Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Red Hat * Author: Rob Clark <robdclark@gmail.com> */ #include <drm/drm_atomic_uapi.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_vblank.h> #include "msm_atomic_trace.h" #include "msm_drv.h" #include "msm_gem.h" #include "msm_kms.h" int msm_atomic_prepare_fb(struct drm_plane *plane, struct drm_plane_state *new_state) { struct msm_drm_private *priv = plane->dev->dev_private; struct msm_kms *kms = priv->kms; if (!new_state->fb) return 0; drm_gem_fb_prepare_fb(plane, new_state); return msm_framebuffer_prepare(new_state->fb, kms->aspace); } /* * Helpers to control vblanks while we flush.. basically just to ensure * that vblank accounting is switched on, so we get valid seqn/timestamp * on pageflip events (if requested) */ static void vblank_get(struct msm_kms *kms, unsigned crtc_mask) { struct drm_crtc *crtc; for_each_crtc_mask(kms->dev, crtc, crtc_mask) { if (!crtc->state->active) continue; drm_crtc_vblank_get(crtc); } } static void vblank_put(struct msm_kms *kms, unsigned crtc_mask) { struct drm_crtc *crtc; for_each_crtc_mask(kms->dev, crtc, crtc_mask) { if (!crtc->state->active) continue; drm_crtc_vblank_put(crtc); } } static void msm_atomic_async_commit(struct msm_kms *kms, int crtc_idx) { unsigned crtc_mask = BIT(crtc_idx); trace_msm_atomic_async_commit_start(crtc_mask); mutex_lock(&kms->commit_lock); if (!(kms->pending_crtc_mask & crtc_mask)) { mutex_unlock(&kms->commit_lock); goto out; } kms->pending_crtc_mask &= ~crtc_mask; kms->funcs->enable_commit(kms); vblank_get(kms, crtc_mask); /* * Flush hardware updates: */ trace_msm_atomic_flush_commit(crtc_mask); kms->funcs->flush_commit(kms, crtc_mask); mutex_unlock(&kms->commit_lock); /* * Wait for flush to complete: */ trace_msm_atomic_wait_flush_start(crtc_mask); kms->funcs->wait_flush(kms, crtc_mask); trace_msm_atomic_wait_flush_finish(crtc_mask); vblank_put(kms, crtc_mask); mutex_lock(&kms->commit_lock); kms->funcs->complete_commit(kms, crtc_mask); mutex_unlock(&kms->commit_lock); kms->funcs->disable_commit(kms); out: trace_msm_atomic_async_commit_finish(crtc_mask); } static enum hrtimer_restart msm_atomic_pending_timer(struct hrtimer *t) { struct msm_pending_timer *timer = container_of(t, struct msm_pending_timer, timer); struct msm_drm_private *priv = timer->kms->dev->dev_private; queue_work(priv->wq, &timer->work); return HRTIMER_NORESTART; } static void msm_atomic_pending_work(struct work_struct *work) { struct msm_pending_timer *timer = container_of(work, struct msm_pending_timer, work); msm_atomic_async_commit(timer->kms, timer->crtc_idx); } void msm_atomic_init_pending_timer(struct msm_pending_timer *timer, struct msm_kms *kms, int crtc_idx) { timer->kms = kms; timer->crtc_idx = crtc_idx; hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); timer->timer.function = msm_atomic_pending_timer; INIT_WORK(&timer->work, msm_atomic_pending_work); } static bool can_do_async(struct drm_atomic_state *state, struct drm_crtc **async_crtc) { struct drm_connector_state *connector_state; struct drm_connector *connector; struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i, num_crtcs = 0; if (!(state->legacy_cursor_update || state->async_update)) return false; /* any connector change, means slow path: */ for_each_new_connector_in_state(state, connector, connector_state, i) return false; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { if (drm_atomic_crtc_needs_modeset(crtc_state)) return false; if (++num_crtcs > 1) return false; *async_crtc = crtc; } return true; } /* Get bitmask of crtcs that will need to be flushed. The bitmask * can be used with for_each_crtc_mask() iterator, to iterate * effected crtcs without needing to preserve the atomic state. */ static unsigned get_crtc_mask(struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; unsigned i, mask = 0; for_each_new_crtc_in_state(state, crtc, crtc_state, i) mask |= drm_crtc_mask(crtc); return mask; } void msm_atomic_commit_tail(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct msm_drm_private *priv = dev->dev_private; struct msm_kms *kms = priv->kms; struct drm_crtc *async_crtc = NULL; unsigned crtc_mask = get_crtc_mask(state); bool async = kms->funcs->vsync_time && can_do_async(state, &async_crtc); trace_msm_atomic_commit_tail_start(async, crtc_mask); kms->funcs->enable_commit(kms); /* * Ensure any previous (potentially async) commit has * completed: */ trace_msm_atomic_wait_flush_start(crtc_mask); kms->funcs->wait_flush(kms, crtc_mask); trace_msm_atomic_wait_flush_finish(crtc_mask); mutex_lock(&kms->commit_lock); /* * Now that there is no in-progress flush, prepare the * current update: */ kms->funcs->prepare_commit(kms, state); /* * Push atomic updates down to hardware: */ drm_atomic_helper_commit_modeset_disables(dev, state); drm_atomic_helper_commit_planes(dev, state, 0); drm_atomic_helper_commit_modeset_enables(dev, state); if (async) { struct msm_pending_timer *timer = &kms->pending_timers[drm_crtc_index(async_crtc)]; /* async updates are limited to single-crtc updates: */ WARN_ON(crtc_mask != drm_crtc_mask(async_crtc)); /* * Start timer if we don't already have an update pending * on this crtc: */ if (!(kms->pending_crtc_mask & crtc_mask)) { ktime_t vsync_time, wakeup_time; kms->pending_crtc_mask |= crtc_mask; vsync_time = kms->funcs->vsync_time(kms, async_crtc); wakeup_time = ktime_sub(vsync_time, ms_to_ktime(1)); hrtimer_start(&timer->timer, wakeup_time, HRTIMER_MODE_ABS); } kms->funcs->disable_commit(kms); mutex_unlock(&kms->commit_lock); /* * At this point, from drm core's perspective, we * are done with the atomic update, so we can just * go ahead and signal that it is done: */ drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_cleanup_planes(dev, state); trace_msm_atomic_commit_tail_finish(async, crtc_mask); return; } /* * If there is any async flush pending on updated crtcs, fold * them into the current flush. */ kms->pending_crtc_mask &= ~crtc_mask; vblank_get(kms, crtc_mask); /* * Flush hardware updates: */ trace_msm_atomic_flush_commit(crtc_mask); kms->funcs->flush_commit(kms, crtc_mask); mutex_unlock(&kms->commit_lock); /* * Wait for flush to complete: */ trace_msm_atomic_wait_flush_start(crtc_mask); kms->funcs->wait_flush(kms, crtc_mask); trace_msm_atomic_wait_flush_finish(crtc_mask); vblank_put(kms, crtc_mask); mutex_lock(&kms->commit_lock); kms->funcs->complete_commit(kms, crtc_mask); mutex_unlock(&kms->commit_lock); kms->funcs->disable_commit(kms); drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_cleanup_planes(dev, state); trace_msm_atomic_commit_tail_finish(async, crtc_mask); } |