Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BTRFS_BLOCK_GROUP_H #define BTRFS_BLOCK_GROUP_H #include "free-space-cache.h" enum btrfs_disk_cache_state { BTRFS_DC_WRITTEN, BTRFS_DC_ERROR, BTRFS_DC_CLEAR, BTRFS_DC_SETUP, }; /* * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to * only allocate a chunk if we really need one. * * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few * chunks already allocated. This is used as part of the clustering code to * help make sure we have a good pool of storage to cluster in, without filling * the FS with empty chunks * * CHUNK_ALLOC_FORCE means it must try to allocate one */ enum btrfs_chunk_alloc_enum { CHUNK_ALLOC_NO_FORCE, CHUNK_ALLOC_LIMITED, CHUNK_ALLOC_FORCE, }; struct btrfs_caching_control { struct list_head list; struct mutex mutex; wait_queue_head_t wait; struct btrfs_work work; struct btrfs_block_group_cache *block_group; u64 progress; refcount_t count; }; /* Once caching_thread() finds this much free space, it will wake up waiters. */ #define CACHING_CTL_WAKE_UP SZ_2M struct btrfs_block_group_cache { struct btrfs_key key; struct btrfs_block_group_item item; struct btrfs_fs_info *fs_info; struct inode *inode; spinlock_t lock; u64 pinned; u64 reserved; u64 delalloc_bytes; u64 bytes_super; u64 flags; u64 cache_generation; /* * If the free space extent count exceeds this number, convert the block * group to bitmaps. */ u32 bitmap_high_thresh; /* * If the free space extent count drops below this number, convert the * block group back to extents. */ u32 bitmap_low_thresh; /* * It is just used for the delayed data space allocation because * only the data space allocation and the relative metadata update * can be done cross the transaction. */ struct rw_semaphore data_rwsem; /* For raid56, this is a full stripe, without parity */ unsigned long full_stripe_len; unsigned int ro; unsigned int iref:1; unsigned int has_caching_ctl:1; unsigned int removed:1; int disk_cache_state; /* Cache tracking stuff */ int cached; struct btrfs_caching_control *caching_ctl; u64 last_byte_to_unpin; struct btrfs_space_info *space_info; /* Free space cache stuff */ struct btrfs_free_space_ctl *free_space_ctl; /* Block group cache stuff */ struct rb_node cache_node; /* For block groups in the same raid type */ struct list_head list; /* Usage count */ atomic_t count; /* * List of struct btrfs_free_clusters for this block group. * Today it will only have one thing on it, but that may change */ struct list_head cluster_list; /* For delayed block group creation or deletion of empty block groups */ struct list_head bg_list; /* For read-only block groups */ struct list_head ro_list; atomic_t trimming; /* For dirty block groups */ struct list_head dirty_list; struct list_head io_list; struct btrfs_io_ctl io_ctl; /* * Incremented when doing extent allocations and holding a read lock * on the space_info's groups_sem semaphore. * Decremented when an ordered extent that represents an IO against this * block group's range is created (after it's added to its inode's * root's list of ordered extents) or immediately after the allocation * if it's a metadata extent or fallocate extent (for these cases we * don't create ordered extents). */ atomic_t reservations; /* * Incremented while holding the spinlock *lock* by a task checking if * it can perform a nocow write (incremented if the value for the *ro* * field is 0). Decremented by such tasks once they create an ordered * extent or before that if some error happens before reaching that step. * This is to prevent races between block group relocation and nocow * writes through direct IO. */ atomic_t nocow_writers; /* Lock for free space tree operations. */ struct mutex free_space_lock; /* * Does the block group need to be added to the free space tree? * Protected by free_space_lock. */ int needs_free_space; /* Record locked full stripes for RAID5/6 block group */ struct btrfs_full_stripe_locks_tree full_stripe_locks_root; }; #ifdef CONFIG_BTRFS_DEBUG static inline int btrfs_should_fragment_free_space( struct btrfs_block_group_cache *block_group) { struct btrfs_fs_info *fs_info = block_group->fs_info; return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || (btrfs_test_opt(fs_info, FRAGMENT_DATA) && block_group->flags & BTRFS_BLOCK_GROUP_DATA); } #endif struct btrfs_block_group_cache *btrfs_lookup_first_block_group( struct btrfs_fs_info *info, u64 bytenr); struct btrfs_block_group_cache *btrfs_lookup_block_group( struct btrfs_fs_info *info, u64 bytenr); struct btrfs_block_group_cache *btrfs_next_block_group( struct btrfs_block_group_cache *cache); void btrfs_get_block_group(struct btrfs_block_group_cache *cache); void btrfs_put_block_group(struct btrfs_block_group_cache *cache); void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, const u64 start); void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg); bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg); void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, u64 num_bytes); int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache); int btrfs_cache_block_group(struct btrfs_block_group_cache *cache, int load_cache_only); void btrfs_put_caching_control(struct btrfs_caching_control *ctl); struct btrfs_caching_control *btrfs_get_caching_control( struct btrfs_block_group_cache *cache); u64 add_new_free_space(struct btrfs_block_group_cache *block_group, u64 start, u64 end); struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( struct btrfs_fs_info *fs_info, const u64 chunk_offset); int btrfs_remove_block_group(struct btrfs_trans_handle *trans, u64 group_start, struct extent_map *em); void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg); int btrfs_read_block_groups(struct btrfs_fs_info *info); int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, u64 type, u64 chunk_offset, u64 size); void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans); int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache, bool do_chunk_alloc); void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache); int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans); int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); int btrfs_setup_space_cache(struct btrfs_trans_handle *trans); int btrfs_update_block_group(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, int alloc); int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, u64 ram_bytes, u64 num_bytes, int delalloc); void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, u64 num_bytes, int delalloc); int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, enum btrfs_chunk_alloc_enum force); int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type); void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type); u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags); void btrfs_put_block_group_cache(struct btrfs_fs_info *info); int btrfs_free_block_groups(struct btrfs_fs_info *info); static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); } static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); } static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); } static inline int btrfs_block_group_cache_done( struct btrfs_block_group_cache *cache) { smp_mb(); return cache->cached == BTRFS_CACHE_FINISHED || cache->cached == BTRFS_CACHE_ERROR; } #endif /* BTRFS_BLOCK_GROUP_H */ |