Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | // SPDX-License-Identifier: GPL-2.0 /* * KVM coalesced MMIO * * Copyright (c) 2008 Bull S.A.S. * Copyright 2009 Red Hat, Inc. and/or its affiliates. * * Author: Laurent Vivier <Laurent.Vivier@bull.net> * */ #include <kvm/iodev.h> #include <linux/kvm_host.h> #include <linux/slab.h> #include <linux/kvm.h> #include "coalesced_mmio.h" static inline struct kvm_coalesced_mmio_dev *to_mmio(struct kvm_io_device *dev) { return container_of(dev, struct kvm_coalesced_mmio_dev, dev); } static int coalesced_mmio_in_range(struct kvm_coalesced_mmio_dev *dev, gpa_t addr, int len) { /* is it in a batchable area ? * (addr,len) is fully included in * (zone->addr, zone->size) */ if (len < 0) return 0; if (addr + len < addr) return 0; if (addr < dev->zone.addr) return 0; if (addr + len > dev->zone.addr + dev->zone.size) return 0; return 1; } static int coalesced_mmio_has_room(struct kvm_coalesced_mmio_dev *dev, u32 last) { struct kvm_coalesced_mmio_ring *ring; unsigned avail; /* Are we able to batch it ? */ /* last is the first free entry * check if we don't meet the first used entry * there is always one unused entry in the buffer */ ring = dev->kvm->coalesced_mmio_ring; avail = (ring->first - last - 1) % KVM_COALESCED_MMIO_MAX; if (avail == 0) { /* full */ return 0; } return 1; } static int coalesced_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *val) { struct kvm_coalesced_mmio_dev *dev = to_mmio(this); struct kvm_coalesced_mmio_ring *ring = dev->kvm->coalesced_mmio_ring; __u32 insert; if (!coalesced_mmio_in_range(dev, addr, len)) return -EOPNOTSUPP; spin_lock(&dev->kvm->ring_lock); insert = READ_ONCE(ring->last); if (!coalesced_mmio_has_room(dev, insert) || insert >= KVM_COALESCED_MMIO_MAX) { spin_unlock(&dev->kvm->ring_lock); return -EOPNOTSUPP; } /* copy data in first free entry of the ring */ ring->coalesced_mmio[insert].phys_addr = addr; ring->coalesced_mmio[insert].len = len; memcpy(ring->coalesced_mmio[insert].data, val, len); ring->coalesced_mmio[insert].pio = dev->zone.pio; smp_wmb(); ring->last = (insert + 1) % KVM_COALESCED_MMIO_MAX; spin_unlock(&dev->kvm->ring_lock); return 0; } static void coalesced_mmio_destructor(struct kvm_io_device *this) { struct kvm_coalesced_mmio_dev *dev = to_mmio(this); list_del(&dev->list); kfree(dev); } static const struct kvm_io_device_ops coalesced_mmio_ops = { .write = coalesced_mmio_write, .destructor = coalesced_mmio_destructor, }; int kvm_coalesced_mmio_init(struct kvm *kvm) { struct page *page; int ret; ret = -ENOMEM; page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) goto out_err; ret = 0; kvm->coalesced_mmio_ring = page_address(page); /* * We're using this spinlock to sync access to the coalesced ring. * The list doesn't need it's own lock since device registration and * unregistration should only happen when kvm->slots_lock is held. */ spin_lock_init(&kvm->ring_lock); INIT_LIST_HEAD(&kvm->coalesced_zones); out_err: return ret; } void kvm_coalesced_mmio_free(struct kvm *kvm) { if (kvm->coalesced_mmio_ring) free_page((unsigned long)kvm->coalesced_mmio_ring); } int kvm_vm_ioctl_register_coalesced_mmio(struct kvm *kvm, struct kvm_coalesced_mmio_zone *zone) { int ret; struct kvm_coalesced_mmio_dev *dev; if (zone->pio != 1 && zone->pio != 0) return -EINVAL; dev = kzalloc(sizeof(struct kvm_coalesced_mmio_dev), GFP_KERNEL_ACCOUNT); if (!dev) return -ENOMEM; kvm_iodevice_init(&dev->dev, &coalesced_mmio_ops); dev->kvm = kvm; dev->zone = *zone; mutex_lock(&kvm->slots_lock); ret = kvm_io_bus_register_dev(kvm, zone->pio ? KVM_PIO_BUS : KVM_MMIO_BUS, zone->addr, zone->size, &dev->dev); if (ret < 0) goto out_free_dev; list_add_tail(&dev->list, &kvm->coalesced_zones); mutex_unlock(&kvm->slots_lock); return 0; out_free_dev: mutex_unlock(&kvm->slots_lock); kfree(dev); return ret; } int kvm_vm_ioctl_unregister_coalesced_mmio(struct kvm *kvm, struct kvm_coalesced_mmio_zone *zone) { struct kvm_coalesced_mmio_dev *dev, *tmp; int r; if (zone->pio != 1 && zone->pio != 0) return -EINVAL; mutex_lock(&kvm->slots_lock); list_for_each_entry_safe(dev, tmp, &kvm->coalesced_zones, list) { if (zone->pio == dev->zone.pio && coalesced_mmio_in_range(dev, zone->addr, zone->size)) { r = kvm_io_bus_unregister_dev(kvm, zone->pio ? KVM_PIO_BUS : KVM_MMIO_BUS, &dev->dev); kvm_iodevice_destructor(&dev->dev); /* * On failure, unregister destroys all devices on the * bus _except_ the target device, i.e. coalesced_zones * has been modified. No need to restart the walk as * there aren't any zones left. */ if (r) break; } } mutex_unlock(&kvm->slots_lock); /* * Ignore the result of kvm_io_bus_unregister_dev(), from userspace's * perspective, the coalesced MMIO is most definitely unregistered. */ return 0; } |