Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | // SPDX-License-Identifier: GPL-2.0-only /* * (C) Copyright 2009 Intel Corporation * Author: Jacob Pan (jacob.jun.pan@intel.com) * * Shared with ARM platforms, Jamie Iles, Picochip 2011 * * Support for the Synopsys DesignWare APB Timers. */ #include <linux/dw_apb_timer.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/slab.h> #define APBT_MIN_PERIOD 4 #define APBT_MIN_DELTA_USEC 200 #define APBTMR_N_LOAD_COUNT 0x00 #define APBTMR_N_CURRENT_VALUE 0x04 #define APBTMR_N_CONTROL 0x08 #define APBTMR_N_EOI 0x0c #define APBTMR_N_INT_STATUS 0x10 #define APBTMRS_INT_STATUS 0xa0 #define APBTMRS_EOI 0xa4 #define APBTMRS_RAW_INT_STATUS 0xa8 #define APBTMRS_COMP_VERSION 0xac #define APBTMR_CONTROL_ENABLE (1 << 0) /* 1: periodic, 0:free running. */ #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1) #define APBTMR_CONTROL_INT (1 << 2) static inline struct dw_apb_clock_event_device * ced_to_dw_apb_ced(struct clock_event_device *evt) { return container_of(evt, struct dw_apb_clock_event_device, ced); } static inline struct dw_apb_clocksource * clocksource_to_dw_apb_clocksource(struct clocksource *cs) { return container_of(cs, struct dw_apb_clocksource, cs); } static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs) { return readl(timer->base + offs); } static inline void apbt_writel(struct dw_apb_timer *timer, u32 val, unsigned long offs) { writel(val, timer->base + offs); } static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs) { return readl_relaxed(timer->base + offs); } static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val, unsigned long offs) { writel_relaxed(val, timer->base + offs); } static void apbt_disable_int(struct dw_apb_timer *timer) { u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL); ctrl |= APBTMR_CONTROL_INT; apbt_writel(timer, ctrl, APBTMR_N_CONTROL); } /** * dw_apb_clockevent_pause() - stop the clock_event_device from running * * @dw_ced: The APB clock to stop generating events. */ void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced) { disable_irq(dw_ced->timer.irq); apbt_disable_int(&dw_ced->timer); } static void apbt_eoi(struct dw_apb_timer *timer) { apbt_readl_relaxed(timer, APBTMR_N_EOI); } static irqreturn_t dw_apb_clockevent_irq(int irq, void *data) { struct clock_event_device *evt = data; struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); if (!evt->event_handler) { pr_info("Spurious APBT timer interrupt %d\n", irq); return IRQ_NONE; } if (dw_ced->eoi) dw_ced->eoi(&dw_ced->timer); evt->event_handler(evt); return IRQ_HANDLED; } static void apbt_enable_int(struct dw_apb_timer *timer) { u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL); /* clear pending intr */ apbt_readl(timer, APBTMR_N_EOI); ctrl &= ~APBTMR_CONTROL_INT; apbt_writel(timer, ctrl, APBTMR_N_CONTROL); } static int apbt_shutdown(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); u32 ctrl; pr_debug("%s CPU %d state=shutdown\n", __func__, cpumask_first(evt->cpumask)); ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } static int apbt_set_oneshot(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); u32 ctrl; pr_debug("%s CPU %d state=oneshot\n", __func__, cpumask_first(evt->cpumask)); ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); /* * set free running mode, this mode will let timer reload max * timeout which will give time (3min on 25MHz clock) to rearm * the next event, therefore emulate the one-shot mode. */ ctrl &= ~APBTMR_CONTROL_ENABLE; ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* write again to set free running mode */ apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* * DW APB p. 46, load counter with all 1s before starting free * running mode. */ apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT); ctrl &= ~APBTMR_CONTROL_INT; ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } static int apbt_set_periodic(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ); u32 ctrl; pr_debug("%s CPU %d state=periodic\n", __func__, cpumask_first(evt->cpumask)); ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); ctrl |= APBTMR_CONTROL_MODE_PERIODIC; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* * DW APB p. 46, have to disable timer before load counter, * may cause sync problem. */ ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); udelay(1); pr_debug("Setting clock period %lu for HZ %d\n", period, HZ); apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT); ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } static int apbt_resume(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); pr_debug("%s CPU %d state=resume\n", __func__, cpumask_first(evt->cpumask)); apbt_enable_int(&dw_ced->timer); return 0; } static int apbt_next_event(unsigned long delta, struct clock_event_device *evt) { u32 ctrl; struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); /* Disable timer */ ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* write new count */ apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT); ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } /** * dw_apb_clockevent_init() - use an APB timer as a clock_event_device * * @cpu: The CPU the events will be targeted at or -1 if CPU affiliation * isn't required. * @name: The name used for the timer and the IRQ for it. * @rating: The rating to give the timer. * @base: I/O base for the timer registers. * @irq: The interrupt number to use for the timer. * @freq: The frequency that the timer counts at. * * This creates a clock_event_device for using with the generic clock layer * but does not start and register it. This should be done with * dw_apb_clockevent_register() as the next step. If this is the first time * it has been called for a timer then the IRQ will be requested, if not it * just be enabled to allow CPU hotplug to avoid repeatedly requesting and * releasing the IRQ. */ struct dw_apb_clock_event_device * dw_apb_clockevent_init(int cpu, const char *name, unsigned rating, void __iomem *base, int irq, unsigned long freq) { struct dw_apb_clock_event_device *dw_ced = kzalloc(sizeof(*dw_ced), GFP_KERNEL); int err; if (!dw_ced) return NULL; dw_ced->timer.base = base; dw_ced->timer.irq = irq; dw_ced->timer.freq = freq; clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD); dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff, &dw_ced->ced); dw_ced->ced.max_delta_ticks = 0x7fffffff; dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced); dw_ced->ced.min_delta_ticks = 5000; dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu); dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ; dw_ced->ced.set_state_shutdown = apbt_shutdown; dw_ced->ced.set_state_periodic = apbt_set_periodic; dw_ced->ced.set_state_oneshot = apbt_set_oneshot; dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown; dw_ced->ced.tick_resume = apbt_resume; dw_ced->ced.set_next_event = apbt_next_event; dw_ced->ced.irq = dw_ced->timer.irq; dw_ced->ced.rating = rating; dw_ced->ced.name = name; dw_ced->irqaction.name = dw_ced->ced.name; dw_ced->irqaction.handler = dw_apb_clockevent_irq; dw_ced->irqaction.dev_id = &dw_ced->ced; dw_ced->irqaction.irq = irq; dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING; dw_ced->eoi = apbt_eoi; err = setup_irq(irq, &dw_ced->irqaction); if (err) { pr_err("failed to request timer irq\n"); kfree(dw_ced); dw_ced = NULL; } return dw_ced; } /** * dw_apb_clockevent_resume() - resume a clock that has been paused. * * @dw_ced: The APB clock to resume. */ void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced) { enable_irq(dw_ced->timer.irq); } /** * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ. * * @dw_ced: The APB clock to stop generating the events. */ void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced) { free_irq(dw_ced->timer.irq, &dw_ced->ced); } /** * dw_apb_clockevent_register() - register the clock with the generic layer * * @dw_ced: The APB clock to register as a clock_event_device. */ void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced) { apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL); clockevents_register_device(&dw_ced->ced); apbt_enable_int(&dw_ced->timer); } /** * dw_apb_clocksource_start() - start the clocksource counting. * * @dw_cs: The clocksource to start. * * This is used to start the clocksource before registration and can be used * to enable calibration of timers. */ void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs) { /* * start count down from 0xffff_ffff. this is done by toggling the * enable bit then load initial load count to ~0. */ u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT); /* enable, mask interrupt */ ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); /* read it once to get cached counter value initialized */ dw_apb_clocksource_read(dw_cs); } static u64 __apbt_read_clocksource(struct clocksource *cs) { u32 current_count; struct dw_apb_clocksource *dw_cs = clocksource_to_dw_apb_clocksource(cs); current_count = apbt_readl_relaxed(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); return (u64)~current_count; } static void apbt_restart_clocksource(struct clocksource *cs) { struct dw_apb_clocksource *dw_cs = clocksource_to_dw_apb_clocksource(cs); dw_apb_clocksource_start(dw_cs); } /** * dw_apb_clocksource_init() - use an APB timer as a clocksource. * * @rating: The rating to give the clocksource. * @name: The name for the clocksource. * @base: The I/O base for the timer registers. * @freq: The frequency that the timer counts at. * * This creates a clocksource using an APB timer but does not yet register it * with the clocksource system. This should be done with * dw_apb_clocksource_register() as the next step. */ struct dw_apb_clocksource * dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base, unsigned long freq) { struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL); if (!dw_cs) return NULL; dw_cs->timer.base = base; dw_cs->timer.freq = freq; dw_cs->cs.name = name; dw_cs->cs.rating = rating; dw_cs->cs.read = __apbt_read_clocksource; dw_cs->cs.mask = CLOCKSOURCE_MASK(32); dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; dw_cs->cs.resume = apbt_restart_clocksource; return dw_cs; } /** * dw_apb_clocksource_register() - register the APB clocksource. * * @dw_cs: The clocksource to register. */ void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs) { clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq); } /** * dw_apb_clocksource_read() - read the current value of a clocksource. * * @dw_cs: The clocksource to read. */ u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs) { return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); } |