl_len; if (!verify_container(buf, buf_size, early)) return false; cont_type = hdr[1]; if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { if (!early) pr_debug("Wrong microcode container equivalence table type: %u.\n", cont_type); return false; } buf_size -= CONTAINER_HDR_SZ; equiv_tbl_len = hdr[2]; if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || buf_size < equiv_tbl_len) { if (!early) pr_debug("Truncated equivalence table.\n"); return false; } return true; } /* * Check whether there is a valid, non-truncated microcode patch section at the * beginning of @buf of size @buf_size. Set @early to use this function in the * early path. * * On success, @sh_psize returns the patch size according to the section header, * to the caller. */ static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early) { u32 p_type, p_size; const u32 *hdr; if (buf_size < SECTION_HDR_SIZE) { if (!early) pr_debug("Truncated patch section.\n"); return false; } hdr = (const u32 *)buf; p_type = hdr[0]; p_size = hdr[1]; if (p_type != UCODE_UCODE_TYPE) { if (!early) pr_debug("Invalid type field (0x%x) in container file section header.\n", p_type); return false; } if (p_size < sizeof(struct microcode_header_amd)) { if (!early) pr_debug("Patch of size %u too short.\n", p_size); return false; } *sh_psize = p_size; return true; } /* * Check whether the passed remaining file @buf_size is large enough to contain * a patch of the indicated @sh_psize (and also whether this size does not * exceed the per-family maximum). @sh_psize is the size read from the section * header. */ static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size) { u32 max_size; if (family >= 0x15) return min_t(u32, sh_psize, buf_size); #define F1XH_MPB_MAX_SIZE 2048 #define F14H_MPB_MAX_SIZE 1824 switch (family) { case 0x10 ... 0x12: max_size = F1XH_MPB_MAX_SIZE; break; case 0x14: max_size = F14H_MPB_MAX_SIZE; break; default: WARN(1, "%s: WTF family: 0x%x\n", __func__, family); return 0; break; } if (sh_psize > min_t(u32, buf_size, max_size)) return 0; return sh_psize; } /* * Verify the patch in @buf. * * Returns: * negative: on error * positive: patch is not for this family, skip it * 0: success */ static int verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early) { struct microcode_header_amd *mc_hdr; unsigned int ret; u32 sh_psize; u16 proc_id; u8 patch_fam; if (!__verify_patch_section(buf, buf_size, &sh_psize, early)) return -1; /* * The section header length is not included in this indicated size * but is present in the leftover file length so we need to subtract * it before passing this value to the function below. */ buf_size -= SECTION_HDR_SIZE; /* * Check if the remaining buffer is big enough to contain a patch of * size sh_psize, as the section claims. */ if (buf_size < sh_psize) { if (!early) pr_debug("Patch of size %u truncated.\n", sh_psize); return -1; } ret = __verify_patch_size(family, sh_psize, buf_size); if (!ret) { if (!early) pr_debug("Per-family patch size mismatch.\n"); return -1; } *patch_size = sh_psize; mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { if (!early) pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); return -1; } proc_id = mc_hdr->processor_rev_id; patch_fam = 0xf + (proc_id >> 12); if (patch_fam != family) return 1; return 0; } /* * This scans the ucode blob for the proper container as we can have multiple * containers glued together. Returns the equivalence ID from the equivalence * table or 0 if none found. * Returns the amount of bytes consumed while scanning. @desc contains all the * data we're going to use in later stages of the application. */ static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) { struct equiv_cpu_table table; size_t orig_size = size; u32 *hdr = (u32 *)ucode; u16 eq_id; u8 *buf; if (!verify_equivalence_table(ucode, size, true)) return 0; buf = ucode; table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); /* * Find the equivalence ID of our CPU in this table. Even if this table * doesn't contain a patch for the CPU, scan through the whole container * so that it can be skipped in case there are other containers appended. */ eq_id = find_equiv_id(&table, desc->cpuid_1_eax); buf += hdr[2] + CONTAINER_HDR_SZ; size -= hdr[2] + CONTAINER_HDR_SZ; /* * Scan through the rest of the container to find where it ends. We do * some basic sanity-checking too. */ while (size > 0) { struct microcode_amd *mc; u32 patch_size; int ret; ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true); if (ret < 0) { /* * Patch verification failed, skip to the next * container, if there's one: */ goto out; } else if (ret > 0) { goto skip; } mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); if (eq_id == mc->hdr.processor_rev_id) { desc->psize = patch_size; desc->mc = mc; } skip: /* Skip patch section header too: */ buf += patch_size + SECTION_HDR_SIZE; size -= patch_size + SECTION_HDR_SIZE; } /* * If we have found a patch (desc->mc), it means we're looking at the * container which has a patch for this CPU so return 0 to mean, @ucode * already points to the proper container. Otherwise, we return the size * we scanned so that we can advance to the next container in the * buffer. */ if (desc->mc) { desc->data = ucode; desc->size = orig_size - size; return 0; } out: return orig_size - size; } /* * Scan the ucode blob for the proper container as we can have multiple * containers glued together. */ static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) { while (size) { size_t s = parse_container(ucode, size, desc); if (!s) return; /* catch wraparound */ if (size >= s) { ucode += s; size -= s; } else { return; } } } static int __apply_microcode_amd(struct microcode_amd *mc) { u32 rev, dummy; native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code); /* verify patch application was successful */ native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); if (rev != mc->hdr.patch_id) return -1; return 0; } /* * Early load occurs before we can vmalloc(). So we look for the microcode * patch container file in initrd, traverse equivalent cpu table, look for a * matching microcode patch, and update, all in initrd memory in place. * When vmalloc() is available for use later -- on 64-bit during first AP load, * and on 32-bit during save_microcode_in_initrd_amd() -- we can call * load_microcode_amd() to save equivalent cpu table and microcode patches in * kernel heap memory. * * Returns true if container found (sets @desc), false otherwise. */ static bool apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch) { struct cont_desc desc = { 0 }; u8 (*patch)[PATCH_MAX_SIZE]; struct microcode_amd *mc; u32 rev, dummy, *new_rev; bool ret = false; #ifdef CONFIG_X86_32 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch); #else new_rev = &ucode_new_rev; patch = &amd_ucode_patch[0]; #endif desc.cpuid_1_eax = cpuid_1_eax; scan_containers(ucode, size, &desc); mc = desc.mc; if (!mc) return ret; native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); /* * Allow application of the same revision to pick up SMT-specific * changes even if the revision of the other SMT thread is already * up-to-date. */ if (rev > mc->hdr.patch_id) return ret; if (!__apply_microcode_amd(mc)) { *new_rev = mc->hdr.patch_id; ret = true; if (save_patch) memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE)); } return ret; } static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family) { #ifdef CONFIG_X86_64 char fw_name[36] = "amd-ucode/microcode_amd.bin"; if (family >= 0x15) snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", family); return get_builtin_firmware(cp, fw_name); #else return false; #endif } static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret) { struct ucode_cpu_info *uci; struct cpio_data cp; const char *path; bool use_pa; if (IS_ENABLED(CONFIG_X86_32)) { uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info); path = (const char *)__pa_nodebug(ucode_path); use_pa = true; } else { uci = ucode_cpu_info; path = ucode_path; use_pa = false; } if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax))) cp = find_microcode_in_initrd(path, use_pa); /* Needed in load_microcode_amd() */ uci->cpu_sig.sig = cpuid_1_eax; *ret = cp; } void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax) { struct cpio_data cp = { }; __load_ucode_amd(cpuid_1_eax, &cp); if (!(cp.data && cp.size)) return; apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true); } void load_ucode_amd_ap(unsigned int cpuid_1_eax) { struct microcode_amd *mc; struct cpio_data cp; u32 *new_rev, rev, dummy; if (IS_ENABLED(CONFIG_X86_32)) { mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch); new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); } else { mc = (struct microcode_amd *)amd_ucode_patch; new_rev = &ucode_new_rev; } native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); /* * Check whether a new patch has been saved already. Also, allow application of * the same revision in order to pick up SMT-thread-specific configuration even * if the sibling SMT thread already has an up-to-date revision. */ if (*new_rev && rev <= mc->hdr.patch_id) { if (!__apply_microcode_amd(mc)) { *new_rev = mc->hdr.patch_id; return; } } __load_ucode_amd(cpuid_1_eax, &cp); if (!(cp.data && cp.size)) return; apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false); } static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size); int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax) { struct cont_desc desc = { 0 }; enum ucode_state ret; struct cpio_data cp; cp = find_microcode_in_initrd(ucode_path, false); if (!(cp.data && cp.size)) return -EINVAL; desc.cpuid_1_eax = cpuid_1_eax; scan_containers(cp.data, cp.size, &desc); if (!desc.mc) return -EINVAL; ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); if (ret > UCODE_UPDATED) return -EINVAL; return 0; } void reload_ucode_amd(unsigned int cpu) { u32 rev, dummy; struct microcode_amd *mc; mc = (struct microcode_amd *)amd_ucode_patch[cpu_to_node(cpu)]; rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); if (rev < mc->hdr.patch_id) { if (!__apply_microcode_amd(mc)) { ucode_new_rev = mc->hdr.patch_id; pr_info("reload patch_level=0x%08x\n", ucode_new_rev); } } } static u16 __find_equiv_id(unsigned int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; return find_equiv_id(&equiv_table, uci->cpu_sig.sig); } /* * a small, trivial cache of per-family ucode patches */ static struct ucode_patch *cache_find_patch(u16 equiv_cpu) { struct ucode_patch *p; list_for_each_entry(p, µcode_cache, plist) if (p->equiv_cpu == equiv_cpu) return p; return NULL; } static void update_cache(struct ucode_patch *new_patch) { struct ucode_patch *p; list_for_each_entry(p, µcode_cache, plist) { if (p->equiv_cpu == new_patch->equiv_cpu) { if (p->patch_id >= new_patch->patch_id) { /* we already have the latest patch */ kfree(new_patch->data); kfree(new_patch); return; } list_replace(&p->plist, &new_patch->plist); kfree(p->data); kfree(p); return; } } /* no patch found, add it */ list_add_tail(&new_patch->plist, µcode_cache); } static void free_cache(void) { struct ucode_patch *p, *tmp; list_for_each_entry_safe(p, tmp, µcode_cache, plist) { __list_del(p->plist.prev, p->plist.next); kfree(p->data); kfree(p); } } static struct ucode_patch *find_patch(unsigned int cpu) { u16 equiv_id; equiv_id = __find_equiv_id(cpu); if (!equiv_id) return NULL; return cache_find_patch(equiv_id); } static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) { struct cpuinfo_x86 *c = &cpu_data(cpu); struct ucode_cpu_info *uci = ucode_cpu_info + cpu; struct ucode_patch *p; csig->sig = cpuid_eax(0x00000001); csig->rev = c->microcode; /* * a patch could have been loaded early, set uci->mc so that * mc_bp_resume() can call apply_microcode() */ p = find_patch(cpu); if (p && (p->patch_id == csig->rev)) uci->mc = p->data; pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev); return 0; } static enum ucode_state apply_microcode_amd(int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); struct microcode_amd *mc_amd; struct ucode_cpu_info *uci; struct ucode_patch *p; enum ucode_state ret; u32 rev, dummy; BUG_ON(raw_smp_processor_id() != cpu); uci = ucode_cpu_info + cpu; p = find_patch(cpu); if (!p) return UCODE_NFOUND; mc_amd = p->data; uci->mc = p->data; rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); /* need to apply patch? */ if (rev >= mc_amd->hdr.patch_id) { ret = UCODE_OK; goto out; } if (__apply_microcode_amd(mc_amd)) { pr_err("CPU%d: update failed for patch_level=0x%08x\n", cpu, mc_amd->hdr.patch_id); return UCODE_ERROR; } rev = mc_amd->hdr.patch_id; ret = UCODE_UPDATED; pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev); out: uci->cpu_sig.rev = rev; c->microcode = rev; /* Update boot_cpu_data's revision too, if we're on the BSP: */ if (c->cpu_index == boot_cpu_data.cpu_index) boot_cpu_data.microcode = rev; return ret; } static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) { u32 equiv_tbl_len; const u32 *hdr; if (!verify_equivalence_table(buf, buf_size, false)) return 0; hdr = (const u32 *)buf; equiv_tbl_len = hdr[2]; equiv_table.entry = vmalloc(equiv_tbl_len); if (!equiv_table.entry) { pr_err("failed to allocate equivalent CPU table\n"); return 0; } memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); /* add header length */ return equiv_tbl_len + CONTAINER_HDR_SZ; } static void free_equiv_cpu_table(void) { vfree(equiv_table.entry); memset(&equiv_table, 0, sizeof(equiv_table)); } static void cleanup(void) { free_equiv_cpu_table(); free_cache(); } /* * Return a non-negative value even if some of the checks failed so that * we can skip over the next patch. If we return a negative value, we * signal a grave error like a memory allocation has failed and the * driver cannot continue functioning normally. In such cases, we tear * down everything we've used up so far and exit. */ static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, unsigned int *patch_size) { struct microcode_header_amd *mc_hdr; struct ucode_patch *patch; u16 proc_id; int ret; ret = verify_patch(family, fw, leftover, patch_size, false); if (ret) return ret; patch = kzalloc(sizeof(*patch), GFP_KERNEL); if (!patch) { pr_err("Patch allocation failure.\n"); return -EINVAL; } patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); if (!patch->data) { pr_err("Patch data allocation failure.\n"); kfree(patch); return -EINVAL; } patch->size = *patch_size; mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); proc_id = mc_hdr->processor_rev_id; INIT_LIST_HEAD(&patch->plist); patch->patch_id = mc_hdr->patch_id; patch->equiv_cpu = proc_id; pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n", __func__, patch->patch_id, proc_id); /* ... and add to cache. */ update_cache(patch); return 0; } static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) { u8 *fw = (u8 *)data; size_t offset; offset = install_equiv_cpu_table(data, size); if (!offset) return UCODE_ERROR; fw += offset; size -= offset; if (*(u32 *)fw != UCODE_UCODE_TYPE) { pr_err("invalid type field in container file section header\n"); free_equiv_cpu_table(); return UCODE_ERROR; } while (size > 0) { unsigned int crnt_size = 0; int ret; ret = verify_and_add_patch(family, fw, size, &crnt_size); if (ret < 0) return UCODE_ERROR; fw += crnt_size + SECTION_HDR_SIZE; size -= (crnt_size + SECTION_HDR_SIZE); } return UCODE_OK; } static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) { struct cpuinfo_x86 *c; unsigned int nid, cpu; struct ucode_patch *p; enum ucode_state ret; /* free old equiv table */ free_equiv_cpu_table(); ret = __load_microcode_amd(family, data, size); if (ret != UCODE_OK) { cleanup(); return ret; } for_each_node(nid) { cpu = cpumask_first(cpumask_of_node(nid)); c = &cpu_data(cpu); p = find_patch(cpu); if (!p) continue; if (c->microcode >= p->patch_id) continue; ret = UCODE_NEW; memset(&amd_ucode_patch[nid], 0, PATCH_MAX_SIZE); memcpy(&amd_ucode_patch[nid], p->data, min_t(u32, p->size, PATCH_MAX_SIZE)); } return ret; } /* * AMD microcode firmware naming convention, up to family 15h they are in * the legacy file: * * amd-ucode/microcode_amd.bin * * This legacy file is always smaller than 2K in size. * * Beginning with family 15h, they are in family-specific firmware files: * * amd-ucode/microcode_amd_fam15h.bin * amd-ucode/microcode_amd_fam16h.bin * ... * * These might be larger than 2K. */ static enum ucode_state request_microcode_amd(int cpu, struct device *device, bool refresh_fw) { char fw_name[36] = "amd-ucode/microcode_amd.bin"; struct cpuinfo_x86 *c = &cpu_data(cpu); enum ucode_state ret = UCODE_NFOUND; const struct firmware *fw; /* reload ucode container only on the boot cpu */ if (!refresh_fw) return UCODE_OK; if (c->x86 >= 0x15) snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); if (request_firmware_direct(&fw, (const char *)fw_name, device)) { pr_debug("failed to load file %s\n", fw_name); goto out; } ret = UCODE_ERROR; if (!verify_container(fw->data, fw->size, false)) goto fw_release; ret = load_microcode_amd(c->x86, fw->data, fw->size); fw_release: release_firmware(fw); out: return ret; } static enum ucode_state request_microcode_user(int cpu, const void __user *buf, size_t size) { return UCODE_ERROR; } static void microcode_fini_cpu_amd(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; uci->mc = NULL; } static struct microcode_ops microcode_amd_ops = { .request_microcode_user = request_microcode_user, .request_microcode_fw = request_microcode_amd, .collect_cpu_info = collect_cpu_info_amd, .apply_microcode = apply_microcode_amd, .microcode_fini_cpu = microcode_fini_cpu_amd, }; struct microcode_ops * __init init_amd_microcode(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { pr_warn("AMD CPU family 0x%x not supported\n", c->x86); return NULL; } if (ucode_new_rev) pr_info_once("microcode updated early to new patch_level=0x%08x\n", ucode_new_rev); return µcode_amd_ops; } void __exit exit_amd_microcode(void) { cleanup(); } |